Gut Microbiome Modulation and Health Benefits of a Novel Fucoidan Extract from Saccharina latissima: A Double-Blind, Placebo-Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preclinical Studies Designs and Methods
2.3. Human Safety Assessment
2.4. Study Design
2.4.1. Sample Size
2.4.2. Study Subjects
2.5. Treatment and Compliance
2.6. Sample Collection
2.7. Hematological and Clinical Determinations
2.8. Occurrence of Adverse Events Determination
2.9. Metagenome Analysis
2.9.1. Taxonomic Profiling Workflow
2.9.2. Abundance and Biomarker Analysis
2.10. Metagenomic Functional Profiling
2.11. Alpha Diversity Assessment
2.12. Statistical Analysis
3. Results
3.1. Preclinical Studies Outcome
3.2. Treatment Compliance Measurements
3.3. Effective Analysis
3.4. Multivariate Analysis
3.5. Anthropometric Measurements
3.6. SF-36 Health Questionnaire
3.7. Adverse Events
3.8. Metagenome Quality
3.9. Alpha Diversity Results
3.10. Trends in Gut Microbiota over 90 Days of HD Treatment
3.10.1. Taxonomy Results
3.10.2. Functional Predictions
3.11. Trends in Gut Microbiota over 90 Days of LD Treatment
3.12. Comparisons Between Low-Dose and High-Dose Treatments
3.13. LEfSe Analysis
3.14. Lachnospiraceae-to-Enterobacteriaceae and Bacillota-to-Bacteroidota Ratios
4. Discussion
4.1. Preclinical Insights Supporting Clinical Translation
4.1.1. Metabolic Indicators and Microbial Functional Correlates
4.1.2. Monocytes
4.1.3. Quality of Life and Adverse Events
4.2. Alpha Diversity
4.2.1. Trends in Microbial Diversity and Potential Mechanisms of Diversity Shifts
4.2.2. Microbiome Recovery and Resilience
4.2.3. Clinical and Mechanistic Implications
4.3. Taxonomic Trends in Gut Microbiota over 90 Days of HD Treatment
4.3.1. Stability and Temporal Trends
4.3.2. Microbial Health and Functional Implications
4.3.3. Implications for Microbiome Function and Host Response
4.3.4. False Discovery Rate (FDR) Analysis
4.3.5. Functional Predictions and Key Taxonomic Trends
4.3.6. Temporal Patterns and Stability
4.3.7. Translational Relevance and Research Outlook
4.4. Microbial Ecology and Functional Inference During LD Intervention
Clinical Implications and Future Directions
4.5. Comparisons Between High-Dose and Low-Dose Interventions and Impact of Microbiome Function
4.5.1. Microbiome Composition Changes
4.5.2. Functional Pathway Analysis
4.5.3. L/E and F/B Ratios (Figure 10)
4.5.4. Dose-Dependent Effects and Optimization Strategies
4.6. Limitations of the Study
4.6.1. Sample Size and Cohort Variability
4.6.2. Short Study Duration
4.6.3. Limited Functional Analysis
4.6.4. Lack of Dietary Control
4.6.5. Potential for Unmeasured Confounders
4.6.6. Focus on Dose Without Other Combinations
4.6.7. Limited Taxonomic Resolution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Xu, Z.; Zhang, H.; Liu, T.; Zhou, J.; Bi, Y.; Han, Y.; Tan, Y.; Yuan, J.; Yang, R. When the microbiome meets One Health principle: Leading to the Holy Grail of biology and contributing to overall well-being and social sustainability. iMetaOmics 2024, 1, e30. [Google Scholar] [CrossRef]
- Ross, F.C.; Patangia, D.; Grimaud, G.; Lavelle, A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. The interplay between diet and the gut microbiome: Implications for health and disease. Nat. Rev. Microbiol. 2024, 22, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Zaher, A.; Elsaygh, J.; Peterson, S.J.; Weisberg, I.S.; Parikh, M.A.; Frishman, W.H. The Interplay of Microbiome Dysbiosis and Cardiovascular Disease. Cardiol. Rev. 2024. [Google Scholar] [CrossRef]
- Matthewman, C.; Narin, A.; Huston, H.; Hopkins, C.E. Systems to model the personalized aspects of microbiome health and gut dysbiosis. Mol. Asp. Med. 2023, 91, 101115. [Google Scholar] [CrossRef]
- Noce, A.; Marrone, G.; Di Daniele, F.; Ottaviani, E.; Wilson Jones, G.; Bernini, R.; Romani, A.; Rovella, V. Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases. Nutrients 2019, 11, 1073. [Google Scholar] [CrossRef] [PubMed]
- Scott, E.; De Paepe, K.; Van de Wiele, T. Postbiotics and Their Health Modulatory Biomolecules. Biomolecules 2022, 12, 1640. [Google Scholar] [CrossRef]
- Palmnäs-Bédard, M.S.A.; Costabile, G.; Vetrani, C.; Åberg, S.; Hjalmarsson, Y.; Dicksved, J.; Riccardi, G.; Landberg, R. The human gut microbiota and glucose metabolism: A scoping review of key bacteria and the potential role of SCFAs. Am. J. Clin. Nutr. 2022, 116, 862–874. [Google Scholar] [CrossRef] [PubMed]
- den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef]
- Huang, X.; Nie, S.; Fu, X.; Nan, S.; Ren, X.; Li, R. Exploring the prebiotic potential of hydrolyzed fucoidan fermented in vitro with human fecal inocula: Impact on microbiota and metabolome. Int. J. Biol. Macromol. 2024, 267, 131202. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xue, M.; Li, J.; Ma, Y.; Wang, Y.; Zhang, H.; Liang, H. Fucoidan Improves D-Galactose-Induced Cognitive Dysfunction by Promoting Mitochondrial Biogenesis and Maintaining Gut Microbiome Homeostasis. Nutrients 2024, 16, 1512. [Google Scholar] [CrossRef]
- Wang, S.; Tian, Z.B.; Chen, J.W.; Cong, P.S.; Ding, X.L.; Zhang, C.P.; Yin, X.Y.; Yang, L.; Jing, X.; Mao, T.; et al. Effect of fucoidan on gut microbiota and its clinical efficacy in Helicobacter pylori eradication: A randomized controlled trial. J. Dig. Dis. 2023, 24, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Sedgwick, H.; Gibson, G.; Adams, J.; Wijeyesekera, A. Seaweed-derived bioactives: Gut microbiota targeted interventions for immune function. J. Funct. Foods 2025, 125, 106696. [Google Scholar]
- Fitton, J.H. Therapies from fucoidan; multifunctional marine polymers. Mar. Drugs 2011, 9, 1731–1760. [Google Scholar] [CrossRef] [PubMed]
- Fitton, J.H.; Stringer, D.N.; Park, A.Y.; Karpiniec, S.S. Therapies from fucoidan: New developments. Mar. Drugs 2019, 17, 571. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, Y.; Yuan, J.; Liu, Z.; Ye, C.; Qin, S. Undaria pinnatifida improves obesity-related outcomes in association with gut microbiota and metabolomics modulation in high-fat diet-fed mice. Appl. Microbiol. Biotechnol. 2020, 104, 10217–10231. [Google Scholar] [CrossRef]
- Jia, J.; Zheng, W.; Tang, S.; Song, S.; Ai, C. Scytosiphon lomentaria fucoidan ameliorates DSS-induced colitis in dietary fiber-deficient mice via modulating the gut microbiota and inhibiting the TLR4/NF-κB/MLCK pathway. Int. J. Biol. Macromol. 2023, 253, 127337. [Google Scholar] [CrossRef]
- Cano Chauvell, R.D.J.; García Menéndez, G. El microbioma cubano: Perspectivas sobre la salud, la enfermedad, y el papel de la dieta en la recuperaciÃ3n del microbioma. An. Acad. Cienc. Cuba 2025, 15, 2909. [Google Scholar]
- Hoefman, S.; Pommerening-Röser, A.; Samyn, E.; De Vos, P.; Heylen, K. Efficient cryopreservation protocol enables accessibility of a broad range of ammonia-oxidizing bacteria for the scientific community. Res. Microbiol. 2013, 164, 288–292. [Google Scholar] [CrossRef]
- Mackie, A.; Rigby, N. InfoGest consensus method. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Springer: Berlin/Heidelberg, Germany, 2015; pp. 13–22. [Google Scholar]
- Vandeputte, D.; Kathagen, G.; D’hOe, K.; Vieira-Silva, S.; Valles-Colomer, M.; Sabino, J.; Wang, J.; Tito, R.Y.; De Commer, L.; Darzi, Y.; et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 2017, 551, 507–511. [Google Scholar] [CrossRef]
- Vilagut, G.; Ferrer, M.; Rajmil, L.; Rebollo, P.; Permanyer-Miralda, G.; Quintana, J.M.; Santed, R.; Valderas, J.M.; Domingo-Salvany, A.; Alonso, J. El Cuestionario de Salud SF-36 español: Una década de experiencia y nuevos desarrollos. Gac. Sanit. 2005, 19, 135–150. [Google Scholar] [CrossRef]
- Shrestha, B.; Dunn, L. The declaration of Helsinki on medical research involving human subjects: A review of seventh revision. J. Nepal Health Res. Counc. 2019, 17, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Asnicar, F.; Leeming, E.R.; Dimidi, E.; Mazidi, M.; Franks, P.W.; Al Khatib, H.; Valdes, A.M.; Davies, R.; Bakker, E.; Francis, L.; et al. Blue poo: Impact of gut transit time on the gut microbiome using a novel marker. Gut 2021, 70, 1665–1674. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Segata, N.; Waldron, L.; Ballarini, A.; Narasimhan, V.; Jousson, O.; Huttenhower, C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 2012, 9, 811–814. [Google Scholar] [CrossRef]
- Lefevre, M.; Racedo, S.M.; Denayrolles, M.; Ripert, G.; Desfougères, T.; Lobach, A.R.; Simon, R.; Pélerin, F.; Jüsten, P.; Urdaci, M.C. Safety assessment of Bacillus subtilis CU1 for use as a probiotic in humans. Regul. Toxicol. Pharmacol. RTP 2017, 83, 54–65. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Chalita, M.; Ha, S.-m.; Kim, Y.O.; Oh, H.-S.; Yoon, S.-H.; Chun, J. Improved metagenomic taxonomic profiling using a curated core gene-based bacterial database reveals unrecognized species in the genus Streptococcus. Pathogens 2020, 9, 204. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Subgroup, G.P.D.P. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Daniel, W.W. Kruskal–Wallis one-way analysis of variance by ranks. In Applied Nonparametric Statistics, 2nd ed.; PWS-Kent: Boston, MA, USA, 1990; pp. 226–234. ISBN 0-534-91976-6. [Google Scholar]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Doak, T.G. A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLoS Comput. Biol. 2009, 5, e1000465. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.; Lee, S.-M. Estimating the number of classes via sample coverage. J. Am. Stat. Assoc. 1992, 87, 210–217. [Google Scholar] [CrossRef]
- Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Vavrek, M.J. Fossil: Palaeoecological and palaeogeographical analysis tools. Palaeontol. Electron. 2011, 14, 16. [Google Scholar]
- Schloss, P.D.; Handelsman, J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 2005, 71, 1501–1506. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2001, 5, 3–55. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. vegan: Community Ecology Package (Version 2.5-7) [R package]. Comprehensive R Archive Network (CRAN). 2020. Available online: https://CRAN.R-project.org/package=vegan (accessed on 11 May 2025).
- Faith, D.P. The role of the phylogenetic diversity measure, PD, in bio-informatics: Getting the definition right. Evol. Bioinform. Online 2007, 2, 277–283. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical methods for research workers. In Breakthroughs in Statistics: Methodology and Distribution; Springer: Berlin/Heidelberg, Germany, 1970; pp. 66–70. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Rosner, B.; Glynn, R.J.; Lee, M.L.T. The Wilcoxon signed rank test for paired comparisons of clustered data. Biometrics 2006, 62, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.S.; Wildenhain, J.; Javanmard, A.; Karp, N.A. onlineFDR: An R package to control the false discovery rate for growing data repositories. Bioinformatics 2019, 35, 4196–4199. [Google Scholar] [CrossRef] [PubMed]
- José, U. Python Programming for Data Analysis; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Benitez, A.J.; Alvarez, M.; Perez, L.; Gravier, R.; Serrano, S.; Hernandez, D.M.; Perez, M.M.; Gutierrez-Bugallo, G.; Martinez, Y.; Companioni, A.; et al. Oropouche Fever, Cuba, May 2024. Emerg. Infect. Dis. 2024, 30, 2155–2159. [Google Scholar] [CrossRef]
- World Health Organization. Disease Outbreak News; Oropouche Virus Disease in Cuba. 2024. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON521 (accessed on 11 May 2025).
- Organización Panamericana de la Salud; Organización Mundial de la Salud. Actualización Epidemiológica: Dengue en la Región de las Américas 18 de junio del 2024. Available online: https://www.paho.org/es/documentos/actualizacion-epidemiologica-aumento-casos-dengue-region-americas-18-junio-2024 (accessed on 11 May 2025).
- Panamericana de la Salud/Organización Mundial de la Salud. Alerta Epidemiológica-SARS-CoV-2, Influenza y Otros Virus Respiratorios en la Región de las Américas-5 de Agosto del 2024; OPS/OMS: Washington, DC, USA, 2024. [Google Scholar]
- McLachlan, G.J. Discriminant Analysis and Statistical Pattern Recognition; John Wiley & Sons: Hoboken, NJ, USA, 2004; Volume 544. [Google Scholar]
- Jenkinson, C.; Coulter, A.; Wright, L. Short form 36 (SF36) health survey questionnaire: Normative data for adults of working age. Br. Med. J. 1993, 306, 1437–1440. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Tukey’s honestly significant difference (HSD) test. In Encyclopedia of Research Design; Sage: Thousand Oaks, CA, USA, 2010. [Google Scholar]
- Xanthopoulos, P.; Pardalos, P.M.; Trafalis, T.B.; Xanthopoulos, P.; Pardalos, P.M.; Trafalis, T.B. Linear discriminant analysis. In Robust Data Mining; Springer: New York, NY, USA, 2013; pp. 27–33. [Google Scholar]
- García, G.; Soto, J.; Netherland, M., Jr.; Hasan, N.A.; Buchaca, E.; Martínez, D.; Carlin, M.; de Jesus Cano, R. Evaluating the Effects of Sugar Shift® Symbiotic on Microbiome Composition and LPS Regulation: A Double-Blind, Placebo-Controlled Study. Microorganisms 2024, 12, 2525. [Google Scholar] [CrossRef] [PubMed]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.-M.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef]
- Cason, C.A.; Dolan, K.T.; Sharma, G.; Tao, M.; Kulkarni, R.; Helenowski, I.B.; Doane, B.M.; Avram, M.J.; McDermott, M.M.; Chang, E.B.; et al. Plasma microbiome-modulated indole-and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J. Vasc. Surg. 2018, 68, 1552–1562.e7. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.M.; Botelho, P.B. Probiotics, prebiotics, and synbiotics in chronic constipation: Outstanding aspects to be considered for the current evidence. Front. Nutr. 2022, 9, 935830. [Google Scholar] [CrossRef] [PubMed]
- Savıcı, M.; Karaca, E. The Effect of Different Amounts of Soluble-Insoluble Fibre Consumption on Colonic Transit Time in Adults. Med. Rec. 2019, 1, 5–14. [Google Scholar]
- Glibowski, P.; Skrzypek, M.; Ćwiklińska, M.; Drozd, M.; Kowalska, A. Chemical stability of fructans in apple beverages and their influence on chronic constipation. Food Funct. 2020, 11, 3860–3866. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Hermes, G.D.A.; Emanuel, E.C.; Holst, J.J.; Zoetendal, E.G.; Smidt, H.; Troost, F.; Schaap, F.G.; Damink, S.O.; Jocken, J.W.E.; et al. Effect of wheat bran derived prebiotic supplementation on gastrointestinal transit, gut microbiota, and metabolic health: A randomized controlled trial in healthy adults with a slow gut transit. Gut Microbes 2020, 12, 1704141. [Google Scholar] [CrossRef]
- Micka, A.; Siepelmeyer, A.; Holz, A.; Theis, S.; Schön, C. Effect of consumption of chicory inulin on bowel function in healthy subjects with constipation: A randomized, double-blind, placebo-controlled trial. Int. J. Food Sci. Nutr. 2017, 68, 82–89. [Google Scholar] [CrossRef]
- Vandeputte, D.; Falony, G.; Vieira-Silva, S.; Wang, J.; Sailer, M.; Theis, S.; Verbeke, K.; Raes, J. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut 2017, 66, 1968–1974. [Google Scholar] [CrossRef]
- Mabate, B.; Daub, C.D.; Malgas, S.; Edkins, A.L.; Pletschke, B.I. Fucoidan Structure and Its Impact on Glucose Metabolism: Implications for Diabetes and Cancer Therapy. Mar. Drugs 2021, 19, 30. [Google Scholar] [CrossRef]
- Porrata, C. Cubans’ Deadly Diet: A Wakeup Call. MEDICC Rev. 2008, 10, 52. [Google Scholar]
- Gorry, C. Cubans team up for better nutrition. MEDICC Rev. 2009, 11, 20–22. [Google Scholar] [CrossRef]
- Porrata Maury, C. Consumo y preferencias alimentarias de la población cubana de 15 y más años de edad. Rev. Cub Aliment. Nutr. 2009, 19, 87–105. [Google Scholar]
- Cano, R.; García, G. The Cuban Microbiome: Insights into Health, Disease, and the Role of Diet in Microbiome Recovery. An. Acad. Cienc. Cuba 2025, 15, 1–12. [Google Scholar]
- Nsor-Atindana, J.; Chen, M.; Goff, H.D.; Zhong, F.; Sharif, H.R.; Li, Y. Functionality and nutritional aspects of microcrystalline cellulose in food. Carbohydr. Polym. 2017, 172, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol. 2016, 213, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Garth, H. Food in Contemporary Cuba; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, S.; Xie, C.; Fang, J. Uridine metabolism and its role in glucose, lipid, and amino acid homeostasis. BioMed Res. Int. 2020, 2020, 7091718. [Google Scholar] [CrossRef]
- Kasahara, K.; Kerby, R.L.; Zhang, Q.; Pradhan, M.; Mehrabian, M.; Lusis, A.J.; Bergström, G.; Bäckhed, F.; Rey, F.E. Gut bacterial metabolism contributes to host global purine homeostasis. Cell Host Microbe 2023, 31, 1038–1053.e10. [Google Scholar] [CrossRef]
- Liu, W.; Nan, F.; Liu, F.; Yang, X.; Li, Z.; Jiang, S.; Zhang, X.; Li, J.; Yu, M.; Wang, Y. Isolation and identification of uric acid-dependent Aciduricibacillus chroicocephali gen. nov., sp. nov. from seagull feces and implications for hyperuricemia treatment. Msphere 2024, 9, e0002524. [Google Scholar] [CrossRef]
- Patel, A.A.; Ginhoux, F.; Yona, S. Monocytes, macrophages, dendritic cells and neutrophils: An update on lifespan kinetics in health and disease. Immunology 2021, 163, 250–261. [Google Scholar] [CrossRef]
- Nikitina, E.; Larionova, I.; Choinzonov, E.; Kzhyshkowska, J. Monocytes and Macrophages as Viral Targets and Reservoirs. Int. J. Mol. Sci. 2018, 19, 2821. [Google Scholar] [CrossRef]
- Shi, Y.; Mu, L. An expanding stage for commensal microbes in host immune regulation. Cell. Mol. Immunol. 2017, 14, 339–348. [Google Scholar]
- Mutuyemungu, E.; Singh, M.; Liu, S.; Rose, D.J. Intestinal gas production by the gut microbiota: A review. J. Funct. Foods 2023, 100, 105367. [Google Scholar]
- Yu, F.; Yan, L.; Wang, N.; Yang, S.; Wang, L.; Tang, Y.; Gao, G.; Wang, S.; Ma, C.; Xie, R.; et al. Quantitative Detection and Viral Load Analysis of SARS-CoV-2 in Infected Patients. Clin. Infect. Dis. 2020, 71, 793–798. [Google Scholar] [CrossRef]
- Hitch, T.C.; Hall, L.J.; Walsh, S.K.; Leventhal, G.E.; Slack, E.; de Wouters, T.; Walter, J.; Clavel, T. Microbiome-based interventions to modulate gut ecology and the immune system. Mucosal Immunol. 2022, 15, 1095–1113. [Google Scholar]
- Speckmann, B.; Ehring, E.; Hu, J.; Rodriguez Mateos, A. Exploring substrate–microbe interactions: A metabiotic approach toward developing targeted synbiotic compositions. Gut Microbes 2024, 16, 2305716. [Google Scholar] [CrossRef]
- Konopka, A.; Lindemann, S.; Fredrickson, J. Dynamics in microbial communities: Unraveling mechanisms to identify principles. ISME J. 2015, 9, 1488–1495. [Google Scholar] [CrossRef]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef]
- Moya, A.; Ferrer, M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol. 2016, 24, 402–413. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, Z.; Zhao, Y.; Daglia, M.; Zhang, J.; Zhu, Y.; Bai, J.; Zhu, L.; Xiao, X. Recent advances in targeted manipulation of the gut microbiome by prebiotics: From taxonomic composition to metabolic function. Curr. Opin. Food Sci. 2023, 49, 100959. [Google Scholar] [CrossRef]
- Tannock, G.W. Modulating the gut microbiota of humans by dietary intervention with plant glycans. Appl. Environ. Microbiol. 2021, 87, e02757-20. [Google Scholar] [CrossRef]
- Cuellar-Gempeler, C. Diversity–function relationships and the underlying ecological mechanisms in host-associated microbial communities. In Microbes: The Foundation Stone of the Biosphere; Springer: Cham, Switzerland, 2021; pp. 297–326. [Google Scholar]
- Chandra, P.; Sharma, H.; Sachan, N. The Potential Role of Prebiotics, Probiotics, and Synbiotics in Cancer Prevention and Therapy. In Synbiotics in Metabolic Disorders; CRC Press: Boca Raton, FL, USA, 2024; pp. 191–213. [Google Scholar]
- Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Francavilla, R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body. Front. Immunol. 2021, 12, 578386. [Google Scholar]
- Abdulqadir, R.; Engers, J.; Al-Sadi, R. Role of Bifidobacterium in modulating the intestinal epithelial tight junction barrier: Current knowledge and perspectives. Curr. Dev. Nutr. 2023, 7, 102026. [Google Scholar] [CrossRef]
- Biagi, E.; Nylund, L.; Candela, M.; Ostan, R.; Bucci, L.; Pini, E.; Nikkïla, J.; Monti, D.; Satokari, R.; Franceschi, C.; et al. Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 2010, 5, e10667. [Google Scholar] [CrossRef]
- Rivera-Chávez, F.; Lopez, C.A.; Bäumler, A.J. Oxygen as a driver of gut dysbiosis. Free Radic. Biol. Med. 2017, 105, 93–101. [Google Scholar] [CrossRef]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L.G.; Gratadoux, J.-J.; Blugeon, S.; Bridonneau, C.; Furet, J.-P.; Corthier, G.; et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, Y.; Zhang, J.; Feng, Q. Linking Periodontitis with Inflammatory Bowel Disease through the Oral–Gut Axis: The Potential Role of Porphyromonas gingivalis. Biomedicines 2024, 12, 685. [Google Scholar] [CrossRef]
- Venegas, D.P.; De la Fuente, M.; Landskron, G.; Gonzalez, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.; Faber, K.N.; Hermoso, M.A. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019, 10, 277. [Google Scholar]
- Kim, K.A.; Jeong, J.J.; Yoo, S.Y.; Kim, D.H. Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice. BMC Microbiol. 2016, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Baldelli, V.; Scaldaferri, F.; Putignani, L.; Del Chierico, F. The role of Enterobacteriaceae in gut microbiota dysbiosis in inflammatory bowel diseases. Microorganisms 2021, 9, 697. [Google Scholar] [CrossRef] [PubMed]
- Sokol, H.; Seksik, P.; Furet, J.P.; Firmesse, O.; Nion-Larmurier, I.; Beaugerie, L.; Cosnes, J.; Corthier, G.; Marteau, P.; Doré, J. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 2009, 15, 1183–1189. [Google Scholar] [CrossRef]
- Mafe, A.N.; Iruoghene Edo, G.; Akpoghelie, P.O.; Gaaz, T.S.; Yousif, E.; Zainulabdeen, K.; Isoje, E.F.; Igbuku, U.A.; Opiti, R.A.; Garba, Y.; et al. Probiotics and Food Bioactives: Unraveling Their Impact on Gut Microbiome, Inflammation, and Metabolic Health. Probiotics Antimicrob. Proteins 2025, 14, 1–42. [Google Scholar] [CrossRef]
- Holle, J.; Bartolomaeus, H. Gut-derived metabolites as treatment targets in chronic kidney disease—An avenue toward personalized medicine. Pediatr. Nephrol. 2025, 40, 1505–1510. [Google Scholar] [CrossRef]
- Morelli, L.; Callegari, M.L.; Patrone, V. Prebiotics, probiotics, and synbiotics: A bifidobacterial view. In The Bifidobacteria and Related Organisms; Elsevier: Amsterdam, The Netherlands, 2018; pp. 271–293. [Google Scholar]
- Kashyap, P.C.; Chia, N.; Nelson, H.; Segal, E.; Elinav, E. Microbiome at the frontier of personalized medicine. In Proceedings of the Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1855–1864. [Google Scholar]
- Gupta, G.; Kapila, R.; Chopra, A.; Raskar, R. First 100 days of pandemic; an interplay of pharmaceutical, behavioral and digital interventions—A study using agent based modeling. arXiv 2024, arXiv:2401.04795. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E.; Lærke, H.N.; Hedemann, M.S.; Nielsen, T.S.; Ingerslev, A.K.; Gundelund Nielsen, D.S.; Theil, P.K.; Purup, S.; Hald, S.; Schioldan, A.G.; et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients 2018, 10, 1499. [Google Scholar] [CrossRef] [PubMed]
- Salvi, P.S.; Cowles, R.A. Butyrate and the Intestinal Epithelium: Modulation of Proliferation and Inflammation in Homeostasis and Disease. Cells 2021, 10, 1775. [Google Scholar] [CrossRef]
- Ojima, M.N.; Gotoh, A.; Takada, H.; Odamaki, T.; Xiao, J.-Z.; Katoh, T.; Katayama, T. Bifidobacterium bifidum suppresses gut inflammation caused by repeated antibiotic disturbance without recovering gut microbiome diversity in mice. Front. Microbiol. 2020, 11, 1349. [Google Scholar] [CrossRef]
- Mizuno, S.; Masaoka, T.; Naganuma, M.; Kishimoto, T.; Kitazawa, M.; Kurokawa, S.; Nakashima, M.; Takeshita, K.; Suda, W.; Mimura, M.; et al. Bifidobacterium-rich fecal donor may be a positive predictor for successful fecal microbiota transplantation in patients with irritable bowel syndrome. Digestion 2017, 96, 29–38. [Google Scholar] [CrossRef]
- Guadamuro, L.; Dohrmann, A.B.; Tebbe, C.C.; Mayo, B.; Delgado, S. Bacterial communities and metabolic activity of faecal cultures from equol producer and non-producer menopausal women under treatment with soy isoflavones. BMC Microbiol. 2017, 17, 93. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Kreimes, A.; Barone, M.; Turroni, S.; Brigidi, P.; Keleszade, E.; Costabile, A. Impact of lignans in oilseed mix on gut microbiome composition and enterolignan production in younger healthy and premenopausal women: An in vitro pilot study. Microb. Cell Factories 2020, 19, 82. [Google Scholar]
- Hosomi, K.; Saito, M.; Park, J.; Murakami, H.; Shibata, N.; Ando, M.; Nagatake, T.; Konishi, K.; Ohno, H.; Tanisawa, K.; et al. Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nat. Commun. 2022, 13, 4477. [Google Scholar] [CrossRef]
- Leylabadlo, H.E.; Ghotaslou, R.; Feizabadi, M.M.; Farajnia, S.; Moaddab, S.Y.; Ganbarov, K.; Khodadadi, E.; Tanomand, A.; Sheykhsaran, E.; Yousefi, B.; et al. The critical role of Faecalibacterium prausnitzii in human health: An overview. Microb. Pathog. 2020, 149, 104344. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lordan, C.; Ross, R.P.; Cotter, P.D. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 2020, 12, 1802866. [Google Scholar] [CrossRef]
- Rivière, A.; Selak, M.; Lantin, D.; Leroy, F.; De Vuyst, L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Front. Microbiol. 2016, 7, 979. [Google Scholar]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Clavel, T.; Henderson, G.; Alpert, C.-A.; Philippe, C.; Rigottier-Gois, L.; Doré, J.; Blaut, M. Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans. Appl. Environ. Microbiol. 2005, 71, 6077–6085. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, B.; Fang, X.; Zhong, Q.; Liao, Z.; Wang, J.; Wu, X.; Ma, Y.; Li, P.; Feng, X. Soy isoflavone-specific biotransformation product S-equol in the colon: Physiological functions, transformation mechanisms, and metabolic regulatory pathways. Crit. Rev. Food Sci. Nutr. 2024, 64, 5462–5490. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, C.; Frankenfeld, C.L.; Lampe, J.W. Gut bacterial metabolism of the soy isoflavone daidzein: Exploring the relevance to human health. Exp. Biol. Med. 2005, 230, 155–170. [Google Scholar] [CrossRef]
- Lopez-Siles, M.; Duncan, S.H.; Garcia-Gil, L.J.; Martinez-Medina, M. Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics. ISME J. 2017, 11, 841–852. [Google Scholar] [CrossRef]
- Duncan, S.H.; Louis, P.; Flint, H.J. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl. Environ. Microbiol. 2004, 70, 5810–5817. [Google Scholar] [CrossRef]
- Zhernakova, A.; Kurilshikov, A.; Bonder, M.J.; Tigchelaar, E.F.; Schirmer, M.; Vatanen, T.; Mujagic, Z.; Vila, A.V.; Falony, G.; Vieira-Silva, S.; et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016, 352, 565–569. [Google Scholar] [CrossRef]
- Zhernakova, D.V.; Wang, D.; Liu, L.; Andreu-Sánchez, S.; Zhang, Y.; Ruiz-Moreno, A.J.; Peng, H.; Plomp, N.; Del Castillo-Izquierdo, Á.; Gacesa, R.; et al. Host genetic regulation of human gut microbial structural variation. Nature 2024, 625, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.P.; Gratz, S.W.; Sheridan, P.O.; Flint, H.J.; Duncan, S.H. The influence of diet on the gut microbiota. Pharmacol. Res. 2013, 69, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Roberfroid, M.; Gibson, G.R.; Hoyles, L.; McCartney, A.L.; Rastall, R.; Rowland, I.; Wolvers, D.; Watzl, B.; Szajewska, H.; Stahl, B.; et al. Prebiotic effects: Metabolic and health benefits. Br. J. Nutr. 2010, 104, S1–S63. [Google Scholar] [PubMed]
- Candela, M.; Turroni, S.; Biagi, E.; Carbonero, F.; Rampelli, S.; Fiorentini, C.; Brigidi, P. Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World J. Gastroenterol. 2014, 20, 908–922. [Google Scholar] [CrossRef]
- Kvakova, M.; Kamlarova, A.; Stofilova, J.; Benetinova, V.; Bertkova, I. Probiotics and postbiotics in colorectal cancer: Prevention and complementary therapy. World J. Gastroenterol. 2022, 28, 3370–3382. [Google Scholar] [CrossRef]
- Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.; Brummer, R.J. The role of butyrate on colonic function. Aliment. Pharmacol. Ther. 2008, 27, 104–119. [Google Scholar] [CrossRef]
- Alpino, G.d.C.Á.; Pereira-Sol, G.A.; Dias, M.d.M.e.; Aguiar, A.S.d.; Peluzio, M.d.C.G. Beneficial effects of butyrate on brain functions: A view of epigenetic. Crit. Rev. Food Sci. Nutr. 2024, 64, 3961–3970. [Google Scholar] [CrossRef]
- Du, Y.; He, C.; An, Y.; Huang, Y.; Zhang, H.; Fu, W.; Wang, M.; Shan, Z.; Xie, J.; Yang, Y.; et al. The role of short chain fatty acids in inflammation and body health. Int. J. Mol. Sci. 2024, 25, 7379. [Google Scholar] [PubMed]
- Vinolo, M.A.; Rodrigues, H.G.; Nachbar, R.T.; Curi, R. Regulation of inflammation by short chain fatty acids. Nutrients 2011, 3, 858–876. [Google Scholar] [CrossRef]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef] [PubMed]
- McCoubrey, L.E.; Ferraro, F.; Seegobin, N.; Verin, J.; Alfassam, H.A.; Awad, A.; Marzorati, M.; Verstrepen, L.; Ghyselinck, J.; De Munck, J.; et al. Poly(D,l-lactide-co-glycolide) particles are metabolised by the gut microbiome and elevate short chain fatty acids. J. Control. Release 2024, 369, 163–178. [Google Scholar] [CrossRef]
- Sardari, R.R.R.; Prothmann, J.; Gregersen, O.; Turner, C.; Karlsson, E.N. Identification of Phlorotannins in the Brown Algae, Saccharina latissima and Ascophyllum nodosum by Ultra-High-Performance Liquid Chromatography Coupled to High Resolution Tandem Mass Spectrometry. Molecules 2020, 26, 43. [Google Scholar] [CrossRef] [PubMed]
- Bussche, J.V.; Marzorati, M.; Laukens, D.; Vanhaecke, L. Validated high resolution mass spectrometry-based approach for metabolomic fingerprinting of the human gut phenotype. Anal. Chem. 2015, 87, 10927–10934. [Google Scholar] [CrossRef] [PubMed]
- De Paepe, E.; Van Meulebroek, L.; Rombouts, C.; Huysman, S.; Verplanken, K.; Lapauw, B.; Wauters, J.; Hemeryck, L.Y.; Vanhaecke, L. A validated multi-matrix platform for metabolomic fingerprinting of human urine, feces and plasma using ultra-high performance liquid-chromatography coupled to hybrid orbitrap high-resolution mass spectrometry. Anal. Chim. Acta 2018, 1033, 108. [Google Scholar] [CrossRef]
- Aonnema, A.L.; Kolberg, L.W.; Thomas, W.; Slavin, J.L. Gastrointestinal Tolerance of Chicory Inulin Products. J. Am. Diet. Assoc. 2010, 110, 865–868. [Google Scholar] [CrossRef]
- Wang, B.; Qiu, J.; Lian, J.; Yang, X.; Zhou, J. Gut Metabolite Trimethylamine-N-Oxide in Atherosclerosis: From Mechanism to Therapy. Front. Cardiovasc. Med. 2021, 8. [Google Scholar] [CrossRef]
- Roncal, C.; Martínez-Aguilar, E.; Orbe, J.; Ravassa, S.; Fernandez-Montero, A.; Saenz-Pipaon, G.; Ugarte, A.; de Mendoza, A.E.-H.; Rodriguez, J.A.; Fernández-Alonso, S.; et al. Trimethylamine-N-Oxide (TMAO) Predicts Cardiovascular Mortality in Peripheral Artery Disease. Sci. Rep. 2019, 9, 15580. [Google Scholar] [CrossRef]
- Muoio, D.M.; Noland, R.C.; Kovalik, J.-P.; Seiler, S.E.; Davies, M.N.; DeBalsi, K.L.; Ilkayeva, O.R.; Stevens, R.D.; Kheterpal, I.; Zhang, J.; et al. Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metab. 2012, 15, 764–777. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Liu, Y.-Y.; Liu, G.-H.; Lu, H.-B.; Mao, C.-Y. l-Carnitine and heart disease. Life Sci. 2018, 194, 88–97. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, M.; Zhao, J.; Song, Y.; Du, W.; Shi, J. The Mechanism Underlying the Influence of Indole-3-Propionic Acid: A Relevance to Metabolic Disorders. Front. Endocrinol. 2022, 13, 841703. [Google Scholar] [CrossRef] [PubMed]
- Blachier, F.; Andriamihaja, M. Effects of the L-tyrosine-derived bacterial metabolite p-cresol on colonic and peripheral cells. Amino Acids 2021, 54, 325–338. [Google Scholar] [CrossRef] [PubMed]
Treatment | ||||
---|---|---|---|---|
LD | HD | p | ||
N * = 29 | N = 30 | N = 31 | ||
Sex | Female | 13 (44.8%) | 19 (63.3%) | 18 (58.4%) |
Male | 16 (55.2%) | 11 (36.7%) | 13 (41.9%) | |
Age (years) | Average (SD) | 37.6 (14.2) | 43.0 (16.6) | 42.1 (13.7) |
Median value (RI) | 34.0 (28.0) | 49.0 (31.0) | 50.0 (27.0) | |
(Minimum; Maximum) | (21; 69) | (19; 67) | (21; 60) | |
Weight (Kg) | Average (SD) | 65.6 (11.6) | 66.4 (13.7) | 68.9 (15.4) |
Median (RI) | 67.0 (13.4) | 65.0 (14.5) | 66.5 (11.1) | |
(Minimum; Maximum) | (39.7; 92.8) | (42.6; 101.5) | (42.2; 122.1) | |
Height (cm) | Average (SD) | 169.3 (8.2) | 166.0 (11.2) | 170.7 (8.1) |
Median (RI) | 169.0 (11.8) | 161.5 (18.9) | 170.5 (14.0) | |
(Minimum; Maximum) | (149.0; 186.5) | (145.0; 187.5) | (157.0; 188.0) | |
BMI (Kg/m2) | Average (SD) | 22.9 (3.7) | 24.0 (3.8) | 23.6 (4.8) |
Median (RI) | 22.6 (4.9) | 23.8 (5.4) | 22.4 (3.7) | |
(Minimum; Maximum) | (15.8; 30.2) | (16.6; 32.0) | (17.1; 38.3) |
Treatment | ||||
---|---|---|---|---|
LD | HD | P | ||
N = 29 | N = 30 | N = 31 | ||
Interruption | Yes | 1 (3.4%) | 3 (10.0%) | 2 (6.5%) |
No | 28 (96.6%) | 27 (90.0%) | 29 (93.5%) | |
Cause of interruption | Adverse Event | 1 (3.4%) AE | 1 (3.3%) AE | 0 (0.0%) |
Voluntary abandonment | 0 (0.0) | 2 (6.7%) | 2 (6.5%) |
Treatment | p-Value | ||||
---|---|---|---|---|---|
LD | HD | P | (χ2) | ||
N = 29 | N =27 | N = 28 | |||
Viral infection during the study | No | 15 (51.7%) | 14 (46.7%) | 14 (45.2%) | 0.869 |
yes | 14 (48.3%) | 16 (53.3%) | 17 (52.2%) | ||
Period of infection | Before/Beginning | 4 (28.6%) | 6 (37.5%) | 10 (58.8%) | 0.207 |
During | 10 (71.4%) | 10 (62.5%) | 7 (41.2%) |
Metric. | Treatment | p-Value (ANOVA) | ||||||
---|---|---|---|---|---|---|---|---|
Normal Reference Range | LD | HD | P | |||||
Mean | SD | Mean | SD | Mean | SD | |||
Calprotectin (0–90) | <160 μg/g | 13.9 | 120.2 | 79.6 | 171.1 | 79.6 | 204.2 | 0.480 |
Neutrophils (0–90) | 1.42–6.34 × 109/L | −0.1 | 1.1 | 0.2 | 1.4 | 0.4 | 1.5 | 0.620 |
Hemoglobin (0–90) | F:123–153/M:140–175 g/L | −0.7 | 4.1 | −1.3 | 5.2 | −2.5 | 9.0 | 0.761 |
RBC (0–90) | F:4.1–5.1/M:4.5–5.9 cels/μL | −0.1 | 0.2 | 0.0 | 0.2 | 0.0 | 0.2 | 0.965 |
HTC (0–90) | F: 0.35–0.47/M:0.40–0.52 L/L | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.531 |
MCV (0–90) | 80–96 fl | 1.2 | 7.2 | 1.1 | 2.5 | 3.2 | 4.9 | 0.560 |
MCH (0–90) | 28–33 pg/cell | 0.0 | 0.3 | 0.0 | 0.5 | −0.4 | 1.2 | 0.297 |
MCHC (0–90) | 33–36 g/dL | −0.4 | 2.2 | −0.4 | 0.6 | −1.5 | 1.3 | 0.137 |
RDW-SD (0–90) | 1.0 | 6.1 | 0.7 | 2.2 | 2.5 | 5.2 | 0.623 | |
RDW-CV (0–90) | 0.2 | 0.8 | 0.0 | 0.5 | 0.2 | 0.9 | 0.669 | |
Platelets (0–90) | 150–450 103/uL | 0.7 | 47.1 | −5.8 | 45.1 | 21.4 | 45.1 | 0.307 |
MPV (0–90) | F: 12–16/M: 14–17.4 g/dL | 0.5 | 1.0 | 0.3 | 0.7 | 0.7 | 0.9 | 0.518 |
Intestinal transit time (0–90) | 3.0 | 9.7 | 11.1 | 19.1 | −10.2 | 27.1 | 0.027 | |
CRP (0–90) | <5 mg/L | −0.3 | 0.8 | 0.1 | 1.1 | −0.4 | 1.3 | 0.524 |
Glucose (0–90) | 3.3–6.1 mmol/L | −0.4 | 0.4 | −0.1 | 0.7 | 0.6 | 0.5 | 0.000 |
Creatinine (0–90) | 47.6–113.4 µmol/L | −1.6 | 7.4 | −3.4 | 6.9 | 1.6 | 6.6 | 0.209 |
Urea (0–90) | <8.3 mmol/L | 0.2 | 0.9 | −0.1 | 1.3 | 0.1 | 0.9 | 0.641 |
ALAT (0–90) | <45 U/L | 0.9 | 6.6 | −3.5 | 6.3 | 2.6 | 11.4 | 0.153 |
ASAT (0–90) | <40 U/L | 1.3 | 8.8 | −3.8 | 7.8 | −2.1 | 5.3 | 0.203 |
Cholesterol (0–90) | <5.2 mmol/L | 0.1 | 0.6 | −0.3 | 0.6 | −0.1 | 0.4 | 0.186 |
Triglycerides (0–90) | 0.46–1.8 mmol/L | 0.1 | 0.4 | 0.1 | 0.4 | 0.1 | 0.2 | 0.916 |
Uric acid (0–90) | 119–464 mmol/L | −20.4 | 27.2 | −60.4 | 37.4 | −26.4 | 30.4 | 0.004 |
WBC (0–90) | 4.4–11.3 × 109/L | 0.5 | 1.0 | −0.1 | 1.4 | 1.1 | 1.8 | 0.118 |
Lymphocytes (0–90) | 0.71–4.53 × 109/L | 0.6 | 0.6 | 0.3 | 0.3 | 0.4 | 0.7 | 0.336 |
Monocytes (0–90) | 2–8% | −1.5 | 3.9 | 3.4 | 4.9 | 1.5 | 6.6 | 0.046 |
Eosinophils (0–90) | 2–4% | 0.1 | 1.9 | −0.7 | 4.1 | −0.6 | 4.3 | 0.819 |
Basophils (0–90) | 0–1% | −1.0 | 3.3 | −1.8 | 2.2 | −0.7 | 4.6 | 0.707 |
HbA1c (0–90) | <5.7% | 0.1 | 0.2 | 0.0 | 0.2 | 0.0 | 0.2 | 0.280 |
Body Weight (Kg) | Treatment | p-Value (Kruskal–Wallis) | |||
---|---|---|---|---|---|
LD | HD | P | |||
N = 29 | N =27 | N = 28 | |||
Baseline | Average (SD) | 65.0 (11.4) | 66.9 (14.0) | 69.0 (15.7) | |
Median (RI) | 66.8 (13.6) | 65.1 (14.6) | 66.9 (12.8) | 0.426 | |
(Minimum; Maximum) | (39.7; 92.8) | (42.6; 101.5) | (42.2; 122.1) | ||
Day 30 | Average (SD) | 65.7 (10.8) | 68.2 (13.5) | 69.6 (15.9) | |
Median (RI) | 67.8 (12.3) | 66.7 (13.5) | 67.4 (13.3) | 0.176 | |
(Minimum; Maximum) | (41.3; 90.9) | (47.6; 103.8) | (41.6; 122.5) | ||
Day 90 | Average (SD) | 65.3 (10.5) | 67.9 (14.0) | 69.4 (15.7) | |
Median (RI) | 67.9 (13.5) | 67.3 (15.2) | 67.5 (12.3) | 0.264 | |
(Minimum; Maximum) | (41; 89.1) | (47.7; 104) | (41.7; 121.8) | ||
P (Wilcoxon) | 0–30 | 0.063 | 0.002 | 0.011 | |
30–90 | 0.959 | 0.904 | 0.249 | ||
0–90 | 0.171 | 0.012 | 0.099 | ||
Body Mass Index (BMI) | Treatment | p-Value (Kruskal–Wallis) | |||
LD | HD | P | |||
N = 29 | N =27 | N = 28 | |||
Baseline | Average (SD) | 22.8 (3.7) | 24.1 (3.9) | 23.6 (4.9) | |
Median (RI) | 22.6 (4.6) | 23.8 (5.2) | 22.5 (3.9) | 0.426 | |
(Minimum; Maximum) | (15.8; 30.2) | (16.6; 32) | (17.1; 38.3) | ||
Day 30 | Average (SD) | 23.0 (3.4) | 24.6 (3.5) | 23.8 (5.0) | |
Median (RI) | 22.6 (4.0) | 24.5 (4.6) | 22.7 (3.9) | 0.176 | |
(Minimum; Maximum) | (16.8; 30.3) | (18.4; 32) | (16.9; 38.4) | ||
Day 90 | Average (SD) | 22.9 (3.4) | 24.5 (3.8) | 23.8 (4.9) | |
Median (RI) | 22.5 (4.8) | 24.4 (5.6) | 22.6 (2.9) | 0.264 | |
(Minimum; Maximum) | (16.6; 30.4) | (17.4; 32.1) | (16.9; 38.2) | ||
P (Wilcoxon) | 0–30 | 0.055 | 0.002 | 0.014 | |
30–90 | 0.990 | 1.000 | 0.245 | ||
0–90 | 0.156 | 0.015 | 0.088 |
Treatment | p-Value (ANOVA) | |||||||
---|---|---|---|---|---|---|---|---|
LD | HD | P | ||||||
Time Period | Dimension | Mean | SD | Mean | SD | Mean | SD | |
0 | Physical Function | 97.4 | 3.7 | 93.4 | 9.2 | 94.3 | 8.8 | 0.122 |
Physical Role | 92.5 | 9.2 | 83.8 | 17.3 | 91.1 | 16.0 | 0.070 | |
Body Pain | 83.2 | 15.4 | 73.5 | 20.8 | 79.2 | 24.0 | 0.221 | |
General Health | 77.4 | 14.5 | 81.4 | 16.7 | 75.7 | 18.1 | 0.450 | |
Vitality | 70.5 | 17.7 | 70.0 | 23.5 | 61.6 | 19.1 | 0.194 | |
Social Function | 91.8 | 12.6 | 90.5 | 15.4 | 88.0 | 17.5 | 0.635 | |
Emotional Role | 90.2 | 16.4 | 88.0 | 22.6 | 91.3 | 17.7 | 0.814 | |
Mental Health | 81.2 | 15.1 | 80.4 | 17.6 | 80.6 | 18.2 | 0.983 | |
90 | Physical Function | 97.0 | 3.9 | 94.0 | 8.8 | 95.2 | 7.4 | 0.296 |
Physical Role | 90.6 | 12.9 | 86.7 | 16.7 | 91.4 | 14.4 | 0.476 | |
Body Pain | 82.6 | 15.3 | 78.0 | 19.9 | 82.4 | 21.4 | 0.619 | |
General Health | 78.9 | 11.5 | 81.0 | 16.5 | 76.1 | 16.5 | 0.499 | |
Vitality | 71.0 | 18.3 | 72.2 | 21.2 | 67.6 | 17.6 | 0.657 | |
Social Function | 91.5 | 13.6 | 90.5 | 16.3 | 90.7 | 16.1 | 0.968 | |
Emotional Role | 91.4 | 14.8 | 90.0 | 20.1 | 89.5 | 19.3 | 0.925 | |
Mental Health | 81.1 | 16.3 | 82.2 | 16.8 | 83.3 | 18.2 | 0.887 |
Treatment | p-Value (χ2) | ||||
---|---|---|---|---|---|
LD | HD | P | |||
29 | 30 | 31 | |||
AE | 31 | 26 | 8 | ||
AE presence | Yes | 18 (62.1%) | 17 (56.7%) | 5 (16.1%) | 0.0002 |
No | 11 (37.9%) | 13 (43.3%) | 26 (83.9%) | ||
Intestinal pain or discomfort | 5 (17.2%) | 2 (6.7%) | 1 (3.2%) | ||
Gas | 12 (41.4%) | 14 (46.7%) | 5 (16.1%) | ||
Joint pain | 0 | 1 (3.3%) | 0 | ||
Nasal obstruction | 0 | 1 (3.3%) | 0 | ||
Diarrhea | 5 (17.2%) | 4 (13.3%) | 0 | ||
Constipation | 5 (17.2%) | 1 (3.3%) | 1 (3.2%) | ||
Dizziness or nausea | 0 | 1 (3.3%) | 0 | ||
General malaise | 1 (3.4%) | 0 | 1 (3.2%) | ||
Headache | 4 (13.8%) | 1 (3.3%) | 1 (3.2%) | ||
Pain after taking capsules | 1 (3.4%) | 0 | 0 | ||
Migraine | 1 (3.4%) | 0 | 0 | ||
Itching/Skin irritation | 2 (6.9%) | 1 (3.3%) | 0 | ||
Abdominal distension | 0 | 1 (3.3%) | 0 | ||
Genital herpes | 0 | 1 (3.3%) | 0 |
Group 1 | Group 2 | Mean Difference | p-adj | Lower | Upper | Reject | Metric |
---|---|---|---|---|---|---|---|
High Dose Baseline | High-Dose 28D | −0.0689 | 0.7036 | −0.2744 | 0.1365 | FALSE | Shannon |
High Dose Baseline | High-Dose EOS | −0.4155 | 0 | −0.6229 | −0.2082 | TRUE | |
High-Dose 28D | High-Dose EOS | −0.3466 | 0.0004 | −0.5539 | −0.1393 | TRUE | |
Placebo Baseline | Placebo 28D | −0.0573 | 0.8531 | −0.3126 | 0.198 | FALSE | |
Placebo Baseline | Placebo EOS | −0.2925 | 0.0365 | −0.57 | −0.015 | TRUE | |
Placebo 28D | Placebo EOS | −0.2352 | 0.0824 | −0.494 | 0.0236 | FALSE | |
High-Dose EOS | Low-Dose EOS | −0.0637 | 0.8058 | −0.3066 | 0.1792 | FALSE | |
High-Dose EOS | Placebo EOS | 0.0229 | 0.9762 | −0.2394 | 0.2853 | FALSE | |
Low-Dose EOS | Placebo EOS | 0.0866 | 0.7106 | −0.1757 | 0.3489 | FALSE | |
Low Dose Baseline | Low-Dose 28D | 0.0287 | 0.9533 | −0.2042 | 0.2617 | FALSE | |
Low Dose Baseline | Low-Dose EOS | −0.3063 | 0.0055 | −0.5348 | −0.0779 | TRUE | |
Low-Dose 28D | Low-Dose EOS | −0.3351 | 0.0032 | −0.5719 | −0.0983 | TRUE | |
High Dose Baseline | High-Dose 28D | 0.0028 | 0.718 | −0.0058 | 0.0114 | FALSE | Simpson |
High Dose Baseline | High-Dose EOS | 0.0081 | 0.0744 | −0.0006 | 0.0168 | FALSE | |
High-Dose 28D | High-Dose EOS | 0.0053 | 0.3227 | −0.0034 | 0.014 | FALSE | |
Placebo Baseline | Placebo 28D | −0.0072 | 0.668 | −0.0274 | 0.0129 | FALSE | |
Placebo Baseline | Placebo EOS | −0.0058 | 0.8007 | −0.0277 | 0.0161 | FALSE | |
Placebo 28D | Placebo EOS | 0.0014 | 0.9851 | −0.019 | 0.0218 | FALSE | |
High-Dose EOS | Low-Dose EOS | 0.0087 | 0.1841 | −0.003 | 0.0204 | FALSE | |
High-Dose EOS | Placebo EOS | 0.0001 | 0.9997 | −0.0125 | 0.0128 | FALSE | |
Low-Dose EOS | Placebo EOS | −0.0086 | 0.242 | −0.0212 | 0.0041 | FALSE | |
Low Dose Baseline | Low-Dose 28D | −0.0035 | 0.8237 | −0.0178 | 0.0107 | FALSE | |
Low Dose Baseline | Low-Dose EOS | 0.004 | 0.7737 | −0.01 | 0.018 | FALSE | |
Low-Dose 28D | Low-Dose EOS | 0.0075 | 0.4311 | −0.0069 | 0.022 | FALSE |
Mean Relative Abundance | ||||
---|---|---|---|---|
Taxon | Baseline | 28D | EOS | Functional Role |
Pseudomonadota | 3.8 | 4.0 | 2.2 | Inflammation (LPS) |
Actinomycetota | 2.1 | 2.0 | 7.1 | SCFA production |
Bifidobacterium | 1.8 | 1.39 | 8.8 | SCFA production |
Faecalibacterium | 6.6 | 8.1 | 9.4 | SCFA production |
Enterobacteriaceae | 1.9 | 0.4 | 0.4 | Inflammation (LPS) |
Porphyromonadaceae | 0.8 | 0.6 | 0.5 | Carbohydrate metabolism |
Blautia | 4.1 | 4.0 | 5.2 | Carbohydrate metabolism |
Dorea | 1.4 | 1.4 | 2.0 | SCFA production |
Group 1 | Group 2 | p-Value | Significant? |
---|---|---|---|
Baseline | High-Dose 28D | p < 0.05 | Yes |
Baseline | High-Dose EOS | p < 0.05 | Yes |
Baseline | Low-Dose 28D | p > 0.05 | No |
Baseline | Low-Dose EOS | p > 0.05 | No |
High-Dose 28D | High-Dose EOS | p > 0.05 | No |
High-Dose 28D | Low-Dose 28D | p > 0.05 | No |
High-Dose 28D | Low-Dose EOS | p > 0.05 | No |
High-Dose EOS | Low-Dose 28D | p < 0.05 | Yes |
High-Dose EOS | Low-Dose EOS | p > 0.05 | No |
Low-Dose 28D | Low-Dose EOS | p > 0.05 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, G.; Soto, J.; Valenzuela, C.; Bernal, M.; Barreto, J.; Luzardo, M.d.l.C.; Kazlauskaite, R.; Waslidge, N.; Bavington, C.; Cano, R.d.J. Gut Microbiome Modulation and Health Benefits of a Novel Fucoidan Extract from Saccharina latissima: A Double-Blind, Placebo-Controlled Trial. Microorganisms 2025, 13, 1545. https://doi.org/10.3390/microorganisms13071545
Garcia G, Soto J, Valenzuela C, Bernal M, Barreto J, Luzardo MdlC, Kazlauskaite R, Waslidge N, Bavington C, Cano RdJ. Gut Microbiome Modulation and Health Benefits of a Novel Fucoidan Extract from Saccharina latissima: A Double-Blind, Placebo-Controlled Trial. Microorganisms. 2025; 13(7):1545. https://doi.org/10.3390/microorganisms13071545
Chicago/Turabian StyleGarcia, Gissel, Josanne Soto, Carmen Valenzuela, Mirka Bernal, Jesús Barreto, María de la C. Luzardo, Raminta Kazlauskaite, Neil Waslidge, Charles Bavington, and Raúl de Jesús Cano. 2025. "Gut Microbiome Modulation and Health Benefits of a Novel Fucoidan Extract from Saccharina latissima: A Double-Blind, Placebo-Controlled Trial" Microorganisms 13, no. 7: 1545. https://doi.org/10.3390/microorganisms13071545
APA StyleGarcia, G., Soto, J., Valenzuela, C., Bernal, M., Barreto, J., Luzardo, M. d. l. C., Kazlauskaite, R., Waslidge, N., Bavington, C., & Cano, R. d. J. (2025). Gut Microbiome Modulation and Health Benefits of a Novel Fucoidan Extract from Saccharina latissima: A Double-Blind, Placebo-Controlled Trial. Microorganisms, 13(7), 1545. https://doi.org/10.3390/microorganisms13071545