Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,835)

Search Parameters:
Keywords = Evolutionary Biology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3495 KiB  
Review
Harnessing an Algae–Bacteria Symbiosis System: Innovative Strategies for Enhancing Complex Wastewater Matrices Treatment
by Wantong Zhao, Kun Tian, Lan Zhang, Ye Tang, Ruihuan Chen, Xiangyong Zheng and Min Zhao
Sustainability 2025, 17(15), 7104; https://doi.org/10.3390/su17157104 - 5 Aug 2025
Abstract
Complex wastewater matrices hinder the efficacy of conventional treatment methods due to the presence of various inorganic and organic pollutants, along with their intricate interactions. Leveraging the synergy between algae and bacteria, algal–bacterial symbiosis (ABS) systems offering an evolutionary and highly effective approach. [...] Read more.
Complex wastewater matrices hinder the efficacy of conventional treatment methods due to the presence of various inorganic and organic pollutants, along with their intricate interactions. Leveraging the synergy between algae and bacteria, algal–bacterial symbiosis (ABS) systems offering an evolutionary and highly effective approach. The ABS system demonstrates 10–30% higher removal efficiency than conventional biological/physicochemical methods under identical conditions, especially at low C/N ratios. Recent advances in biology techniques and big data analytics have deepened our understanding of the synergistic mechanisms involved. Despite the system’s considerable promise, challenges persist concerning complex pollution scenarios and scaling it for industrial applications, particularly regarding system design, environmental adaptability, and stable operation. In this review, we explore the current forms and operational modes of ABS systems, discussing relevant mechanisms in various wastewater treatment contexts. Furthermore, we examine the advantages and limitations of ABS systems in treating complex wastewater matrices, highlighting challenges and proposing future directions. Full article
Show Figures

Figure 1

11 pages, 261 KiB  
Article
Investigation of the P1104A/TYK2 Genetic Variant in a COVID-19 Patient Cohort from Southern Brazil
by Giulianna Sonnenstrahl, Eduarda Sgarioni, Mayara Jorgens Prado, Marilea Furtado Feira, Renan Cezar Sbruzzi, Bibiana S. O. Fam, Alessandra Helena Da Silva Hellwig, Nathan Araujo Cadore, Osvaldo Artigalás, Alexandre da Costa Pereira, Lygia V. Pereira, Tábita Hünemeier and Fernanda Sales Luiz Vianna
COVID 2025, 5(8), 126; https://doi.org/10.3390/covid5080126 - 5 Aug 2025
Viewed by 38
Abstract
The P1104A variant in the TYK2 gene is recognized as the first common monogenic cause of tuberculosis, and recent studies also suggest a potential role in COVID-19 severity. However, its frequency and impact in admixed Latin American populations remain underexplored. Therefore, we investigated [...] Read more.
The P1104A variant in the TYK2 gene is recognized as the first common monogenic cause of tuberculosis, and recent studies also suggest a potential role in COVID-19 severity. However, its frequency and impact in admixed Latin American populations remain underexplored. Therefore, we investigated the P1104A/TYK2 variant in a cohort comprising 1826 RT-PCR-confirmed COVID-19 patients from Southern Brazil. Cases were stratified by severity into non-severe (n = 1190) and severe (n = 636). Three homozygous individuals were identified—one non-severe and two severe cases—although no statistically significant association with disease severity was observed. The frequency of the C allele in the COVID-19 cohort (2.85%) was significantly higher than in Brazilian population databases, including “DNA do Brasil” (1.81%, p < 0.001) and ABraOM (2.34%, p = 0.03), but lower than in the multi-ancestry gnomAD database (3.71%, p = 0.01), possibly reflecting ancestry bias. We also observed associations between COVID-19 severity and sex (p = 0.003), age (p < 0.001), obesity (p < 0.001), diabetes (p < 0.001), and hypertension (p < 0.001). Future studies in larger and more diverse cohorts are needed to characterize the prevalence of the variant in admixed populations and assess its contribution to COVID-19 susceptibility. Full article
(This article belongs to the Section Host Genetics and Susceptibility/Resistance)
22 pages, 884 KiB  
Article
Mitochondrial Dysregulation in Male Infertility: A Preliminary Study for Infertility-Specific lncRNA Variants
by Georgios Stamatellos, Maria-Anna Kyrgiafini, Aris Kaltsas and Zissis Mamuris
DNA 2025, 5(3), 38; https://doi.org/10.3390/dna5030038 - 5 Aug 2025
Viewed by 41
Abstract
Background/Objectives: Male infertility is a major health concern with a complex etiopathology, yet a substantial proportion of cases remain idiopathic. Mitochondrial dysfunction and non-coding RNA (ncRNA) deregulation have both been implicated in impaired spermatogenesis, but their interplay remains poorly understood. This study aimed [...] Read more.
Background/Objectives: Male infertility is a major health concern with a complex etiopathology, yet a substantial proportion of cases remain idiopathic. Mitochondrial dysfunction and non-coding RNA (ncRNA) deregulation have both been implicated in impaired spermatogenesis, but their interplay remains poorly understood. This study aimed to identify infertility-specific variants in ncRNAs that affect mitochondrial dynamics and homeostasis and to explore their roles. Methods: Whole-genome sequencing (WGS) was performed on genomic DNA samples from teratozoospermic, asthenozoospermic, oligozoospermic, and normozoospermic men. Variants uniquely present in infertile individuals and mapped to ncRNAs that affect mitochondrial dynamics were selected and prioritized using bioinformatics tools. An independent transcriptomic validation was conducted using RNA-sequencing data from testicular biopsies of men with non-obstructive azoospermia (NOA) to determine whether the ncRNAs harboring WGS-derived variants were transcriptionally altered. Results: We identified several infertility-specific variants located in lncRNAs known to interact with mitochondrial regulators, including GAS5, HOTAIR, PVT1, MEG3, and CDKN2B-AS1. Transcriptomic analysis confirmed significant deregulation of these lncRNAs in azoospermic testicular samples. Bioinformatic analysis also implicated the disruption of lncRNA–miRNA–mitochondria networks, potentially contributing to mitochondrial membrane potential loss, elevated reactive oxygen species (ROS) production, impaired mitophagy, and germ cell apoptosis. Conclusions: Our integrative genomic and transcriptomic analysis highlights lncRNA–mitochondrial gene interactions as a novel regulatory layer in male infertility, while the identified lncRNAs hold promise as biomarkers and therapeutic targets. However, future functional studies are warranted to elucidate their mechanistic roles and potential for clinical translation in reproductive medicine. Full article
Show Figures

Figure 1

21 pages, 3086 KiB  
Article
Integrative Population Genomics Reveals Niche Differentiation and Gene Flow in Chinese Sclerophyllous Oaks (Quercus Sect. Ilex)
by Miao-Miao Ju, Ming Yue and Gui-Fang Zhao
Plants 2025, 14(15), 2403; https://doi.org/10.3390/plants14152403 - 3 Aug 2025
Viewed by 237
Abstract
Elucidating the coexistence mechanisms of rapidly diverging species has long been a challenge in evolutionary biology. Genome-wide polymorphic loci are expected to provide insights into the speciation processes of these closely related species. This study focused on seven Chinese sclerophyllous oaks, represented by [...] Read more.
Elucidating the coexistence mechanisms of rapidly diverging species has long been a challenge in evolutionary biology. Genome-wide polymorphic loci are expected to provide insights into the speciation processes of these closely related species. This study focused on seven Chinese sclerophyllous oaks, represented by Quercus spinosa, Quercus aquifolioides, Quercus rehderiana, Quercus guyavifolia, Quercus monimotricha, Quercus semecarpifolia, and Quercus senescens, employing 27,592 single-nucleotide polymorphisms to examine their phylogenetic relationships at the genomic level. Combined with genetic structure analysis, phylogenetic trees revealed that the genetic clustering of individuals was influenced by both geographic distance and ancestral genetic components. Furthermore, this study confirmed the existence of reticulate evolutionary relationships among the species. Frequent gene flow and introgression within the seven species were primarily responsible for the ambiguous interspecies boundaries, with hybridization serving as a major driver of reticulate evolution. Additionally, the seven species exhibited distinct differences in niche occupancy. By reconstructing the climatic adaptability of ancestral taxonomic units, we found that the climatic tolerance of each species displayed differential responses to 19 climatic factors. Consequently, ecological niche differentiation and variations in habitat adaptation contributed to the preservation of species boundaries. This study provides a comprehensive understanding of the speciation processes in rapidly diverging genera and underscores the significance of both genetic and ecological factors in the formation and maintenance of species boundaries. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

27 pages, 15012 KiB  
Article
New Insights in the Helicellini Ihering, 1909 with Description of Kherattolactea Gen. Nov. and the First Record of Orexana Chueca, Gómez-Moliner, Madeira & Pfenninger, 2018 from Algeria
by Issaad Kawther Ezzine, Houria Bouaziz-Yahiatene, Willy De Mattia and Eike Neubert
Diversity 2025, 17(8), 550; https://doi.org/10.3390/d17080550 - 2 Aug 2025
Viewed by 196
Abstract
Recent sampling efforts in northern Algeria and the investigation of some collection material has revealed the presence of taxa with conchological and genital morphological similarities to the Candidula-like group. A detailed investigation of the anatomy of the genitalia combined with the analysis [...] Read more.
Recent sampling efforts in northern Algeria and the investigation of some collection material has revealed the presence of taxa with conchological and genital morphological similarities to the Candidula-like group. A detailed investigation of the anatomy of the genitalia combined with the analysis of two mitochondrial and two nuclear markers of representatives of the known genera as well as two Algerian taxa has been conducted. The result confirms the affiliation of the latter in the Candidula-like complex. Comparative anatomical analysis led to the description of a new genus, Kherattolactea gen. nov., endemic to northern Algeria with Xerophila keratae, Kobelt, 1892 as the type species. The anatomical distinction corroborates the result of the molecular analysis that reveals apomorphic nucleotide substitution. Moreover, the result of the combined analysis provides the first confirmed record of the genus Orexana Chueca, Gómez-Moliner, Madeira & Pfenninger, 2018, in north Africa, represented by the species Orexana lemoinei Kobelt, 1882 nov. comb. A new Xerogyra species, Xerogyra halgassi nov. sp., from the Apennine Mountain has been described based on the combination of morphoanatomical and molecular traits. For the first time, the morphoanatomical description of the known Xerogyra species has been presented. Full article
Show Figures

Figure 1

33 pages, 7206 KiB  
Article
From Development to Regeneration: Insights into Flight Muscle Adaptations from Bat Muscle Cell Lines
by Fengyan Deng, Valentina Peña, Pedro Morales-Sosa, Andrea Bernal-Rivera, Bowen Yang, Shengping Huang, Sonia Ghosh, Maria Katt, Luciana Andrea Castellano, Lucinda Maddera, Zulin Yu, Nicolas Rohner, Chongbei Zhao and Jasmin Camacho
Cells 2025, 14(15), 1190; https://doi.org/10.3390/cells14151190 - 1 Aug 2025
Viewed by 257
Abstract
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular [...] Read more.
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular and molecular mechanisms underlying bat muscle physiology remain largely unknown. To enable mechanistic investigation of these traits, we established the first myoblast cell lines from the pectoralis muscle of Pteronotus mesoamericanus, a highly maneuverable aerial insectivore. Using both spontaneous immortalization and exogenous hTERT/CDK4 gene overexpression, we generated two stable cell lines that retain proliferative capacity and differentiate into contractile myotubes. These cells exhibit frequent spontaneous contractions, suggesting robust functional integrity at the neuromuscular junction. In parallel, we performed transcriptomic and metabolic profiling of native pectoralis tissue in the closely related Pteronotus parnellii to define molecular programs supporting muscle specialization. Gene expression analyses revealed enriched pathways for muscle metabolism, development, and regeneration, highlighting supporting roles in tissue maintenance and repair. Consistent with this profile, the flight muscle is triglyceride-rich, which serves as an important fuel source for energetically demanding processes, including muscle contraction and cellular recovery. Integration of transcriptomic and metabolic data identified three key metabolic modules—glucose utilization, lipid handling, and nutrient signaling—that likely coordinate ATP production and support metabolic flexibility. Together, these complementary tools and datasets provide the first in vitro platform for investigating bat muscle research, enabling direct exploration of muscle regeneration, metabolic resilience, and evolutionary physiology. Full article
Show Figures

Graphical abstract

16 pages, 340 KiB  
Review
Methodological Standards for Conducting High-Quality Systematic Reviews
by Alessandro De Cassai, Burhan Dost, Serkan Tulgar and Annalisa Boscolo
Biology 2025, 14(8), 973; https://doi.org/10.3390/biology14080973 (registering DOI) - 1 Aug 2025
Viewed by 273
Abstract
Systematic reviews are a cornerstone of evidence-based research, providing comprehensive summaries of existing studies to answer specific research questions. This article offers a detailed guide to conducting high-quality systematic reviews in biology, health and social sciences. It outlines key steps, including developing and [...] Read more.
Systematic reviews are a cornerstone of evidence-based research, providing comprehensive summaries of existing studies to answer specific research questions. This article offers a detailed guide to conducting high-quality systematic reviews in biology, health and social sciences. It outlines key steps, including developing and registering a protocol, designing comprehensive search strategies, and selecting studies through a screening process. The article emphasizes the importance of accurate data extraction and the use of validated tools to assess the risk of bias across different study designs. Both meta-analysis (quantitative approach) and narrative synthesis (qualitative approach) are discussed in detail. The guide also highlights the use of frameworks, such as GRADE, to assess the certainty of evidence and provides recommendations for clear and transparent reporting in line with the PRISMA 2020 guidelines. This paper aims to adapt and translate evidence-based review principles, commonly applied in clinical research, into the context of biological sciences. By highlighting domain-specific methodologies, challenges, and resources, we provide tailored guidance for researchers in ecology, molecular biology, evolutionary biology, and related fields in order to conduct transparent and reproducible evidence syntheses. Full article
(This article belongs to the Section Theoretical Biology and Biomathematics)
Show Figures

Figure 1

26 pages, 1026 KiB  
Article
From Salvation to Evolution to Therapy: Metaphors, Conceptual Blending and New Theologies
by Erin Prophet
Religions 2025, 16(8), 1001; https://doi.org/10.3390/rel16081001 - 31 Jul 2025
Viewed by 311
Abstract
New theologies developed in tandem with evolutionary biology during the nineteenth century, which have been called metaphysical evolutionisms and evolutionary theologies. A subset of these theologies analyzed here were developed by thinkers who accepted biological science but rejected both biblical creationism and materialist [...] Read more.
New theologies developed in tandem with evolutionary biology during the nineteenth century, which have been called metaphysical evolutionisms and evolutionary theologies. A subset of these theologies analyzed here were developed by thinkers who accepted biological science but rejected both biblical creationism and materialist science. Tools from the cognitive science of religion, including conceptual metaphor theory (CMT) and blending theory, also known as conceptual integration theory (CIT), can help to explain the development of these systems and their transformation between the nineteenth and the twentieth centuries. The analysis focuses on several stable and popular blends of ideas, which have continued with some alteration into the twenty-first century. The three blends evaluated here are Progressive Soul Evolution, Salvation is Evolution, and Evolution is Therapy. Major contributors to these blends are the theosophist and theologian Helena P. Blavatsky and psychologist Frederic W. H. Myers, both influenced by the spiritualist movement, particularly the ideas of the spiritualist and biologist Alfred Russel Wallace. The influence of these blends can be seen in the twentieth-century “Aquarian Frontier,” a group of 145 thinkers and organizations identified in 1975 by counterculture historian Theodore Roszak. Part of the appeal of these blends may be seen in their use of metaphors, including the Great Chain of Being and A Purposeful Life is a Journey. The application of the polysemic term evolution in a sense that does much of the theological work of salvation in Christianity can in part be explained by applying the principles of blending theory, including the vital relation “achieve a human scale,” as well as compressions of time and identity. These blends have been successful because they meet the needs of a population who are friendly towards science but disenchanted with traditional religions. The blends provide a satisfying new theology that extends beyond death for a subset of adherents, particularly in the New Age and spiritual but not religious (SBNR) movements, who combine the agency of self-directed “evolution” with the religious concepts of grace and transcendence. Full article
(This article belongs to the Special Issue Theology and Science: Loving Science, Discovering the Divine)
Show Figures

Figure 1

31 pages, 3754 KiB  
Review
Artificial Gametogenesis and In Vitro Spermatogenesis: Emerging Strategies for the Treatment of Male Infertility
by Aris Kaltsas, Maria-Anna Kyrgiafini, Eleftheria Markou, Andreas Koumenis, Zissis Mamuris, Fotios Dimitriadis, Athanasios Zachariou, Michael Chrisofos and Nikolaos Sofikitis
Int. J. Mol. Sci. 2025, 26(15), 7383; https://doi.org/10.3390/ijms26157383 - 30 Jul 2025
Viewed by 478
Abstract
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, [...] Read more.
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, driven by advances in two complementary strategies: organotypic in vitro spermatogenesis (IVS), which aims to complete spermatogenesis ex vivo using native testicular tissue, and in vitro gametogenesis (IVG), which seeks to generate male gametes de novo from pluripotent or reprogrammed somatic stem cells. To evaluate the current landscape and future potential of these approaches, a narrative, semi-systematic literature search was conducted in PubMed and Scopus for the period January 2010 to February 2025. Additionally, landmark studies published prior to 2010 that contributed foundational knowledge in spermatogenesis and testicular tissue modeling were reviewed to provide historical context. This narrative review synthesizes multidisciplinary evidence from cell biology, tissue engineering, and translational medicine to benchmark IVS and IVG technologies against species-specific developmental milestones, ranging from rodent models to non-human primates and emerging human systems. Key challenges—such as the reconstitution of the blood–testis barrier, stage-specific endocrine signaling, and epigenetic reprogramming—are discussed alongside critical performance metrics of various platforms, including air–liquid interface slice cultures, three-dimensional organoids, microfluidic “testis-on-chip” devices, and stem cell-derived gametogenic protocols. Particular attention is given to clinical applicability in contexts such as NOA, oncofertility preservation in prepubertal patients, genetic syndromes, and reprocutive scenarios involving same-sex or unpartnered individuals. Safety, regulatory, and ethical considerations are critically appraised, and a translational framework is outlined that emphasizes biomimetic scaffold design, multi-omics-guided media optimization, and rigorous genomic and epigenomic quality control. While the generation of functionally mature sperm in vitro remains unachieved, converging progress in animal models and early human systems suggests that clinically revelant IVS and IVG applications are approaching feasibility, offering a paradigm shift in reproductive medicine. Full article
Show Figures

Figure 1

16 pages, 265 KiB  
Review
TIGR-Tas and the Expanding Universe of RNA-Guided Genome Editing Systems: A New Era Beyond CRISPR-Cas
by Douglas M. Ruden
Genes 2025, 16(8), 896; https://doi.org/10.3390/genes16080896 - 28 Jul 2025
Viewed by 365
Abstract
The recent discovery of TIGR-Tas (Tandem Interspaced Guide RNA-Targeting Systems) marks a major advance in the field of genome editing, introducing a new class of compact, programmable DNA-targeting systems that function independently of traditional CRISPR-Cas pathways. TIGR-Tas effectors use a novel dual-spacer guide [...] Read more.
The recent discovery of TIGR-Tas (Tandem Interspaced Guide RNA-Targeting Systems) marks a major advance in the field of genome editing, introducing a new class of compact, programmable DNA-targeting systems that function independently of traditional CRISPR-Cas pathways. TIGR-Tas effectors use a novel dual-spacer guide RNA (tigRNA) to recognize both strands of target DNA without requiring a protospacer adjacent motif (PAM). These Tas proteins introduce double-stranded DNA cuts with characteristic 8-nucleotide 3′ overhangs and are significantly smaller than Cas9, offering delivery advantages for in vivo editing. Structural analyses reveal homology to box C/D snoRNP proteins, suggesting a previously unrecognized evolutionary lineage of RNA-guided nucleases. This review positions TIGR-Tas at the forefront of a new wave of RNA-programmable genome-editing technologies. In parallel, I provide comparative insight into the diverse and increasingly modular CRISPR-Cas systems, including Cas9, Cas12, Cas13, and emerging effectors like Cas3, Cas10, CasΦ, and Cas14. While the CRISPR-Cas universe has revolutionized molecular biology, TIGR-Tas systems open a complementary and potentially more versatile path for programmable genome manipulation. I discuss mechanistic distinctions, evolutionary implications, and potential applications in human cells, synthetic biology, and therapeutic genome engineering. Full article
(This article belongs to the Special Issue Advances in Developing Genomics and Computational Approaches)
Show Figures

Graphical abstract

18 pages, 7295 KiB  
Article
Genome-Wide Identification, Evolution, and Expression Analysis of the DMP Gene Family in Peanut (Arachis hypogaea L.)
by Pengyu Qu, Lina He, Lulu Xue, Han Liu, Xiaona Li, Huanhuan Zhao, Liuyang Fu, Suoyi Han, Xiaodong Dai, Wenzhao Dong, Lei Shi and Xinyou Zhang
Int. J. Mol. Sci. 2025, 26(15), 7243; https://doi.org/10.3390/ijms26157243 - 26 Jul 2025
Viewed by 335
Abstract
Peanut (Arachis hypogaea L.) is a globally important oilseed cash crop, yet its limited genetic diversity and unique reproductive biology present persistent challenges for conventional crossbreeding. Traditional breeding approaches are often time-consuming and inadequate, mitigating the pace of cultivar development. Essential for [...] Read more.
Peanut (Arachis hypogaea L.) is a globally important oilseed cash crop, yet its limited genetic diversity and unique reproductive biology present persistent challenges for conventional crossbreeding. Traditional breeding approaches are often time-consuming and inadequate, mitigating the pace of cultivar development. Essential for double fertilization and programmed cell death (PCD), DUF679 membrane proteins (DMPs) represent a membrane protein family unique to plants. In the present study, a comprehensive analysis of the DMP gene family in peanuts was conducted, which included the identification of 21 family members. Based on phylogenetic analysis, these genes were segregated into five distinct clades (I–V), with AhDMP8A, AhDMP8B, AhDMP9A, and AhDMP9B in clade IV exhibiting high homology with known haploid induction genes. These four candidates also displayed significantly elevated expression in floral tissues compared to other organs, supporting their candidacy for haploid induction in peanuts. Subcellular localization prediction, confirmed through co-localization assays, demonstrated that AhDMPs primarily localize to the plasma membrane, consistent with their proposed roles in the reproductive signaling process. Furthermore, chromosomal mapping and synteny analyses revealed that the expansion of the AhDMP gene family is largely driven by whole-genome duplication (WGD) and segmental duplication events, reflecting the evolutionary dynamics of the tetraploid peanut genome. Collectively, these findings establish a foundational understanding of the AhDMP gene family and highlight promising targets for future applications in haploid induction-based breeding strategies in peanuts. Full article
Show Figures

Graphical abstract

34 pages, 2083 KiB  
Article
EvoDevo: Bioinspired Generative Design via Evolutionary Graph-Based Development
by Farajollah Tahernezhad-Javazm, Andrew Colligan, Imelda Friel, Simon J. Hickinbotham, Paul Goodall, Edgar Buchanan, Mark Price, Trevor Robinson and Andy M. Tyrrell
Algorithms 2025, 18(8), 467; https://doi.org/10.3390/a18080467 - 26 Jul 2025
Viewed by 331
Abstract
Automated generative design is increasingly used across engineering disciplines to accelerate innovation and reduce costs. Generative design offers the prospect of simplifying manual design tasks by exploring the efficacy of solutions automatically. However, existing generative design frameworks rely heavily on expensive optimisation procedures [...] Read more.
Automated generative design is increasingly used across engineering disciplines to accelerate innovation and reduce costs. Generative design offers the prospect of simplifying manual design tasks by exploring the efficacy of solutions automatically. However, existing generative design frameworks rely heavily on expensive optimisation procedures and often produce customised solutions, lacking reusable generative rules that transfer across different problems. This work presents a bioinspired generative design algorithm utilising the concept of evolutionary development (EvoDevo). This evolves a set of developmental rules that can be applied to different engineering problems to rapidly develop designs without the need to run full optimisation procedures. In this approach, an initial design is decomposed into simple entities called cells, which independently control their local growth over a development cycle. In biology, the growth of cells is governed by a gene regulatory network (GRN), but there is no single widely accepted model for this in artificial systems. The GRN responds to the state of the cell induced by external stimuli in its environment, which, in this application, is the loading regime on a bridge truss structure (but can be generalised to any engineering structure). Two GRN models are investigated: graph neural network (GNN) and graph-based Cartesian genetic programming (CGP) models. Both GRN models are evolved using a novel genetic search algorithm for parameter search, which can be re-used for other design problems. It is revealed that the CGP-based method produces results similar to those obtained using the GNN-based methods while offering more interpretability. In this work, it is shown that this EvoDevo approach is able to produce near-optimal truss structures via growth mechanisms such as moving vertices or changing edge features. The technique can be set up to provide design automation for a range of engineering design tasks. Full article
Show Figures

Figure 1

21 pages, 3397 KiB  
Article
Climate-Driven Habitat Shifts and Conservation Implications for the Submediterranean Oak Quercus pyrenaica Willd.
by Isabel Passos, Carlos Vila-Viçosa, João Gonçalves, Albano Figueiredo and Maria Margarida Ribeiro
Forests 2025, 16(8), 1226; https://doi.org/10.3390/f16081226 - 25 Jul 2025
Viewed by 1221
Abstract
Climate change poses a major threat to forests, impacting the distribution and viability of key species. Quercus pyrenaica Willd., a marcescent oak endemic to the Iberian Peninsula (Portugal and Spain) and southwestern France and a structural species in submediterranean forests, is particularly susceptible [...] Read more.
Climate change poses a major threat to forests, impacting the distribution and viability of key species. Quercus pyrenaica Willd., a marcescent oak endemic to the Iberian Peninsula (Portugal and Spain) and southwestern France and a structural species in submediterranean forests, is particularly susceptible to shifts in temperature and precipitation patterns. Aiming to assess its potential loss of suitable area under future climate scenarios, we developed high-resolution spatial distribution models to project the future habitat suitability of Q. pyrenaica under two climate change scenarios (SSP3-7.0 and SSP5-8.5) for the periods 2070 and 2100. Our model, which has an excellent predictive performance (AUC of 0.971 and a TSS of 0.834), indicates a predominantly northward shift in the potential distribution of the species, accompanied by substantial habitat loss in southern and lowland regions. Long-term potential suitable area may shrink to 42% of that currently available. This, combined with the limited natural dispersal capacity of the species, highlights the urgency of targeted management and conservation strategies. These results offer critical insights to inform conservation strategies and forest management under ongoing climate change. Full article
Show Figures

Figure 1

16 pages, 2141 KiB  
Article
Mitochondrial Genomes of Distant Fish Hybrids Reveal Maternal Inheritance Patterns and Phylogenetic Relationships
by Shixi Chen, Fardous Mohammad Safiul Azam, Li Ao, Chanchun Lin, Jiahao Wang, Rui Li and Yuanchao Zou
Diversity 2025, 17(8), 510; https://doi.org/10.3390/d17080510 - 24 Jul 2025
Viewed by 284
Abstract
As distant hybridization has profound implications for evolutionary biology, aquaculture, and biodiversity conservation, this study aims to elucidate patterns of maternal inheritance, genetic divergence, and phylogenetic relationships by synthesizing mitochondrial genome (mitogenome) data from 74 distant hybrid fish species. These hybrids span diverse [...] Read more.
As distant hybridization has profound implications for evolutionary biology, aquaculture, and biodiversity conservation, this study aims to elucidate patterns of maternal inheritance, genetic divergence, and phylogenetic relationships by synthesizing mitochondrial genome (mitogenome) data from 74 distant hybrid fish species. These hybrids span diverse taxa, including 48 freshwater and 26 marine species, with a focus on Cyprinidae (n = 35) and Epinephelus (n = 14), representing the most frequently hybridized groups in freshwater and marine systems, respectively. Mitogenome lengths were highly conserved (15,973 to 17,114 bp); however, the genetic distances between hybrids and maternal species varied from 0.001 to 0.17, with 19 hybrids (25.7%) showing distances >0.02. Variable sites in these hybrids were randomly distributed but enriched in hypervariable regions, such as the D-loop and NADH dehydrogenase subunits 1, 3 and 6 (ND2, ND3, and ND6) genes, likely reflecting maternal inheritance (reported in Cyprinus carpio × Carassius auratus). Moreover, these genes were under purifying selection pressure, revealing their conserved nature. Phylogenetic reconstruction using complete mitogenomes revealed three distinct clades in hybrids: (1) Acipenseriformes, (2) a freshwater cluster dominated by Cypriniformes and Siluriformes, and (3) a marine cluster comprising Centrarchiformes, Pleuronectiformes, Scombriformes, Cichliformes, Anabantiformes, Tetraodontiformes, Perciformes, and Salmoniformes. The prevalence of Cyprinidae hybrids underscores their importance in aquaculture for hybridization, where traits such as rapid growth and disease resistance are enhanced. In contrast, marine hybrids are valued for their market value and adaptability. While mitogenome data robustly support maternal inheritance in most cases, exceptions suggest complex mechanisms, such as doubly uniparental inheritance (DUI), in distantly related crosses. Moreover, AT-skew of genes in hybrids revealed a paternal leakage of traits in mitogenomes. This study also highlights ecological risks, such as genetic swamping in native populations, emphasizing the need for responsible hybridization practices. These findings advance our understanding of the role of hybridization in fish evolution and aquaculture, providing a genomic framework and policy recommendations for optimizing breeding programs, hybrid introduction, and mitigating conservation challenges. Full article
(This article belongs to the Section Freshwater Biodiversity)
Show Figures

Figure 1

21 pages, 9690 KiB  
Article
Comparative Transcriptomic Analysis for Identification of Environmental-Responsive Genes in Seven Species of Threadfin Breams (Nemipterus)
by Zhaoke Dang, Qiaer Wu, Yanbo Zhou, Liangming Wang, Yan Liu, Changping Yang, Manting Liu, Qijian Xie, Cheng Chen, Shengwei Ma and Binbin Shan
Int. J. Mol. Sci. 2025, 26(15), 7118; https://doi.org/10.3390/ijms26157118 - 23 Jul 2025
Viewed by 253
Abstract
Members of the genus Nemipterus are economically important fish species distributed in the tropical and subtropical Indo-West Pacific region. The majority of species in this genus inhabit waters with sandy–muddy substrates on the continental shelf, although different species are found at slightly varying [...] Read more.
Members of the genus Nemipterus are economically important fish species distributed in the tropical and subtropical Indo-West Pacific region. The majority of species in this genus inhabit waters with sandy–muddy substrates on the continental shelf, although different species are found at slightly varying water depths. In this study, we sequenced seven species within the genus Nemipterus after identifying the specimens using complementary morphological analysis and DNA barcoding. Each species yielded over 40,000,000 clean reads, totaling over 300,000,000 clean reads across the seven species. A total of 276,389 unigenes were obtained after de novo assembly and a total of 168,010 (60.79%) unigenes were annotated in the protein database. The comprehensive functional annotation based on the KOG, GO, and KEGG databases revealed that these unigenes are mainly associated with numerous physiological, metabolic, and molecular processes, and that the seven species exhibit similarity in these aspects. By constructing a phylogenetic tree and conducting divergence time analysis, we found that N. bathybius and N. virgatus diverged most recently, approximately during the Neogene Period (14.9 Mya). Compared with other species, N. bathybius and N. virgatus are distributed in deeper water layers. Therefore, we conducted selection pressure analysis using these two species as the foreground branches and identified several environmental-responsive genes. The results indicate that genes such as aqp1, arrdc3, ISP2, Hip, ndufa1, ndufa3, pcyt1a, ctsk, col6a2, casp2 exhibit faster evolutionary rates during long-term adaptation to deep-water environments. Specifically, these genes are considered to be associated with adaptation to aquatic osmoregulation, temperature fluctuations, and skeletal development. This comprehensive analysis provides valuable insights into the evolutionary biology and environmental adaptability of threadfin breams, contributing to the conservation and sustainable management of these species. Full article
Show Figures

Figure 1

Back to TopTop