Proneurogenic Actions of FSH During Directed Differentiation of Neural Stem and Progenitor Cells from Ovarian Cortical Cells Towards the Dopaminergic Pathway
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Isolation for Culture
2.2. Experimental Design
2.3. Culture for Cell Expansion
2.4. Culture for Directed Differentiation Towards DA Pathway
2.5. Image Analysis and Morphometric Evaluation
2.6. Cell Proliferation Assay
2.7. Gene Expression Analysis
2.8. Immunolocalization of Antigens Characteristic of Neural Differentiation
2.9. Electrophysiological Study: Patch-Clamp Technique
2.10. Statistical Analyses
3. Results
3.1. NS Assay: CEPS
3.1.1. Image Analysis and Morphometric Evaluation of NS in Culture
3.1.2. Cell Proliferation Assay
3.1.3. Gene Expression Analyses
3.2. NS Assay: Directed CDP
3.2.1. Image Analysis
3.2.2. Gene Expression Analyses
3.2.3. Immunolocalization of Neural Cell-Specific Antigens
3.2.4. Electrophysiological Study: Recording of Electrical Activity Using the Patch-Clamp Technique
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NSPCs | Neural stem and progenitor cells |
DA | Dopaminergic |
OCC | Ovarian cortical cells |
FSH | Follicle-stimulating hormone |
NS | Neurosphere |
CEP | Culture expansion period |
SC | Stem cell |
PD | Parkinson’s disease |
CNS | Central nervous system |
NSCs | Neural stem cells |
OSE | Ovarian surface epithelium |
NPCs | Neural progenitor cells |
SHH | Sonic Hedgehog |
FGF | Fibroblast growth factor |
BDNF | Brain-derived neurotrophic factor |
TH | Tyrosine hydroxylase |
DMEM | Dulbecco’s modified Eagle’s medium |
BSA | Bovine serum albumin |
ITS | Insulin, transferrin, selenium |
CDP | Culture differentiation period |
EGF | Epidermal growth factor |
NEAA | Non-essential amino acid solution |
BrDU | Bromodeoxyuridine |
qRT-PCR | Quantitative reverse transcription polymerase chain reaction |
RQ | Relative quantification |
References
- McLauchlan, D.; Robertson, N.P. Stem cells in the treatment of central nervous system disease. J. Neurol. 2018, 265, 984–986. [Google Scholar] [CrossRef] [PubMed]
- Morizane, A.; Li, J.Y.; Brundin, P. From bench to bed: The potential of stem cells for the treatment of Parkinson’s disease. Cell Tissue Res. 2008, 331, 323–336. [Google Scholar] [CrossRef] [PubMed]
- Surmeier, D.J. Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J. 2018, 285, 3657–3668. [Google Scholar] [CrossRef]
- Chen, W.; Huang, Q.; Ma, S.; Li, M. Progress in dopaminergic cell replacement and regenerative strategies for Parkinson’s disease. ACS Chem. Neurosci. 2019, 10, 839–851. [Google Scholar] [CrossRef]
- Kirkeby, A.; Nelander, J.; Hoban, D.B.; Rogelius, N.; Bjartmarz, H.; Novo Nordisk Cell Therapy R&D; Storm, P.; Fiorenzano, A.; Adler, A.F.; Vale, S.; et al. Preclinical quality, safety, and efficacy of a human embryonic stem cell-derived product for the treatment of Parkinson’s disease, STEM-PD. Cell Stem Cell 2023, 30, 1299–1314.e9. [Google Scholar] [CrossRef]
- Grealish, S.; Diguet, E.; Kirkeby, A.; Mattsson, B.; Heuer, A.; Bramoulle, Y.; Van Camp, N.; Perrier, A.L.; Hantraye, P.; Björklund, A.; et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 2014, 15, 653–665. [Google Scholar] [CrossRef]
- Lee, A.S.; Tang, C.; Rao, M.S.; Weissman, I.L.; Wu, J.C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat. Med. 2013, 19, 998–1004. [Google Scholar] [CrossRef] [PubMed]
- Bacakova, L.; Zarubova, J.; Travnickova, M.; Musilkova, J.; Pajorova, J.; Slepicka, P.; Kasalkova, N.S.; Svorcik, V.; Kolska, Z.; Motarjemi, H.; et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—A review. Biotechnol. Adv. 2018, 36, 1111–1126. [Google Scholar] [CrossRef]
- Wang, Z. Assessing Tumorigenicity in Stem Cell-Derived Therapeutic Products: A Critical Step in Safeguarding Regenerative Medicine. Bioengineering 2023, 10, 857. [Google Scholar] [CrossRef]
- Sato, Y.; Bando, H.; Di Piazza, M.; Gowing, G.; Herberts, C.; Jackman, S.; Leoni, G.; Libertini, S.; MacLachlan, T.; McBlane, J.W.; et al. Tumorigenicity assessment of cell therapy products: The need for global consensus and points to consider. Cytotherapy 2019, 21, 1095–1111. [Google Scholar] [CrossRef]
- Amoh, Y.; Mii, S.; Aki, R.; Hamada, Y.; Kawahara, K.; Hoffman, R.M.; Katsuoka, K. Multipotent nestin-expressing stem cells capable of forming neurons are located in the upper, middle and lower part of the vibrissa hair follicle. Cell Cycle 2012, 11, 3513–3517. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Kim, J.W.; Moon, H.J.; Hong, J.Y.; Hyun, J.K. Characterization of neurogenic potential of dental pulp stem cells cultured in xeno/serum-free condition: In vitro and in vivo assessment. Stem Cells Int. 2016, 6921097. [Google Scholar] [CrossRef] [PubMed]
- Romero-Ramos, M.; Vourc’h, P.; Young, H.E.; Lucas, P.A.; Wu, Y.; Chivatakarn, O.; Zaman, R.; Dunkelman, N.; el-Kalay, M.A.; Chesselet, M.F. Neuronal differentiation of stem cells isolated from adult muscle. J. Neurosci. Res. 2002, 69, 894–907. [Google Scholar] [CrossRef]
- Sánchez-Maldonado, B.; Galicia, M.L.; Rojo, C.; González-Gil, A.; Flor-García, M.; Picazo, R.A. Spheroids spontaneously generated in vitro from sheep ovarian cortical cells contain integrating cells that exhibit hallmarks of neural stem/progenitor cells. Stem Cells Dev. 2018, 27, 1557–1576. [Google Scholar] [CrossRef]
- Rojo Salvador, C.; Galicia Guerrero, M.L.; Sánchez Maldonado, B.; González-Gil, A.; Picazo González, R.A. Morphological and ultrastructural characterization of neurospheres spontaneously generated in the culture from sheep ovarian cortical cells. Anat. Rec. 2022, 305, 2265–2280. [Google Scholar] [CrossRef]
- González-Gil, A.; Sánchez-Maldonado, B.; Rojo, C.; Flor-García, M.; Queiroga, F.L.; Ovalle, S.; Ramos-Ruiz, R.; Fuertes-Recuero, M.; Picazo, R.A. Proneurogenic actions of follicle-stimulating hormone on neurospheres derived from ovarian cortical cells in vitro. BMC Vet. Res. 2024, 20, 372. [Google Scholar] [CrossRef] [PubMed]
- González-Gil, A.; Picazo, R.A. Neurospheres from ovarian cortical cells in mammals: Generation in vitro and neurosphere assay. Neural Stem Cells. Methods Mol. Biol. 2025, 2899, 67–87. [Google Scholar]
- Faghih, H.; Javeri, A.; Amini, H.; Taha, M.F. Directed differentiation of human adipose tissue-derived stem cells to dopaminergic neurons in low-serum and serum-free conditions. Neurosci. Lett. 2019, 708, 134353. [Google Scholar] [CrossRef]
- Nguyen Nguyen, H.T.; Kato, H.; Sato, H.; Yamaza, H.; Sakai, Y.; Ohga, S.; Nonaka, K.; Masuda, K. Positive effect of exogenous brain-derived neurotrophic factor on impaired neurite development and mitochondrial function in dopaminergic neurons derived from dental pulp stem cells from children with attention deficit hyperactivity disorder. Biochem. Biophys. Res. Commun. 2019, 513, 1048–1054. [Google Scholar] [CrossRef]
- Yang, H.; Hao, D.; Liu, C.; Huang, D.; Chen, B.; Fan, H.; Liu, C.; Zhang, L.; Zhang, Q.; An, J.; et al. Generation of functional dopaminergic neurons from human spermatogonial stem cells to rescue parkinsonian phenotypes. Stem Cell Res. Ther. 2019, 10, 195. [Google Scholar] [CrossRef]
- Parte, S.; Patel, H.; Sriraman, K.; Bhartiya, D. Isolation and characterization of stem cells in the adult mammalian ovary. Methods Mol. Biol. 2015, 1235, 203–229. [Google Scholar] [PubMed]
- Bukovsky, A.; Caudle, M.R.; Svetlikova, M. Steroid-mediated differentiation of neural/neuronal cells from epithelial ovarian precursors in vitro. Cell cycle 2008, 7, 3577–3583. [Google Scholar] [CrossRef]
- Achilli, T.M.; Meyer, J.; Morgan, J.R. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin. Biol. Ther. 2012, 12, 1347–1360. [Google Scholar] [CrossRef]
- Nie, L.; Yao, D.; Chen, S.; Wang, J.; Pan, C.; Wu, D.; Liu, N.; Tang, Z. Directional induction of neural stem cells, a new therapy for neurodegenerative diseases and ischemic stroke. Cell Death Discov. 2023, 9, 215. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, N.; Lie, D.C.; Hoshimaru, M.; Asahi, M.; Hojo, M.; Ishizaki, R.; Hashimoto, N.; Noji, S.; Ohuchi, H.; Yoshioka, H.; et al. Sonic hedgehog facilitates dopamine differentiation in the presence of a mesencephalic glial cell line. J. Neurosci. 2001, 21, 4326–4335. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.S.; Lee, S.Y.; Park, C.H. FGF8 is essential for functionality of induced neural precursor cell-derived dopaminergic neurons. Int. J. Stem Cells 2015, 8, 228–234. [Google Scholar] [CrossRef]
- Singh, M.; Kakkar, A.; Sharma, R.; Kharbanda, O.P.; Monga, N.; Kumar, M.; Chowdhary, S.; Airan, B.; Mohanty, S. Synergistic effect of BDNF and FGF2 in efficient generation of functional dopaminergic neurons from human mesenchymal stem cells. Sci. Rep. 2017, 7, 10378. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, S.C. Directed differentiation of dopamine neurons from human pluripotent stem cells. Hum. Pluripotent Stem Cells Methods Mol. Biol. 2011, 767. [Google Scholar]
- Drummond, N.J.; Singh Dolt, K.; Canham, M.A.; Kilbride, P.; Morris, G.J.; Kunath, T. Cryopreservation of human midbrain dopaminergic neural progenitor cells poised for neuronal differentiation. Front. Cell Dev. Biol. 2020, 8, 578907. [Google Scholar] [CrossRef]
- White, R.B.; Thomas, M.G. Moving beyond tyrosine hydroxylase to define dopaminergic neurons for use in cell replacement therapies for Parkinson’s disease. CNS Neurol. Disord. Drug Targets 2012, 11, 340–349. [Google Scholar] [CrossRef]
- Soares, R.; Ribeiro, F.F.; Lourenço, D.M.; Rodrigues, R.S.; Moreira, J.B.; Sebastião, A.M.; Morais, V.A.; Xapelli, S. The neurosphere assay: An effective in vitro technique to study neural stem cells. Neural Regen. Res. 2021, 16, 2229–2231. [Google Scholar]
- Bazán, E.; Alonso, F.J.; Redondo, C.; López-Toledano, M.A.; Alfaro, J.M.; Reimers, D.; Herranz, A.S.; Paíno, C.L.; Serrano, A.B.; Cobacho, N.; et al. In vitro and in vivo characterization of neural stem cells. Histol. Histopathol. 2004, 19, 1261–1275. [Google Scholar] [PubMed]
- Begum, A.N.; Guoynes, C.; Cho, J.; Hao, J.; Lutfy, K.; Hong, Y. Rapid generation of sub-type, region-specific neurons and neural networks from human pluripotent stem cell-derived neurospheres. Stem Cell Res. 2015, 15, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Martín, R.; Ferrero, J.J.; Collado-Alsina, A.; Aguado, C.; Luján, R.; Torres, M.; Sánchez-Prieto, J. Bidirectional modulation of glutamatergic synaptic transmission by metabotropic glutamate type 7 receptors at Schaffer collateral-CA1 hippocampal synapses. J. Physiol. 2018, 596, 921–940. [Google Scholar] [CrossRef] [PubMed]
- Paraíso-Luna, J.; Aguareles, J.; Martín, R.; Ayo-Martín, A.C.; Simón-Sánchez, S.; García-Rincón, D.; Costas-Insua, C.; García-Taboada, E.; de Salas-Quiroga, A.; Díaz-Alonso, J.; et al. Endocannabinoid signalling in stem cells and cerebral organoids drives differentiation to deep layer projection neurons via CB1 receptors. Development 2020, 147, dev192161. [Google Scholar] [CrossRef]
- Grasselli, S.; Andolfi, A.; Di Lisa, D.; Pastorino, L. In vitro electrophysiological characterization of Parkinson’s disease: Challenges, advances, and future directions. Front. Neurosci. 2025, 19, 1584555. [Google Scholar] [CrossRef]
- Comini, G.; Dowd, E. A systematic review of progenitor survival and maturation in Parkinsonian models. Neural Regen. Res. 2025, 20, 3172–3178. [Google Scholar] [CrossRef]
- Carvalho, I.M.; Coelho, P.B.; Costa, P.C.; Marques, C.S.; Oliveira, R.S.; Ferreira, D.C. Current neurogenic and neuroprotective strategies to prevent and treat neurodegenerative and neuropsychiatric disorders. Neuromol. Med. 2015, 17, 404–422. [Google Scholar] [CrossRef]
- Marsh, S.E.; Blurton-Jones, M. Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem. Int. 2017, 106, 94–100. [Google Scholar] [CrossRef]
- Azari, H.; Rahman, M.; Sharififar, S.; Reynolds, B.A. Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. J. Vis. Exp. 2010, 45, 2393. [Google Scholar]
- Gil-Perotín, S.; Duran-Moreno, M.; Cebrián-Silla, A.; Ramírez, M.; García-Belda, P.; García-Verdugo, J.M. Adult neural stem cells from the subventricular zone: A review of the neurosphere assay. Anat. Rec. 2013, 296, 1435–1452. [Google Scholar] [CrossRef] [PubMed]
- de la Parra, J.; Cuartero, M.I.; Pérez-Ruiz, A.; García-Culebras, A.; Martín, R.; Sánchez-Prieto, J.; García-Segura, J.M.; Lizasoain, I.; Moro, M.A. AhR deletion promotes aberrant morphogenesis and synaptic activity of adult-generated granule neurons and impairs hippocampus-dependent memory. ENeuro 2018, 5, ENEURO.0370-17.2018. [Google Scholar] [CrossRef] [PubMed]
- Bajo-Grañeras, R.; Suárez-Pinilla, A.S.; Torres, M.; Martín, R. Acute slice patch-clamp recordings to characterize neural populations in the hippocampal subgranular zone. Neural Stem Cells. Methods Mol. Biol. 2025, 2899, 263–274. [Google Scholar]
- Gritti, A.; Parati, E.A.; Cova, L.; Frolichsthal, P.; Galli, R.; Wanke, E.; Faravelli, L.; Morassutti, D.J.; Roisen, F.; Nickel, D.D.; et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 1996, 16, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Parte, S.; Bhartiya, D.; Manjramkar, D.D.; Chauhan, A.; Joshi, A. Stimulation of ovarian stem cells by follicle stimulating hormone and basic fibroblast growth factor during cortical tissue culture. J. Ovarian Res. 2013, 6, 20. [Google Scholar] [CrossRef]
- Sriraman, K.; Bhartiya, D.; Anand, S.; Bhutda, S. Mouse ovarian very small embryonic-like stem cells resist chemotherapy and retain ability to initiate oocyte-specific differentiation. Reprod. Sci. 2015, 22, 884–903. [Google Scholar] [CrossRef]
- Vazin, T.; Chen, J.; Lee, C.T.; Amable, R.; Freed, W.J. Assessment of stromal-derived inducing activity in the generation of dopaminergic neurons from human embryonic stem cells. Stem Cells 2008, 26, 1517–1525. [Google Scholar] [CrossRef]
- Christie, K.J.; Turnley, A.M. Regulation of endogenous neural stem/progenitor cells for neural repair—factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front. Cell Neurosci. 2013, 6, 70. [Google Scholar] [CrossRef]
- Woodbury, M.E.; Ikezu, T. Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration. J. Neuroimmune Pharmacol. 2014, 9, 92–101. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef]
- Soeda, A.; Inagaki, A.; Oka, N.; Ikegame, Y.; Aoki, H.; Yoshimura, S.; Nakashima, S.; Kunisada, T.; Iwama, T. Epidermal growth factor plays a crucial role in mitogenic regulation of human brain tumor stem cells. J. Biol. Chem. 2008, 283, 10958–10966. [Google Scholar] [CrossRef] [PubMed]
- El-Hayek, S.; Demeestere, I.; Clarke, H.J. Follicle-stimulating hormone regulates expression and activity of epidermal growth factor receptor in the murine ovarian follicle. Proc. Natl. Acad. Sci. USA 2014, 111, 16778–16783. [Google Scholar] [CrossRef] [PubMed]
- Barros, R.G.; Lima, P.F.; Soares, A.C.S.; Sanches, L.; Price, C.A.; Buratini, J. Fibroblast growth factor 2 regulates cumulus differentiation under the control of the oocyte. J. Assist. Reprod. Genet. 2019, 36, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Ruijtenberg, S.; Van den Heuvel, S. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell-type specific gene expression. Cell Cycle 2016, 15, 196–212. [Google Scholar] [CrossRef]
- Zhang, J.; Jiao, J. Molecular biomarkers for embryonic and adult neural stem cells and neurogenesis. Biomed Res. Int. 2015, 2015, 727542. [Google Scholar] [CrossRef]
- Wan, L.; Huang, R.J.; Luo, Z.H.; Gong, J.E.; Pan, A.; Manavis, J.; Yan, X.X.; Xiao, B. Reproduction-associated hormones and adult hippocampal neurogenesis. Neural Plast. 2021, 2021, 3651735. [Google Scholar] [CrossRef]
- Ceriani, R.; Whitlock, K.E. Gonadotropin releasing hormone (GnRH) triggers neurogenesis in the hypothalamus of adult zebrafish. Int. J. Mol. Sci. 2021, 22, 5926. [Google Scholar] [CrossRef]
- Mak, G.K.; Enwere, E.K.; Gregg, C.; Pakarainen, T.; Poutanen, M.; Huhtaniemi, I.; Weiss, S. Male pheromone-stimulated neurogenesis in the adult female brain: Possible role in mating behavior. Nat. Neurosci. 2007, 10, 1003–1011. [Google Scholar] [CrossRef]
- Xiong, J.; Kang, S.S.; Wang, Z.; Liu, X.; Kuo, T.C.; Korkmaz, F.; Padilla, A.; Miyashita, S.; Chan, P.; Zhang, Z.; et al. FSH blockade improves cognition in mice with Alzheimer’s disease. Nature 2022, 603, 470–476. [Google Scholar] [CrossRef]
- Lu, P.; Jones, L.L.; Snyder, E.Y.; Tuszynski, M.H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp. Neurol. 2003, 181, 115–129. [Google Scholar] [CrossRef]
- Tomé, D.; Dias, M.S.; Correia, J.; Almeida, R.D. Fibroblast growth factor signaling in axons: From development to disease. Cell Commun. Signal. 2023, 21, 290. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Pallares, J.; Guerra, M.J.; Labandeira-Garcia, J.L. Elimination of serotonergic cells induces a marked increase in generation of dopaminergic neurons from mesencephalic precursors. Eur. J. Neurosci. 2003, 18, 2166–2174. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.B.; Parmar, M. Strengths and limitations of the neurosphere culture system. Mol. Neurobiol. 2006, 34, 153–161. [Google Scholar] [CrossRef]
- Christophersen, N.S.; Meijer, X.; Jørgensen, J.R.; Englund, U.; Grønborg, M.; Seiger, A.; Brundin, P.; Wahlberg, L.U. Induction of dopaminergic neurons from growth factor expanded neural stem/progenitor cell cultures derived from human first trimester forebrain. Brain Res. Bull. 2006, 70, 457–466. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, Z.J.; Oldenburg, M.; Ayala, M.; Zhang, S.C. Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 2008, 26, 55–63. [Google Scholar] [CrossRef]
- Svendsen, C.N.; Caldwell, M.A.; Shen, J.; ter Borg, M.G.; Rosser, A.E.; Tyers, P.; Karmiol, S.; Dunnett, S.B. Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp. Neurol. 1997, 148, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Yamane, M.; Takaoka, N.; Obara, K.; Shirai, K.; Aki, R.; Hamada, Y.; Arakawa, N.; Hoffman, R.M.; Amoh, Y. Hair-follicle-associated pluripotent (HAP) stem cells can extensively differentiate to tyrosine-hydroxylase-expressing dopamine-secreting neurons. Cells 2021, 10, 864. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z.; Ma, J.; Xia, H.; Wang, Y.; Liu, Y.; Ma, Q.; Sun, T.; Liu, J. Directed differentiation of postnatal hippocampal neural stem cells generates nuclear receptor related-1 protein- and tyrosine hydroxylase-expressing cells. Mol. Med. Rep. 2016, 14, 1993–1999. [Google Scholar] [CrossRef]
- Chen, Y.; Kuang, J.; Niu, Y.; Zhu, H.; Chen, X.; So, K.F.; Xu, A.; Shi, L. Multiple factors to assist human-derived induced pluripotent stem cells to efficiently differentiate into midbrain dopaminergic neurons. Neural Regen. Res. 2024, 19, 908–914. [Google Scholar] [CrossRef]
- Correia, A.S.; Anisimov, S.V.; Li, J.Y.; Brundin, P. Stem cell-based therapy for Parkinson’s disease. Ann. Med. 2005, 37, 487–498. [Google Scholar] [CrossRef]
- Lindvall, O. Clinical translation of stem cell transplantation in Parkinson’s disease. J. Intern. Med. 2016, 279, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Wimalasena, K.; Adetuyi, O.; Eldani, M. Metabolic energy decline coupled dysregulation of catecholamine metabolism in physiologically highly active neurons: Implications for selective neuronal death in Parkinson’s disease. Front. Aging Neurosci. 2024, 16, 1339295. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.S.; Porter, J.C. Hormonal modulation of the quantity and in situ activity of tyrosine hydroxylase in neurites of the median eminence. Proc. Natl. Acad. Sci. USA 1986, 83, 9804–9806. [Google Scholar] [CrossRef] [PubMed]
- Morrell, J.I.; Rosenthal, M.F.; McCabe, J.T.; Harrington, C.A.; Chikaraishi, D.M.; Pfaff, D.W. Tyrosine hydroxylase mRNA in the neurons of the tuberoinfundibular region and zona incerta examined after gonadal steroid hormone treatment. Mol. Endocrinol. 1989, 3, 1426–1433. [Google Scholar] [CrossRef]
- Kritzer, M.F.; Adler, A.; Bethea, C.L. Ovarian hormone influences on the density of immunoreactivity for tyrosine hydroxylase and serotonin in the primate corpus striatum. Neuroscience 2003, 122, 757–772. [Google Scholar] [CrossRef]
- Gonzalez, H.A.; Kedzierski, W.; Aguila-Mansilla, N.; Porter, J.C. Hormonal control of tyrosine hydroxylase in the median eminence: Demonstration of a central role for the pituitary gland. Endocrinology 1989, 124, 2122–2127. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Y.; Liu, W.; Kuang, P.; Lao, W.; Ji, Y.; Zhu, H. Voltage-gated sodium channels are involved in cognitive impairments in Parkinson’s disease-like rats. Neuroscience 2019, 418, 231–243. [Google Scholar] [CrossRef]
- Chen, X.; Feng, Y.; Quinn, R.J.; Pountney, D.L.; Richardson, D.R.; Mellick, G.D.; Ma, L. Potassium channels in Parkinson’s disease: Potential roles in its pathogenesis and innovative molecular targets for treatment. Pharmacol. Rev. 2023, 75, 758–788. [Google Scholar] [CrossRef]
- Li, Y.; Fu, J.; Wang, H. Advancements in Targeting Ion Channels for the Treatment of Neurodegenerative Diseases. Pharmaceuticals 2024, 17, 1462. [Google Scholar] [CrossRef]
- Orfali, R.; Alwatban, A.Z.; Orfali, R.S.; Lau, L.; Chea, N.; Alotaibi, A.M.; Nam, Y.W.; Zhang, M. Oxidative stress and ion channels in neurodegenerative diseases. Front. Physiol. 2024, 15, 1320086. [Google Scholar] [CrossRef]
- Belinsky, G.S.; Moore, A.R.; Short, S.M.; Rich, M.T.; Antic, S.D. Physiological properties of neurons derived from human embryonic stem cells using a dibutyryl cyclic AMP-based protocol. Stem Cells Dev. 2011, 20, 1733–1746. [Google Scholar] [CrossRef] [PubMed]
- Espósito, M.S.; Piatti, V.C.; Laplagne, D.A.; Morgenstern, N.A.; Ferrari, C.C.; Pitossi, F.J.; Schinder, A.F. Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J. Neurosci. 2005, 25, 10074–10086. [Google Scholar] [CrossRef]
- Ferrari, D.C.; Mdzomba, B.J.; Dehorter, N.; Lopez, C.; Michel, F.J.; Libersat, F.; Hammond, C. Midbrain dopaminergic neurons generate calcium and sodium currents and release dopamine in the striatum of pups. Front. Cell. Neurosci. 2012, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Lockery, S.R.; Spitzer, N.C. Reconstruction of action potential development from whole-cell currents of differentiating spinal neurons. J. Neurosci. 1992, 12, 2268–2287. [Google Scholar] [CrossRef]
- Mercer, A.R.; Kloppenburg, P.; Hildebrand, J.G. Plateau potentials in developing antennal-lobe neurons of the moth, Manduca sexta. J. Neurophysiol. 2005, 93, 1949–1958. [Google Scholar] [CrossRef] [PubMed]
- Hartfield, E.M.; Yamasaki-Mann, M.; Ribeiro Fernandes, H.J.; Vowles, J.; James, W.S.; Cowley, S.A.; Wade-Martins, R. Physiological characterisation of human iPS-derived dopaminergic neurons. PloS ONE 2014, 9, e87388. [Google Scholar] [CrossRef]
- Yasuda, T.; Adams, D.J. Physiological roles of ion channels in adult neural stem cells and their progeny. J. Neurochem. 2010, 114, 946–959. [Google Scholar] [CrossRef]
- Goyal, R.; Spencer, K.A.; Borodinsky, L.N. From neural tube formation through the differentiation of spinal cord neurons: Ion channels in action during neural development. Front. Mol. Neurosci. 2020, 13, 62. [Google Scholar] [CrossRef]
Transcript | Accession Number | Primers |
---|---|---|
Nestin | XM_004002626.1 | F CTCCAGAACTACTAAAGCCTACAG R CCAGCGACTCTTGACTTTCC |
Sox2 | X96997.1 | F GGAGGACAGCAAGAAACAG R GCGTGAGTGTAGATGGGA |
Pax6 | XM_004016373.1 | F AACATCCTTTACCCAAGAGCA R TTTCTCGGGCAAACACATCTG |
p75NTR | XM_004013355.1 | F CTCATCCCTGTCTATTGCTCCA R TTCCACCTCTTGAAGGCGA |
GFAP | XM_004012992.1 | F GAAGCAGATGAAGCCACCC R CTCAATCTTCCTCTCCAGATCCA |
Olig2 | XM_015091722.1 | F GGCTTCAAGTCATCCTCGTC R GCTCCGTCATCTGTTTCTTGTC |
NeuN | XM_042256257.1 | F: GGCAAATGTTCGGGGTCAAC R: CATCCTGATACACGACCGCT |
TH | XM_027959751.2 | F: GTCTCTGAGCTGGACGCC R: GTGGGCTTCGAATGTCTCAAA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Gil, A.; Rojo, C.; Ramírez, E.; Martín, R.; Suárez-Pinilla, A.S.; Ovalle, S.; Ramos-Ruiz, R.; Picazo, R.A. Proneurogenic Actions of FSH During Directed Differentiation of Neural Stem and Progenitor Cells from Ovarian Cortical Cells Towards the Dopaminergic Pathway. Biomedicines 2025, 13, 1560. https://doi.org/10.3390/biomedicines13071560
González-Gil A, Rojo C, Ramírez E, Martín R, Suárez-Pinilla AS, Ovalle S, Ramos-Ruiz R, Picazo RA. Proneurogenic Actions of FSH During Directed Differentiation of Neural Stem and Progenitor Cells from Ovarian Cortical Cells Towards the Dopaminergic Pathway. Biomedicines. 2025; 13(7):1560. https://doi.org/10.3390/biomedicines13071560
Chicago/Turabian StyleGonzález-Gil, Alfredo, Concepción Rojo, Esther Ramírez, Ricardo Martín, Alberto Samuel Suárez-Pinilla, Susana Ovalle, Ricardo Ramos-Ruiz, and Rosa Ana Picazo. 2025. "Proneurogenic Actions of FSH During Directed Differentiation of Neural Stem and Progenitor Cells from Ovarian Cortical Cells Towards the Dopaminergic Pathway" Biomedicines 13, no. 7: 1560. https://doi.org/10.3390/biomedicines13071560
APA StyleGonzález-Gil, A., Rojo, C., Ramírez, E., Martín, R., Suárez-Pinilla, A. S., Ovalle, S., Ramos-Ruiz, R., & Picazo, R. A. (2025). Proneurogenic Actions of FSH During Directed Differentiation of Neural Stem and Progenitor Cells from Ovarian Cortical Cells Towards the Dopaminergic Pathway. Biomedicines, 13(7), 1560. https://doi.org/10.3390/biomedicines13071560