Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (712)

Search Parameters:
Keywords = FSH

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6853 KiB  
Article
Metabolomic and Molecular Mechanisms of Glycerol Supplementation in Regulating the Reproductive Function of Kazakh Ewes in the Non-Breeding Season
by Ying Nan, Baihui Jiang, Xingdong Qi, Cuifang Ye, Mengting Xie and Zongsheng Zhao
Animals 2025, 15(15), 2291; https://doi.org/10.3390/ani15152291 - 5 Aug 2025
Abstract
The activation mechanism of the reproductive axis in Kazakh ewes during the non-breeding season was explored by supplementation with glycerol complex (7% glycerol + tyrosine + vitamin B9). The experiment divided 50 ewes into five groups (n = 10). After 90 days [...] Read more.
The activation mechanism of the reproductive axis in Kazakh ewes during the non-breeding season was explored by supplementation with glycerol complex (7% glycerol + tyrosine + vitamin B9). The experiment divided 50 ewes into five groups (n = 10). After 90 days of intervention, it was found that significant changes in serum DL-carnitine, N-methyl-lysine and other differential metabolites were observed in the GLY-Tyr-B9 group (p < 0.05, “p < 0.05” means significant difference, “p < 0.01” means “highly significant difference”). The bile acid metabolic pathway was specifically activated (p < 0.01). The group had a 50% estrus rate, ovaries contained 3–5 immature follicles, and HE staining showed intact granulosa cell structure. Serum E2/P4 fluctuated cyclically (p < 0.01), FSH/LH pulse frequency increased (p < 0.01), peak Glu/INS appeared on day 60 (p < 0.05), and LEP was negatively correlated with body fat percentage (p < 0.01). Molecular mechanisms revealed: upregulation of hypothalamic kiss-1/GPR54 expression (p < 0.01) drove GnRH pulses; ovarian CYP11A1/LHR/VEGF synergistically promoted follicular development (p < 0.05); the HSL of subcutaneous fat was significantly increased (p < 0.05), suggesting involvement of lipolytic supply. Glycerol activates the reproductive axis through a dual pathway—L-carnitine-mediated elevation of mitochondrial β-oxidation efficacy synergizes with kisspeptin/GPR54 signalling enhancement to re-establish HPO axis rhythms. This study reveals the central role of metabolic reprogramming in regulating seasonal reproduction in ruminants. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

21 pages, 1359 KiB  
Article
Diagnostic Accuracy of Radiological Bone Age Methods for Assessing Skeletal Maturity in Central Precocious Puberty Girls from the Canary Islands
by Sebastián Eustaquio Martín Pérez, Isidro Miguel Martín Pérez, Ruth Molina Suárez, Jesús María Vega González and Alfonso Miguel García Hernández
Endocrines 2025, 6(3), 39; https://doi.org/10.3390/endocrines6030039 - 5 Aug 2025
Abstract
Background: Central precocious puberty (CPP), defined as the onset of secondary sexual characteristics before age 8 in girls, is increasingly prevalent worldwide. CPP is often caused by early activation of the HPG axis, leading to accelerated growth and bone maturation. However, the diagnostic [...] Read more.
Background: Central precocious puberty (CPP), defined as the onset of secondary sexual characteristics before age 8 in girls, is increasingly prevalent worldwide. CPP is often caused by early activation of the HPG axis, leading to accelerated growth and bone maturation. However, the diagnostic accuracy of standard bone age (BA) methods remains uncertain in this context. Objective: To compare the diagnostic accuracy of the Greulich–Pyle atlas (GPA) and Tanner–Whitehouse 3 (TW3) methods in estimating skeletal age in girls with CPP and to assess the predictive value of serum hormone levels for estimating chronological age (CA). Methods: An observational, cross-sectional diagnostic study was conducted, involving n = 109 girls aged 6–12 years with confirmed CPP (Ethics Committee approval: CHUC_2023_86; 13 July 2023). Left posteroanterior hand–wrist (PA–HW) radiographs were assessed using the GPA and TW3 methods. Anthropometric measurements were recorded, and serum concentrations of estradiol, LH, FSH, DHEA-S, cortisol, TSH, and free T4 were obtained. Comparisons between CA and BA estimates were conducted using repeated-measures ANOVA, and ANCOVA was applied to examine the hormonal predictors of CA. Results: Both GPA and TW3 overestimated CA between 7 and 12 years, with the GPA showing larger deviations (up to 4.8 months). The TW3 method provided more accurate estimations, particularly at advanced pubertal stages. Estradiol (η2p = 0.188–0.197), LH (η2p = 0.061–0.068), and FSH (η2p = 0.008–0.023) emerged as the strongest endocrine predictors of CA, significantly enhancing the explanatory power of both radiological methods. Conclusions: The TW3 method demonstrated superior diagnostic accuracy over GPA in girls with CPP, especially between 7 and 12 years. Integrating estradiol, LH, and FSH into BA assessment significantly improved the accuracy, supporting a more individualized and physiologically grounded diagnostic approach. Full article
(This article belongs to the Section Pediatric Endocrinology and Growth Disorders)
Show Figures

Figure 1

14 pages, 397 KiB  
Article
Combination of Continuous Use of Oral Clomiphene Citrate with Injectable Gonadotropins for Ovarian Stimulation: A Single-Center Study
by Adamantia Kontogeorgi, Gkalia Tsangkalova, Panagiota Ambatzi, Ioannis Boutas, Eleftherios Meridis, Ioannis Gryparis, Dimitrios Kalaitzis, Angeliki Fenga, Melpomeni Peppa, Sophia Kalantaridou, Antonios Makrigiannakis and Minas Paschopoulos
Life 2025, 15(8), 1235; https://doi.org/10.3390/life15081235 - 4 Aug 2025
Viewed by 76
Abstract
Objective: This retrospective observational study evaluated the efficacy and safety of an ovarian stimulation protocol for embryo banking that involves continuous administration of clomiphene citrate (CC) in combination with gonadotropins, without the use of GnRH antagonists. Methods: Conducted at the Serum [...] Read more.
Objective: This retrospective observational study evaluated the efficacy and safety of an ovarian stimulation protocol for embryo banking that involves continuous administration of clomiphene citrate (CC) in combination with gonadotropins, without the use of GnRH antagonists. Methods: Conducted at the Serum IVF Clinic in Athens, Greece, the study included 250 women aged 25–45 who underwent IVF for embryo banking. The protocol involved administering 150 mg of CC daily from day 2 of the menstrual cycle until the day before hCG trigger, alongside 150 IU/day of Meriofert. Outcomes assessed included oocyte yield, fertilization rates, incidence of ovarian hyperstimulation syndrome (OHSS), and hormonal correlations. Comparative and regression analyses explored differences between age groups and predictors of success. Results: The protocol demonstrated a favorable safety profile with no cases of OHSS and yielded a mean of 10.25 oocytes per patient. Group analysis showed significantly more oocytes retrieved in women under 40 (mean: 12.5) versus those over 40 (mean: 8.43), while fertilization rates were paradoxically higher in the older cohort (59.16% vs. 30.68%, p < 0.0001). Regression models revealed basal FSH to be a significant inverse predictor of oocyte yield, but it was positively associated with fertilization rate. Continuous CC use effectively suppressed premature LH surges without compromising oocyte or embryo quality, allowing flexible and cost-effective stimulation with minimal monitoring. Conclusions: Continuous administration of clomiphene citrate in combination with gonadotropins presents a promising, antagonist-free ovarian stimulation protocol for embryo banking. The approach is economically efficient, reduces monitoring requirements, and maintains safety and effectiveness and is particularly notable in women over 40. Further studies are warranted to validate these findings and refine protocol mechanisms. Full article
(This article belongs to the Section Reproductive and Developmental Biology)
Show Figures

Figure 1

16 pages, 575 KiB  
Article
Polycystic Ovary Syndrome Attenuates TSH-Lowering Effect of Metformin in Young Women with Subclinical Hypothyroidism
by Robert Krysiak, Karolina Kowalcze, Johannes Ott, Sofia Burgio, Simona Zaami and Bogusław Okopień
Pharmaceuticals 2025, 18(8), 1149; https://doi.org/10.3390/ph18081149 - 1 Aug 2025
Viewed by 205
Abstract
Background/Objectives: The effect of metformin on the secretory function of thyrotropic cells is sex-dependent. The current study aimed to investigate whether the impact of this drug on activity of the hypothalamic–pituitary–thyroid axis in women is impacted by the androgen status of patients. Methods: [...] Read more.
Background/Objectives: The effect of metformin on the secretory function of thyrotropic cells is sex-dependent. The current study aimed to investigate whether the impact of this drug on activity of the hypothalamic–pituitary–thyroid axis in women is impacted by the androgen status of patients. Methods: The study population included 48 levothyroxine-naïve reproductive-aged women with subclinical hypothyroidism and prediabetes receiving 3.0 g of metformin daily. Women with (n = 24) and without (n = 24) polycystic ovary syndrome were matched for age, insulin sensitivity, TSH, and reasons for thyroid hypofunction. Circulating levels of glucose, glycated hemoglobin, insulin, TSH, thyroid hormones, gonadotropins, androgens, estradiol, SHBG, prolactin, ACTH, and IGF-1 were measured before metformin treatment and six months later. Results: At entry, women with and without polycystic ovary syndrome differed in LH, LH/FSH ratio, androgens, and estradiol. The decrease in TSH, fasting glucose and glycated hemoglobin, and the improvement in insulin sensitivity were less pronounced in women with than in women without polycystic ovary syndrome. In each group, there were no differences in the impact on TSH and thyroid hormones between patients with subclinical hypothyroidism of autoimmune and non-autoimmune origin. The changes in TSH inversely correlated with total testosterone and free androgen index. Only in women with coexisting polycystic ovary syndrome, did metformin slightly reduce LH, LH/FSH ratio, testosterone, and free androgen index. Conclusions: The results suggest that concurrent polycystic ovary syndrome attenuates metformin action on TSH secretion, which can be explained by increased androgen production. Moreover, the drug seems to alleviate PCOS-associated changes in the activity of the reproductive axis. Full article
Show Figures

Graphical abstract

17 pages, 386 KiB  
Article
Growth Hormone Therapy in Recurrent Implantation Failure: Stratification by FSH Receptor Polymorphism (Asn680Ser) Reveals Genotype-Specific Benefits
by Mihai Surcel, Georgiana Nemeti, Iulian Gabriel Goidescu, Romeo Micu, Cristina Zlatescu-Marton, Ariana Anamaria Cordos, Gabriela Caracostea, Ioana Cristina Rotar, Daniel Muresan and Dan Boitor-Borza
Int. J. Mol. Sci. 2025, 26(15), 7367; https://doi.org/10.3390/ijms26157367 - 30 Jul 2025
Viewed by 178
Abstract
Recurrent implantation failure (RIF) remains a challenging clinical problem. Growth hormone (GH) co-treatment has been explored as an adjunct in poor responders and RIF patients, with inconsistent evidence of benefit. This prospective cohort study assessed the impact of GH supplementation in 91 RIF [...] Read more.
Recurrent implantation failure (RIF) remains a challenging clinical problem. Growth hormone (GH) co-treatment has been explored as an adjunct in poor responders and RIF patients, with inconsistent evidence of benefit. This prospective cohort study assessed the impact of GH supplementation in 91 RIF patients undergoing in vitro fertilization, stratified by FSHR (follicular stimulating hormone receptor) genotype Asn680Ser with or without GH supplementation. Patients were stratified by FSHR genotype into homozygous Ser/Ser versus Ser/Asn or Asn/Asn groups. Overall, GH co-treatment conferred modest benefits in the unselected RIF cohort, limited to a higher cumulative live birth rate compared to controls and elevated leukemia inhibitory factor (LIF) levels (p < 0.05 both). When stratified by FSHR genotype, the Ser/Ser subgroup exhibited markedly better outcomes with GH. These patients showed a higher (0.5 vs. 0.33, p = 0.003), produced more embryos (2.88 vs. 1.53, p = 0.02), and had a markedly improved cumulative live birth rate—50% with GH versus 13% without—highlighting a clinically meaningful benefit of GH in the Ser/Ser subgroup. No significant benefit was observed in Asn allele carriers. These findings suggest that FSHR genotyping may help optimize treatment selection in RIF patients by identifying those most likely to benefit from GH supplementation. Full article
Show Figures

Figure 1

17 pages, 5739 KiB  
Article
Impact of Heat Stress on Gene Expression in the Hypothalamic–Pituitary–Ovarian Axis of Hu Sheep
by Jianwei Zou, Lili Wei, Yishan Liang, Juhong Zou, Pengfei Cheng, Zhihua Mo, Wenyue Sun, Yirong Wei, Jun Lu, Wenman Li, Yulong Shen, Xiaoyan Deng, Yanna Huang and Qinyang Jiang
Animals 2025, 15(15), 2189; https://doi.org/10.3390/ani15152189 - 25 Jul 2025
Viewed by 445
Abstract
Heat stress (HS) is a major environmental factor negatively impacting the reproductive performance of livestock. This study investigates the molecular mechanisms of heat stress on the hypothalamic–pituitary–ovarian (HPO) axis in Hu sheep. A heat-stressed animal model was established, and high-throughput RNA sequencing (RNA-seq) [...] Read more.
Heat stress (HS) is a major environmental factor negatively impacting the reproductive performance of livestock. This study investigates the molecular mechanisms of heat stress on the hypothalamic–pituitary–ovarian (HPO) axis in Hu sheep. A heat-stressed animal model was established, and high-throughput RNA sequencing (RNA-seq) was employed to analyze gene expression in the hypothalamus, pituitary, and ovarian tissues of both control and heat-stressed groups. The results revealed significant changes in estrus behavior, hormone secretion, and reproductive health in heat-stressed sheep, with a shortened estrus duration, prolonged estrous cycles, and decreased levels of FSH, LH, E2, and P4. A total of 520, 649, and 482 differentially expressed genes (DEGs) were identified in the hypothalamus, pituitary, and ovary, respectively. The DEGs were enriched in pathways related to hormone secretion, neurotransmission, cell proliferation, and immune response, with significant involvement of the p53 and cAMP signaling pathways. Tissue-specific responses to heat stress were observed, with distinct regulatory roles in each organ, including GPCR activity and cytokine signaling in the hypothalamus, calcium-regulated exocytosis in the pituitary, and cilium assembly and ATP binding in the ovary. Key genes such as SYN3, RPH3A, and IGFBP2 were identified as central to the coordinated regulation of the HPO axis. These findings provide new insights into the molecular basis of heat stress-induced impairments in reproductive function—manifested by altered estrous behavior, reduced hormone secretion (FSH, LH, E2, and P4), and disrupted gene expression in the hypothalamic–pituitary–ovarian (HPO) axis—and offer potential targets for improving heat tolerance and reproductive regulation in sheep. Full article
(This article belongs to the Special Issue Effects of Heat Stress on Animal Reproduction and Production)
Show Figures

Figure 1

13 pages, 9208 KiB  
Article
Hormonal Signaling and Follicular Regulation in Normal and Miniature Pigs During Corpus Luteum Regression
by Sang-Hwan Kim
Int. J. Mol. Sci. 2025, 26(15), 7147; https://doi.org/10.3390/ijms26157147 - 24 Jul 2025
Viewed by 205
Abstract
Reproductive efficiency in pigs is regulated by hormonal pathways that control follicular development at Day 15 of the estrous cycle, during corpus luteum regression. Miniature pigs are extensively employed as human-relevant models in biomedical research, yet their reproductive characteristics during mid-luteal regression remain [...] Read more.
Reproductive efficiency in pigs is regulated by hormonal pathways that control follicular development at Day 15 of the estrous cycle, during corpus luteum regression. Miniature pigs are extensively employed as human-relevant models in biomedical research, yet their reproductive characteristics during mid-luteal regression remain inadequately characterized, limiting assessments of their translational reliability. Differences in follicular morphology, hormonal signaling, and vascular development may underlie their lower fertility compared to conventional pigs. In this study, follicular development after corpus luteum formation was compared between conventional pigs and minipigs using histological staining, immunofluorescence, hormonal assays, and transcriptomic profiling. The expression of VEGF, mTOR, LH, FSH, PAPP-A, and apoptosis markers was evaluated across the granulosa and thecal regions. Differential gene expression was analyzed using microarray data followed by GO categorization. Minipigs exhibited smaller follicles, reduced vascularization, and lower VEGF and MMP activity compared to conventional pigs. Expression of LH and PAPP-A was higher in conventional pigs, while minipigs showed relatively elevated E2 and FSH levels. Transcriptomic data revealed greater upregulation of cell-survival- and angiogenesis-related genes in conventional pigs, including genes involved in IGF pathways. Apoptosis and poor extracellular matrix remodeling were more pronounced in minipigs. Minipigs demonstrated impaired follicular remodeling and weaker hormonal signaling after corpus luteum formation, which likely contributed to their reduced reproductive efficiency. Understanding these species differences can guide breeding strategies and fertility management in biomedical and agricultural settings. Full article
(This article belongs to the Special Issue Molecular Research on Reproductive Physiology and Endocrinology)
Show Figures

Figure 1

16 pages, 10508 KiB  
Article
Pharmacological Evaluation of Polygoni Multiflori Radix Praeparata Extract: Inhibition of PANoptosis in Alleviating Premature Ovarian Insufficiency
by Can Zhu, Jinhong Li, Yaofeng Li, Daiyong Chen and Chang Lin
Curr. Issues Mol. Biol. 2025, 47(7), 569; https://doi.org/10.3390/cimb47070569 - 19 Jul 2025
Viewed by 385
Abstract
Polygoni Multiflori Radix Praeparata (PMRP), a processed root of Polygonum multiflorum Thunb. (known as Zhiheshouwu in Chinese medicine), exhibits anti-aging properties and is used to improve ovarian aging. However, its therapeutic mechanism against premature ovarian insufficiency (POI) remains unclear. This study investigates whether [...] Read more.
Polygoni Multiflori Radix Praeparata (PMRP), a processed root of Polygonum multiflorum Thunb. (known as Zhiheshouwu in Chinese medicine), exhibits anti-aging properties and is used to improve ovarian aging. However, its therapeutic mechanism against premature ovarian insufficiency (POI) remains unclear. This study investigates whether PMRP alleviates POI by inhibiting PANoptosis—a cell death pathway characterized by the concurrent occurrence and interplay of pyroptosis, apoptosis, and necroptosis. POI was induced in rats using tripterygium glycosides. We evaluated the estrous cycle, serum hormone levels (follicle-stimulating hormone [FSH], estrogen [E2], anti-Müllerian hormone [AMH]), follicular development, and the ultrastructure of granulosa cells. PANoptosome assembly (apoptosis-associated speck-like protein containing a CARD [ASC]/caspase-8/receptor-interacting protein kinase 3 [RIPK3] co-localization) and key effectors of PANoptosis (caspase 3, cleaved caspase 3, gasdermin D [GSDMD], cleaved GSDMD, GSDME, RIPK1, mixed-lineage kinase domain-like protein [MLKL], and p-MLKL) were analyzed. PMRP restored the estrous cycle, lowered FSH levels, and increased E2 and AMH levels in POI rats. It reduced follicular atresia, preserved primordial follicles, and suppressed PANoptosis-like death in granulosa cells. Mechanistically, PMRP disrupted PANoptosome assembly and downregulated key effectors of PANoptosis. PMRP alleviates POI by inhibiting PANoptosis in granulosa cells, overcoming the previous limitations of targeting single death pathways and providing novel insights into the pathogenesis and treatment strategies for POI. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

41 pages, 1846 KiB  
Review
The Potential of Nutraceutical Supplementation in Counteracting Cancer Development and Progression: A Pathophysiological Perspective
by Carmen Altomare, Roberta Macrì, Maria Serra, Sara Ussia, Giovanna Ritorto, Jessica Maiuolo, Carolina Muscoli, Enzo Perri and Vincenzo Mollace
Nutrients 2025, 17(14), 2354; https://doi.org/10.3390/nu17142354 - 18 Jul 2025
Viewed by 676
Abstract
Cancer is a major cause of morbidity and mortality across the globe, with a substantial increase in cases anticipated over the next few decades. Given the constraints and adverse effects associated with standard cancer therapies, the contribution of diet and nutraceuticals to cancer [...] Read more.
Cancer is a major cause of morbidity and mortality across the globe, with a substantial increase in cases anticipated over the next few decades. Given the constraints and adverse effects associated with standard cancer therapies, the contribution of diet and nutraceuticals to cancer prevention and treatment is receiving increased scrutiny. A diet rich in plant-based foods, extra virgin olive oil (EVOO), and bioactive compounds, including the Mediterranean Diet, has been associated with reduced cancer risk and improved treatment outcomes. This review aims to explore the complex mechanisms of the MedDiet and nutraceuticals (polyphenols, flavonoids, terpenoids) in cancer prevention, to determine their potential as cancer treatment adjuvants. Promising results show that key compounds such as bergamot polyphenolic fraction (BPF), cynaropicrin, oleuropein, quercetin, resveratrol, and serotonin can modulate oxidative stress, inflammation, the tumor microenvironment, the cell cycle, and drug resistance. A significant observation is that many of these substances demonstrate dual dose-dependent activity; they function as antioxidants in healthy cells but induce pro-oxidant and pro-apoptotic effects in cancerous cells. Their ability to boost chemotherapy’s effectiveness and safety while lessening side effects and offering combined advantages is also explored. To summarize, this review suggests that the Mediterranean Diet and nutraceutical supplements may help prevent and manage cancer, but more research is needed to confirm their benefits. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health—2nd Edition)
Show Figures

Figure 1

13 pages, 12971 KiB  
Article
The Role of Gonadotropins and Growth Factor in Regulating Ras During Maturation in Cumulus–Oocyte Complexes of Pigs
by Eunju Seok, Minyoung Son, Seunghyung Lee, Hee-Tae Cheong and Sang-Hee Lee
Animals 2025, 15(14), 2100; https://doi.org/10.3390/ani15142100 - 16 Jul 2025
Viewed by 362
Abstract
Oocytes and cumulus cells undergo meiotic resumption and proliferation via gonadotropins and growth factors during maturation, and various small G proteins are activated when COCs undergo physiological changes. This study investigated the influence of gonadotropins and growth factors on Ras and its GTPases [...] Read more.
Oocytes and cumulus cells undergo meiotic resumption and proliferation via gonadotropins and growth factors during maturation, and various small G proteins are activated when COCs undergo physiological changes. This study investigated the influence of gonadotropins and growth factors on Ras and its GTPases during porcine COC maturation. Unmatured COCs were treated with FSH, LH, or EGF for 44 h. The mRNA expression levels of the Ras subfamily (H-Ras, K-Ras, N-Ras, and R-Ras), its GTPases (RASA1 and SOS1), and proliferation factors (ERK, CCNB1, and Cdc2) were analyzed using RT-PCR. In contrast to other Ras subfamilies, R-Ras expression is upregulated during COC maturation. We evaluated the effects of FSH, LH, and EGF at various concentrations that most effectively regulated the expression of R-Ras and GTPases. The results demonstrated that 0.5 µg/mL FSH, 10 IU/mL human chorionic gonadotropin (hCG), and 10 ng/mL EGF effectively enhanced R-Ras expression and cell proliferation. FSH supplementation during porcine COC maturation significantly upregulated R-Ras and ERK expression, independent of LH and EGF, and downregulated Cdc2 expression. These results indicated that FSH regulates R-Ras expression, thereby promoting cell proliferation during COC maturation. These results provide fundamental knowledge for understanding the role of Ras and its family members in the development of follicular environments in pigs. Full article
(This article belongs to the Special Issue Health of the Ovaries, Uterus, and Mammary Glands in Animals)
Show Figures

Figure 1

20 pages, 3219 KiB  
Review
The Role of TGF-β Signaling Pathway in Determining Small Ruminant Litter Size
by Ying Han, Guiling Cao, Wenting Chen, Changfa Wang and Muhammad Zahoor Khan
Biology 2025, 14(7), 786; https://doi.org/10.3390/biology14070786 - 29 Jun 2025
Viewed by 476
Abstract
The transforming growth factor-beta (TGF-β) superfamily plays a crucial role in regulating female reproductive traits, particularly litter size, in small ruminants, such as sheep and goats. This review comprehensively examines the molecular mechanisms through which TGF-β superfamily members—including bone morphogenetic proteins (BMPs [...] Read more.
The transforming growth factor-beta (TGF-β) superfamily plays a crucial role in regulating female reproductive traits, particularly litter size, in small ruminants, such as sheep and goats. This review comprehensively examines the molecular mechanisms through which TGF-β superfamily members—including bone morphogenetic proteins (BMPs), growth differentiation factor 9 (GDF9), inhibin (INHA and INHB), and associated signaling genes—influence ovarian follicular development, ovulation rate, and ultimately, litter size. We synthesize recent findings on polymorphisms in key genes, such as BMPR1B, BMP15, GDF9, inhibins and SMADs family genes, across diverse sheep and goat breeds worldwide. The manuscript highlights how specific mutations in these genes create an intricate signaling network that modulates granulosa cell proliferation, follicular sensitivity to FSH, and the prevention of dominant follicle selection. These molecular interactions result in increased ovulation rates and larger litter sizes in prolific breeds. The gene dosage effects observed in heterozygous versus homozygous mutation carriers further illuminate the complex nature of these reproductive regulations. This improved the understanding of the genetic basis for prolificacy provides valuable insights for marker-assisted selection strategies aimed at enhancing reproductive efficiency in small ruminant breeding programs, with significant implications for improving livestock productivity and economic outcomes. Full article
(This article belongs to the Special Issue The Biology of Animal Reproduction)
Show Figures

Figure 1

11 pages, 465 KiB  
Article
Day 4 Versus Day 5 Fresh Embryo Transfer in In Vitro Fertilization: Is It All About Timing?
by Alper Şişmanoğlu, Süleyman Cemil Oğlak, Cenk Özcan and Ulun Uluğ
J. Clin. Med. 2025, 14(13), 4596; https://doi.org/10.3390/jcm14134596 - 28 Jun 2025
Viewed by 602
Abstract
Objective: Most studies concentrate on comparisons between the cleavage stage and blastocyst stage of embryos during in vitro stimulation treatment. We aimed, in this study, to compare the pregnancy rates of day 4 or day 5 blastocyst transfers, all derived from fresh, antagonist-regulated [...] Read more.
Objective: Most studies concentrate on comparisons between the cleavage stage and blastocyst stage of embryos during in vitro stimulation treatment. We aimed, in this study, to compare the pregnancy rates of day 4 or day 5 blastocyst transfers, all derived from fresh, antagonist-regulated in vitro fertilization (IVF) cycles, and to evaluate the factors affecting pregnancy success. Methods: This retrospective cohort study evaluated 3681 fresh embryo transfer cycles conducted at a private IVF center between 2019 and 2021. Patients were divided into two groups based on the day of embryo transfer: day 4 (Group 1) and day 5 (Group 2). Subgroup analyses were performed according to age (≤40 vs. >40 years) and the number of oocytes retrieved (≤4 vs. >4). All patients underwent ovarian stimulation with FSH alone or in combination with hMG, and GnRH antagonist protocols were used for pituitary suppression. Final oocyte maturation was triggered with recombinant hCG, and fertilization was achieved via intracytoplasmic sperm injection (ICSI) for all cases. Embryos were cultured in sequential media and assessed daily until transfer on day 4 or day 5, based on embryo morphology and clinic logistics. Results: Pregnancy was more likely among women under 40 than among women over 40. There were a total of 1217 women who underwent day 4 transfer and 2464 women who underwent day 5 transfer. A total of 660 (54.2%) of the women transferred on day 4 developed pregnancy. Among those transferred on day 5, 1610 (65.3%) developed pregnancy. When compared to the 4th day, a single embryo transfer on the 5th day enhances pregnancy success by 1.8 times, while two embryo transfers raise it by 1.6 times. Furthermore, when the number of oocytes is greater than four and the number of embryos transferred is two, the pregnancy success rate is 2.5 times higher when embryo transfer is performed on the fifth day versus the fourth day. Regardless of age, oocyte count, or number of embryos transferred, 5th-day fresh embryo transfers enhanced pregnancy success by 1.9 times compared to 4th-day transfer. Conclusions: Transfers of fresh embryos on day 5 are superior to those on day 4 and should be favored, especially for people over the age of 40, regardless of the number of embryos transferred, even if that individual has fewer than four oocytes. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

18 pages, 864 KiB  
Article
Urinary Glyphosate Concentrations and Serum Sex Hormones in a Nationally Representative U.S. Sample: NHANES 2017–2018
by Wen-Yang Wu, Du-Sheng Wang, Hsuan-Cheng Lin, Chikang Wang and Chien-Yu Lin
Life 2025, 15(7), 1024; https://doi.org/10.3390/life15071024 - 27 Jun 2025
Viewed by 428
Abstract
Glyphosate and glyphosate-based herbicides (GBHS) are the most widely used herbicides worldwide, yet their potential endocrine-disrupting effects in humans remain inadequately studied. We analyzed data from 1532 participants aged ≥6 years in the 2017–2018 National Health and Nutrition Examination Survey (NHANES). Serum sex [...] Read more.
Glyphosate and glyphosate-based herbicides (GBHS) are the most widely used herbicides worldwide, yet their potential endocrine-disrupting effects in humans remain inadequately studied. We analyzed data from 1532 participants aged ≥6 years in the 2017–2018 National Health and Nutrition Examination Survey (NHANES). Serum sex hormones assessed included follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-Müllerian hormone (AMH), androstenedione, estrone, estradiol, estrone sulfate, 17α-hydroxyprogesterone, progesterone, and sex hormone-binding globulin (SHBG). We found that higher urinary glyphosate levels were significantly associated with lower concentrations of AMH (β = −0.140, p < 0.05), androstenedione (β = −0.134, p < 0.001), estradiol (β = −0.185, p < 0.05), estrone (β = −0.132, p < 0.05), estrone sulfate (β = −0.196, p < 0.001), 17α-hydroxyprogesterone (β = −0.097, p < 0.05), and progesterone (β = −0.212, p < 0.05). SHBG was positively associated (β = 0.080, p < 0.05). FSH and LH showed no significant associations. These associations were generally linear and showed modification by age. Subgroup analyses revealed stronger negative associations in adult males, while SHBG increased in females. In conclusion, we observed that higher urinary glyphosate levels were significantly associated with alterations in multiple serum sex hormones. Although the cross-sectional design precludes causal inference, these findings underscore the need for longitudinal research to determine temporal relationships and underlying mechanisms. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

26 pages, 6703 KiB  
Article
Proneurogenic Actions of FSH During Directed Differentiation of Neural Stem and Progenitor Cells from Ovarian Cortical Cells Towards the Dopaminergic Pathway
by Alfredo González-Gil, Concepción Rojo, Esther Ramírez, Ricardo Martín, Alberto Samuel Suárez-Pinilla, Susana Ovalle, Ricardo Ramos-Ruiz and Rosa Ana Picazo
Biomedicines 2025, 13(7), 1560; https://doi.org/10.3390/biomedicines13071560 - 26 Jun 2025
Viewed by 1235
Abstract
Exploring the neurogenic potential of extraneural stem cells under the actions of proneurogenic biomolecules may enhance the success of autologous cell therapy for neurodegenerative diseases such as Parkinson’s. Neural stem and progenitor cells (NSPCs) from extraneural tissues have emerged as potential sources of [...] Read more.
Exploring the neurogenic potential of extraneural stem cells under the actions of proneurogenic biomolecules may enhance the success of autologous cell therapy for neurodegenerative diseases such as Parkinson’s. Neural stem and progenitor cells (NSPCs) from extraneural tissues have emerged as potential sources of functional dopaminergic (DA) neurons. Background/Objectives: This study aimed to generate DA neurons from ovarian cortical cells (OCC)-derived NSPCs to elucidate whether follicle-stimulating hormone (FSH) can enhance this process and to evaluate the electrophysiological functionality of differentiated neural cells using the patch-clamp technique. Methods: OCC-NSPCs were differentiated towards the DA pathway during the neurosphere (NS) assay after two culture periods for cell expansion (CEP-1, CEP-2) with one of these media: M1 (positive control with epidermal growth factor, EGF, and fibroblast growth factor2, FGF2), M2 (control), and M3 (M2 with FSH, 50 ng/mL). Image analysis, morphometric evaluation, cell proliferation assays, and gene expression analysis of NSPC-specific transcripts were performed. After CEP-2, NS cells were cultured for 30 days in a serum-free medium containing Sonic-Hedgehog, FGF2, FGF8, and brain-derived neurotrophic factor (BDNF) for differentiation. At the end of culture, expression, and immunolocalization of GFAP, Olig2, NeuN, and tyrosine hydroxylase (TH) were analyzed in cells, along with patch-clamp recordings in differentiated neurons. Results: Cell proliferation and NS development were larger in OCC-NSPCs from groups M1 and M3 than in M2. Expression of NSPC-related transcripts was higher in M2; however, M1 and M3 cultures showed greater expression of differentiation markers NeuN, GFAP, Olig2, and TH. NeuN, GFAP, and TH were immunolocalized in differentiated cells and NS that were generated during differentiation. TH was localized in neural precursor cells, some neurons, core cells of small-, medium-, and large-sized NS, and in cells close to the outer cell layer of large NS, with greatest immunolocalization percentages in NS primed with FSH during CEP-1/2 (M3). Electrophysiological recordings revealed a major incidence of plateau potentials and a significant proportion of complete action potentials, reflecting successful functional neuronal differentiation. Conclusions: DA precursors and functional neurons can be successfully obtained after OCC-NSPCs-directed differentiation. FSH priming during the expansion period enhances the neurogenic potential of these cells towards the DA pathway. Future research will explore the eventual therapeutic use of these findings for neurodegenerative diseases. Full article
(This article belongs to the Special Issue Human Stem Cells in Disease Modelling and Treatment)
Show Figures

Figure 1

13 pages, 807 KiB  
Article
Gonadal Dysfunction in Wolfram Syndrome: A Prospective Study
by Gema Esteban-Bueno and Juan Luis Fernández-Martínez
Diagnostics 2025, 15(13), 1594; https://doi.org/10.3390/diagnostics15131594 - 24 Jun 2025
Viewed by 507
Abstract
Background: Wolfram syndrome (WFS), also known as DIDMOAD, is a rare monogenic neurodegenerative disorder characterized by four key components: non-autoimmune insulin-dependent diabetes mellitus (DM), optic atrophy, sensorineural hearing loss, and diabetes insipidus. Although it significantly affects quality of life, gonadal dysfunction, particularly hypogonadism, [...] Read more.
Background: Wolfram syndrome (WFS), also known as DIDMOAD, is a rare monogenic neurodegenerative disorder characterized by four key components: non-autoimmune insulin-dependent diabetes mellitus (DM), optic atrophy, sensorineural hearing loss, and diabetes insipidus. Although it significantly affects quality of life, gonadal dysfunction, particularly hypogonadism, remains underrecognized. Methods: In total, 45 patients (25 men, 20 women) with genetically confirmed WFS from a single tertiary-care center were prospectively followed to assess gonadal function. Men underwent hormonal evaluations, semen analysis, imaging tests, and testicular biopsies. In women, data on age at menarche, menstrual irregularities, and age at menopause were recorded. Hormonal analyses, including anti-Müllerian hormone (AMH) levels, and imaging tests were also conducted. Results: Hypogonadism was identified in 19 men (76.0%), of whom 17 (68.0%) had hypergonadotropic hypogonadism and 2 (8.0%) had hypogonadotropic hypogonadism. Testicular biopsies showed seminiferous tubule damage, Sertoli cell predominance, and reduced Leydig cells. Azoospermia was observed in 12 patients, whereas others presented with oligozoospermia, teratozoospermia, or asthenozoospermia. Most patients exhibited low testosterone levels along with elevated LH and FSH, suggesting primary testicular failure, except for two cases of hypogonadotropic hypogonadism. Correlations between biomarkers, onset age and severity have been analyzed and provide important insights regarding medical treatment. In women, menstrual irregularities were universal, with 20% experiencing premature menopause. Four patients had low AMH levels, with ovarian atrophy in three and a postmenopausal uterus in two, indicating early hypogonadism risk. Conclusions: Gonadal dysfunction is a significant yet overlooked feature of WFS, requiring systematic evaluation during puberty and beyond. Proper management is essential to mitigate metabolic disturbances and psychological impacts, including infertility distress, relationship challenges, and quality of life concerns. Addressing sexual health is crucial as WFS patients live longer and aspire to establish relationships or start families. Full article
(This article belongs to the Special Issue Recent Advances in Endocrinology Pathology)
Show Figures

Graphical abstract

Back to TopTop