TIGR-Tas and the Expanding Universe of RNA-Guided Genome Editing Systems: A New Era Beyond CRISPR-Cas
Abstract
1. Introduction
2. Materials and Methods
System | MW (kDa) 1 | Short Description | Reference(s) |
---|---|---|---|
Cas9 | 162 | Cuts double-stranded DNA (dsDNA) guided by single guide RNA (sgRNA) | [15] |
Cas12a | 156 | Staggered dsDNA cut guided by CRISPR RNA (crRNA); recognizes T-rich PAM; collateral RNA activity | [9,10] |
Cas13a | 144 | Single-stranded RNA (ssRNA) cleavage via crRNA; collateral RNA activity; can be used for the rapid detection of RNA viruses | [11,12] |
Cas14a | 40 | Ultra-small protein that cuts single-stranded DNA (ssDNA); target recognition by Cas14 triggers nonspecific ssDNA cleavage, enabling high-fidelity SNP genotyping (Cas14-DETECTR) | [16] |
Cas3 | 100 | Helicase-nuclease that shreds ssDNA unidirectionally after Cascade complex binding; | [17,18] |
Cas10 | 80 | Targets both DNA and RNA via crRNA; part of Type III systems; uses cyclic oligoadenylates (cOA) as second messengers to activate the Csm6 nuclease to promote RNA degradation | [13,14] |
Cas1–Cas2 | 78 2 | Integrates foreign DNA spacers into CRISPR array; core adaptation machinery | [19,20] |
CasΦ (CasPhi) | 70 | Hypercompact dsDNA-cutting protein from giant phages | [21] |
CasΨ (CasPsi) | 90 | A highly specific nuclease sensitive to SNPs next to the PAM; a.k.a., Cas12j | [22,23] |
TIGR-Tas | 36 | PAM-less dsDNA cleavage by Tas proteins guided by dual-spacer tigRNA; creates 8-nt 3′ overhangs | [2] |
3. Discussion
3.1. The Two Main Classes of CRISPR-Cas Proteins
3.1.1. Cas9: The Most Widely Used Tool for Genome Editing and High-Throughput Screens
3.1.2. Cas12: A Versatile Type V DNA Editor and Diagnostic Tool
3.1.3. Cas13: A Programmable RNA-Targeting Tool for Editing, Detection, and Regulation
3.1.4. Cas3: A DNA Shredding Enzyme for Large-Scale Genome Remodeling
3.1.5. Cas10: A Central Integrator of RNA Sensing and DNA Defense
- DNA Cleavage: Upon RNA recognition, Cas10 initiates degradation of the template DNA strand encoding the target RNA. This process requires active transcription and is tightly regulated to minimize autoimmunity. The DNA cleavage mechanism involves the HD nuclease domain of Cas10, which generates localized double-stranded breaks at the DNA locus only when the matching RNA is detected [49].
- Cyclic Oligoadenylate (cOA) Synthesis: The Palm domains of Cas10 catalyze the ATP-dependent synthesis of cyclic oligoadenylates (cOAs)—molecular second messengers structurally similar to cyclic AMP. These cOAs then bind and activate auxiliary CRISPR-associated Rossmann fold (CARF) domain nucleases, such as Csm6 or Can2, which degrade RNA nonspecifically in a powerful collateral response to eliminate phage transcripts or mobile genetic elements [49]. The “palm domain” refers to a specific structural region within the enzyme that is crucial for its catalytic activity. It is part of the larger “palm, fingers, and thumb” structure, resembling a right hand, that forms the core of the enzyme’s active site [50].
- Synthetic biology circuits: The cOA signaling cascade has been harnessed to develop programmable biosensors, where specific RNA triggers can activate downstream effector enzymes, fluorescent readouts, or therapeutic payloads [52].
- Antiviral defense systems: Type III systems are being explored as programmable platforms for RNA virus detection and neutralization with the advantage of recognizing and degrading actively replicating viruses [55].
3.1.6. CasΦ: A Hypercompact CRISPR Effector from Bacteriophages for Therapeutic Delivery
3.1.7. CasΨ (CasPsi): A Dual-Targeting, Compact CRISPR Effector with Unique Versatility
3.2. TIGR-Tas Mechanism and Structure
3.3. Evolutionary Implications
4. Future Directions
- Engineering for Efficiency: Protein engineering and tigRNA optimization may dramatically enhance Tas activity in mammalian systems. Creating catalytically enhanced or base-editing variants is a near-term goal.
- Targeting Fidelity: The dual-guide architecture of tigRNA may enhance target specificity by eliminating the need for a protospacer adjacent motif (PAM), which is required in Cas9-based systems to prevent self-targeting. In the TIGR-Tas system, self-recognition is avoided intrinsically by the paired-spacer design, removing the evolutionary pressure for PAM discrimination. Importantly, the absence of a PAM requirement theoretically enables TIGR-Tas to target any RNA sequence, offering greater flexibility than CRISPR systems, which are constrained to sequences flanked by specific PAM motifs, or divergent PAM motifs such as Nme2Cas9 with a dinucleotide (N4CC) PAM requirement [63]. While this design potentially reduces off-target effects and expands the editable transcriptome, rigorous validation—such as GUIDE-seq or related genome-wide off-target profiling—is still necessary to assess and compare the fidelity of TIGR-Tas with that of established CRISPR systems like Cas9 [64,65].
- Delivery Strategies: Given the compact nature of Tas effectors (~¼ Cas9), AAV, LNP, and minicircle delivery strategies are likely to be effective—potentially enabling in vivo editing with smaller payloads.
- Functional Expansion: Like dCas9 and Cas12a, Tas proteins may be modified for applications in epigenome editing, transcriptional modulation, or nucleic acid detection.
- Discovery of Related Systems: Metagenomic mining may reveal TIGR-Tas relatives with altered cleavage logic, RNA targets, or multi-effector synergy. Their presence in phages suggests a broader ecological role that may include counter-defense or mutualism.
- Cleavage of RNA:DNA hybrids: There is no report that the TIGR-Tas system can cleave RNA:DNA hybrids. However, TasR exhibited no detectable nuclease activity against single-stranded RNA (ssRNA) or double-stranded RNA (dsRNA) substrates even when these contained sequence matches to spacer A, spacer B, or both. In contrast, TasR efficiently and precisely cleaved single-stranded DNA (ssDNA) targets that harbored complementary sequences to either spacer A or spacer B, indicating a strong preference for DNA substrates over RNA and highlighting its specific recognition of ssDNA guided by dual-spacer tigRNAs [2].
- Improving target specificity: While the current TIGR-Tas system is limited to ~20 nucleotide recognition sequences per tigRNA, an important parallel can be drawn from CRISPR-Cas9 technology, where the development of a nickase version of Cas9 (Cas9n) enabled dual-guide strategies. In such approaches, two sgRNAs direct nickase Cas9 enzymes to adjacent sites on opposite DNA strands, leading to a double-strand break only when both guides are correctly positioned [66]. This strategy significantly improves specificity by requiring dual recognition events. Similarly, a nickase version of TasR has been characterized, which cleaves only one DNA strand. This opens the door to analogous dual-tigRNA designs for TIGR-Tas, where two tigRNAs—each guiding a nickase TasR to nearby sites—could be used to generate targeted cleavage only when both tigRNAs are present. This dual-nicking approach would effectively increase the total recognition sequence beyond 20 bases, thereby reducing the likelihood of off-target effects and enhancing overall specificity, just as has been demonstrated for Cas9. The further development of dual-nickase TIGR-Tas systems could allow the precise and highly specific targeting of genomic loci without the constraint of PAM motifs, offering a compelling alternative to existing CRISPR technologies.
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TIGR | Tandem Interspersed Guide RNA in TIGR-TAS system |
Tas | TIGR-associated (proteins) in TIGR-Tas system |
PAM | Protospacer Adjacent Motif (3′ NGG in Cas9 and 5′ TTT in Cas12) |
CRISPR | Clustered regularly interspaced palindromic repeats |
Cas | CRISPER associated (proteins) |
tracrRNA | trans-activating CRISPR RNA |
crRNA | CRISPR RNA |
crRNA array | An array of multiple crRNAs that can target multiple sequences |
sgRNA | Single-guide RNA; Engineered tracerRNA::crRNA fusion RNA; designed to target site preceding PAM in CRISPR-Cas system |
tigRNA | Dual spacer guide RNA in TIGR-Tas system; A and B spacers target opposite DNA strands on the target; no PAM is required |
tigRNA array | An array of multiple tigRNAs that can target multiple sequences |
cOA | cyclic oligoadenylates; cofactors in Cas10 system |
snoRNA | Short nucleolar RNA |
ssDNA | Single-stranded DNA |
ssRNA | Single-stranded RNA |
Nop | Nucleolar protein |
nCas9 | Nickase Cas9 |
dCas9 | Catalytically dead Cas9 |
RuvC | Resistant to Ultraviolet C nuclease domain |
ADAR | Adenine deaminase |
AAV | Adeno-associated virus |
LNP | Lipid nanoparticle |
CASCADE | CRISPR associated complex for antiviral defense |
SF2 | Superfamily 2 helicase |
TAD | Topologically associated domain in chromatin |
CARF | CRISPR-associated Rossman fold |
DETECTR | DNA endogenous-targeted CRISPR trans reporter |
SHERLOCK | Specific high-sensitivity reporter unlocking |
References
- Khan, M.S.; Qureshi, N.; Khan, R.; Son, Y.-O.; Maqbool, T. CRISPR/Cas9-Based therapeutics as a promising strategy for management of Alzheimer’s disease: Progress and prospects. Front. Cell Neurosci. 2025, 19, 1578138. [Google Scholar] [CrossRef]
- Faure, G.; Saito, M.; Wilkinson, M.E.; Quinones-Olvera, N.; Xu, P.; Flam-Shepherd, D.; Kim, S.; Reddy, N.; Zhu, S.; Evgeniou, L.; et al. TIGR-Tas: A family of modular RNA-guided DNA-targeting systems in prokaryotes and their viruses. Science 2025, 388, eadv9789. [Google Scholar] [CrossRef]
- Liu, S.; Li, P.; Dybkov, O.; Nottrott, S.; Hartmuth, K.; LühRmann, R.; Carlomagno, T.; Wahl, M.C. Binding of the human Prp31 Nop domain to a composite RNA-protein platform in U4 snRNP. Science 2007, 316, 115–120. [Google Scholar] [CrossRef]
- Sharma, S.; Yang, J.; van Nues, R.; Watzinger, P.; Kötter, P.; Lafontaine, D.L.J.; Granneman, S.; Entian, K.-D.; Zavolan, M. Specialized box C/D snoRNPs act as antisense guides to target RNA base acetylation. PLoS Genet. 2017, 13, e1006804. [Google Scholar] [CrossRef]
- Mali, P.; Aach, J.; Stranges, P.B.; Esvelt, K.M.; Moosburner, M.; Kosuri, S.; Yang, L.; Church, G.M. CAS9CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 2013, 31, 833–838. [Google Scholar] [CrossRef]
- Cheng, A.W.; Wang, H.; Yang, H.; Shi, L.; Katz, Y.; Theunissen, T.W.; Rangarajan, S.; Shivalila, C.S.; Dadon, D.B.; Jaenisch, R. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 2013, 23, 1163–1171. [Google Scholar] [CrossRef]
- Hu, J.; Lei, Y.; Wong, W.-K.; Liu, S.; Lee, K.-C.; He, X.; You, W.; Zhou, R.; Guo, J.-T.; Chen, X.; et al. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res. 2014, 42, 4375–4390. [Google Scholar] [CrossRef]
- Chow, N.A.; Jasenosky, L.D.; Goldfeld, A.E. A distal locus element mediates IFN-gamma priming of lipopolysaccharide-stimulated TNF gene expression. Cell Rep. 2014, 9, 1718–1728. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Orosco, C.; Rananaware, S.; Huang, B.; Hanna, M.; Ahmadimashhadi, M.R.; Lewis, J.; Baugh, M.; Bodin, A.; Flannery, S.; et al. DNA-guided CRISPR/Cas12 for RNA targeting. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Rusk, N. Spotlight on Cas12. Nat. Methods 2019, 16, 215. [Google Scholar] [CrossRef] [PubMed]
- Abudayyeh, O.O.; Gootenberg, J.S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J.J.; Verdine, V.; Cox, D.B.T.; Kellner, M.G.; Regev, A.; et al. RNA targeting with CRISPR-Cas13. Nature 2017, 550, 280–284. [Google Scholar] [CrossRef]
- Kim, J.; Orozaliev, A.; Sahloul, S.; Van, A.-D.; Dang, V.-T.; Pham, V.-S.; Oh, Y.; Chehade, I.; Al-Sayegh, M.; Song, Y.-A. Accelerating Cleavage Activity of CRISPR-Cas13 System on a Microfluidic Chip for Rapid Detection of RNA. Anal. Chem. 2025, 97, 9858–9865. [Google Scholar] [CrossRef]
- Walker, F.C.; Chou-Zheng, L.; Dunkle, J.A.; Hatoum-Aslan, A. Molecular determinants for CRISPR RNA maturation in the Cas10-Csm complex and roles for non-Cas nucleases. Nucleic Acids Res. 2017, 45, 2112–2123. [Google Scholar] [CrossRef]
- Nasef, M.; Muffly, M.C.; Beckman, A.B.; Rowe, S.J.; Walker, F.C.; Hatoum-Aslan, A.; Dunkle, J.A. Regulation of cyclic oligoadenylate synthesis by the Staphylococcus epidermidis Cas10-Csm complex. RNA 2019, 25, 948–962. [Google Scholar] [CrossRef] [PubMed]
- Kleinstiver, B.P.; Pattanayak, V.; Prew, M.S.; Tsai, S.Q.; Nguyen, N.T.; Zheng, Z.; Joung, J.K. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016, 529, 490–495. [Google Scholar] [CrossRef]
- Harrington, L.B.; Burstein, D.; Chen, J.S.; Paez-Espino, D.; Ma, E.; Witte, I.P.; Cofsky, J.C.; Kyrpides, N.C.; Banfield, J.F.; Doudna, J.A. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 2018, 362, 839–842. [Google Scholar] [CrossRef] [PubMed]
- Sinkunas, T.; Gasiunas, G.; Fremaux, C.; Barrangou, R.; Horvath, P.; Siksnys, V. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J. 2011, 30, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Whitford, C.M.; Gockel, P.; Faurdal, D.; Gren, T.; Sigrist, R.; Weber, T. CASCADE-Cas3 enables highly efficient genome engineering in Streptomyces species. Nucleic Acids Res. 2025, 53, gkaf214. [Google Scholar] [CrossRef]
- Nunez, J.K.; Kranzusch, P.J.; Noeske, J.; Wright, A.V.; Davies, C.W.; Doudna, J.A. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol. 2014, 21, 528–534. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, H.; Zeng, J.; Cao, X.; Gao, Z.; Liu, Z.; Li, F.; Wang, J.; Zhang, Y.; Yang, M.; et al. Cas1 mediates the interference stage in a phage-encoded CRISPR-Cas system. Nat. Chem. Biol. 2024, 20, 1471–1481. [Google Scholar] [CrossRef]
- Pausch, P.; Al-Shayeb, B.; Bisom-Rapp, E.; Tsuchida, C.A.; Li, Z.; Cress, B.F.; Knott, G.J.; Jacobsen, S.E.; Banfield, J.F.; Doudna, J.A. CRISPR-CasPhi from huge phages is a hypercompact genome editor. Science 2020, 369, 333–337. [Google Scholar] [CrossRef]
- Meng, R.; Li, J.; Wang, W.; Liang, D.; Li, Z.; Mao, C.; Li, Q.; Zhang, Y.; Chen, H.; Tang, J.; et al. Engineered Cas12j-8 is a Versatile Platform for Multiplexed Genome Modulation in Mammalian Cells. Adv. Sci. 2025, e02593. [Google Scholar] [CrossRef]
- Pausch, P.; Soczek, K.M.; Herbst, D.A.; Tsuchida, C.A.; Shayeb, B.A.; Banfield, J.F.; Nogales, E.; Doudna, J.A. DNA interference states of the hypercompact CRISPR-CasPhi effector. Nat. Struct. Mol. Biol. 2021, 28, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Charbonneau, A.A.; Eckert, D.M.; Gauvin, C.C.; Lintner, N.G.; Lawrence, C.M. Cyclic Tetra-Adenylate (cA(4)) Recognition by Csa3; Implications for an Integrated Class 1 CRISPR-Cas Immune Response in Saccharolobus solfataricus. Biomolecules 2021, 11, 1852. [Google Scholar] [CrossRef]
- Makarova, K.S.; Zhang, F.; Koonin, E.V. SnapShot: Class. 1 CRISPR-Cas Systems. Cell 2017, 168, 946.e1. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, S.; Zheng, X.; Tan, X. Cyanobacterial type I CRISPR-Cas systems: Distribution, mechanisms, and genome editing applications. Front. Bioeng. Biotechnol. 2025, 13, 1552030. [Google Scholar] [CrossRef]
- Zhu, X.; Ye, K. Crystal structure of Cmr2 suggests a nucleotide cyclase-related enzyme in type III CRISPR-Cas systems. FEBS Lett. 2012, 586, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Crowley, V.M.; Catching, A.; Taylor, H.N.; Borges, A.L.; Metcalf, J.; Bondy-Denomy, J.; Jackson, R.N. A Type IV-A CRISPR-Cas System in Pseudomonas aeruginosa Mediates RNA-Guided Plasmid Interference In Vivo. CRISPR J. 2019, 2, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Rust, S.; Randau, L. Real-time imaging of bacterial colony growth dynamics for cells with Type IV-A1 CRISPR-Cas activity. Microlife 2025, 6, uqaf006. [Google Scholar] [CrossRef]
- Shmakov, S.; Abudayyeh, O.O.; Makarova, K.S.; Wolf, Y.I.; Gootenberg, J.S.; Semenova, E.; Minakhin, L.; Joung, J.; Konermann, S.; Severinov, K.; et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol. Cell 2015, 60, 385–397. [Google Scholar] [CrossRef]
- Wang, L.; Han, H. Strategies for improving the genome-editing efficiency of class 2 CRISPR/Cas system. Heliyon 2024, 10, e38588. [Google Scholar] [CrossRef] [PubMed]
- Chylinski, K.; Le Rhun, A.; Charpentier, E. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. 2013, 10, 726–737. [Google Scholar] [CrossRef]
- Kim, H.; Marraffini, L.A. Cas9 interaction with the tracrRNA nexus modulates the repression of type II-A CRISPR-cas genes. Nucleic Acids Res. 2024, 52, 10595–10606. [Google Scholar] [CrossRef]
- Iwasaki, H.; Takahagi, M.; Shiba, T.; Nakata, A.; Shinagawa, H. Escherichia coli RuvC protein is an endonuclease that resolves the Holliday structure. EMBO J. 1991, 10, 4381–4389. [Google Scholar] [CrossRef]
- Cho, S.W.; Lee, J.; Carroll, D.; Kim, J.-S.; Lee, J. Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics 2013, 195, 1177–1180. [Google Scholar] [CrossRef]
- Lei, Y.; Lu, L.; Liu, H.-Y.; Li, S.; Xing, F.; Chen, L.-L. CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol. Plant 2014, 7, 1494–1496. [Google Scholar] [CrossRef]
- Gu, A.Y.; Lee, T.W.; Khan, A.; Zhang, X.; Hunter, F.W.; Singleton, D.C.; Jamieson, S.M.F. Whole-genome CRISPR-Cas9 knockout screens identify SHOC2 as a genetic dependency in NRAS-mutant melanoma. Cancer Commun. 2025, 45, 709–713. [Google Scholar] [CrossRef]
- Guo, L.Y.; Bian, J.; Davis, A.E.; Liu, P.; Kempton, H.R.; Zhang, X.; Chemparathy, A.; Gu, B.; Lin, X.; Rane, D.A.; et al. Multiplexed genome regulation in vivo with hyper-efficient Cas12a. Nat. Cell Biol. 2022, 24, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Kellner, M.J.; Koob, J.G.; Gootenberg, J.S.; Abudayyeh, O.O.; Zhang, F. SHERLOCK: Nucleic acid detection with CRISPR nucleases. Nat. Protoc. 2019, 14, 2986–3012. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, N.K.; Gaber, N.; Ali, N.M.; Amer, O.S.; Soliman, H. SHERLOCK, a novel CRISPR-Cas13a-based assay for detection of infectious bursal disease virus. J. Virol. Methods 2025, 337, 115185. [Google Scholar] [CrossRef]
- Apostolopoulos, A.; Kawamoto, N.; Chow, S.Y.A.; Tsuiji, H.; Ikeuchi, Y.; Shichino, Y.; Iwasaki, S. DCas13-mediated translational repression for accurate gene silencing in mammalian cells. Nat. Commun. 2024, 15, 2205. [Google Scholar] [CrossRef] [PubMed]
- Chiavetta, R.F.; Titoli, S.; Barra, V.; Cancemi, P.; Melfi, R.; Di Leonardo, A. Site-Specific RNA Editing of Stop Mutations in the CFTR mRNA of Human Bronchial Cultured Cells. Int. J. Mol. Sci. 2023, 24, 10940. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, R.; Yang, D.; Li, G.; Fan, Z.; Du, H.; Wang, Z.; Liu, Y.; Lin, J.; Wu, X.; et al. Develop a Compact RNA Base Editor by Fusing ADAR with Engineered EcCas6e. Adv. Sci. 2023, 10, e2206813. [Google Scholar] [CrossRef]
- Tang, T.; Han, Y.; Wang, Y.; Huang, H.; Qian, P. Programmable System of Cas13-Mediated RNA Modification and Its Biological and Biomedical Applications. Front. Cell Dev. Biol. 2021, 9, 677587. [Google Scholar] [CrossRef] [PubMed]
- Asano, K.; Yoshimi, K.; Takeshita, K.; Mitsuhashi, S.; Kochi, Y.; Hirano, R.; Tingyu, Z.; Ishida, S.; Mashimo, T. CRISPR Diagnostics for Quantification and Rapid Diagnosis of Myotonic Dystrophy Type 1 Repeat Expansion Disorders. ACS Synth. Biol. 2024, 13, 3926–3935. [Google Scholar] [CrossRef]
- Sengupta, A.; Bandyopadhyay, A.; Sarkar, D.; Hendry, J.I.; Schubert, M.G.; Liu, D.; Church, G.M.; Maranas, C.D.; Pakrasi, H.B.; Harwood, C.S. Genome streamlining to improve performance of a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. mBio 2024, 15, e0353023. [Google Scholar] [CrossRef]
- Shangguan, Q.; White, M.F. Repurposing the atypical type I-G CRISPR system for bacterial genome engineering. Microbiology 2023, 169, 001373. [Google Scholar] [CrossRef]
- Dubois, A.; Roudier, F. Deciphering Plant Chromatin Regulation via CRISPR/dCas9-Based Epigenome Engineering. Epigenomes 2021, 5, 17. [Google Scholar] [CrossRef]
- Zimmermann, A.; Prieto-Vivas, J.E.; Cautereels, C.; Gorkovskiy, A.; Steensels, J.; Van de Peer, Y.; Verstrepen, K.J. A Cas3-base editing tool for targetable in vivo mutagenesis. Nat. Commun. 2023, 14, 3389. [Google Scholar] [CrossRef]
- Jungfer, K.; Moravčík, Š.; Garcia-Doval, C.; Knörlein, A.; Hall, J.; Jinek, M. Mechanistic determinants and dynamics of cA6 synthesis in type III CRISPR-Cas effector complexes. Nucleic Acids Res. 2025, 53, gkae1277. [Google Scholar] [CrossRef]
- Sullivan, A.E.; Nabhani, A.; Schinkel, K.; Dinh, D.M.; Duncan, M.L.; Ednacot, E.M.Q.; Hoffman, C.R.K.; Izrailevsky, D.S.; Kibby, E.M.; Nagy, T.A.; et al. A minimal CRISPR polymerase produces decoy cyclic nucleotides to detect phage anti-defense proteins. bioRxiv, 2025. [Google Scholar] [CrossRef]
- Sun, M.; Yu, Z.; Wang, S.; Qiu, J.; Huang, Y.; Chen, X.; Zhang, Y.; Wang, C.; Zhang, X.; Liang, Y.; et al. Universal Amplification-Free RNA Detection by Integrating CRISPR-Cas10 with Aptameric Graphene Field-Effect Transistor. Nanomicro. Lett. 2025, 17, 242. [Google Scholar] [CrossRef]
- Lin, J.; Shen, Y.; Ni, J.; She, Q. A type III-A CRISPR-Cas system mediates co-transcriptional DNA cleavage at the transcriptional bubbles in close proximity to active effectors. Nucleic Acids Res. 2021, 49, 7628–7643. [Google Scholar] [CrossRef] [PubMed]
- Samai, P.; Pyenson, N.; Jiang, W.; Goldberg, G.W.; Hatoum-Aslan, A.; Marraffini, L.A. Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity. Cell 2015, 161, 1164–1174. [Google Scholar] [CrossRef]
- Sridhara, S.; Goswami, H.N.; Whyms, C.; Dennis, J.H.; Li, H. Virus detection via programmable Type III-A CRISPR-Cas systems. Nat. Commun. 2021, 12, 5653. [Google Scholar] [CrossRef] [PubMed]
- Gruschow, S.; Steketee, P.C.; Paxton, E.; Matthews, K.R.; Morrison, L.J.; White, M.F.; Grey, F.; McCall, L.-I. Cas10 based 7SL-sRNA diagnostic for the detection of active trypanosomosis. PLoS Negl. Trop. Dis. 2025, 19, e0012937. [Google Scholar] [CrossRef]
- Kim, D.Y.; Chung, Y.; Lee, Y.; Jeong, D.; Park, K.H.; Chin, H.J.; Lee, J.M.; Park, S.; Ko, S.; Ko, J.H.; et al. Hypercompact adenine base editors based on transposase B guided by engineered RNA. Nat. Chem. Biol. 2022, 18, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Lee, J.M.; Moon, S.B.; Chin, H.J.; Park, S.; Lim, Y.; Kim, D.; Koo, T.; Ko, J.-H.; Kim, Y.-S. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat. Biotechnol. 2022, 40, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, R.M.; MacLean, R.C. CRISPR-Cas systems restrict horizontal gene transfer in Pseudomonas aeruginosa. ISME J. 2021, 15, 1420–1433. [Google Scholar] [CrossRef] [PubMed]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Pickar-Oliver, A.; Gersbach, C.A. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 2019, 20, 490–507. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, S.; Zhang, H.; Lee, J.-S.; Ni, C.; Guo, J.; Chen, E.; Wang, S.; Acharya, A.; Chang, T.-C.; et al. A non-canonical role for a small nucleolar RNA in ribosome biogenesis and senescence. Cell 2024, 187, 4770–4789.e23. [Google Scholar] [CrossRef] [PubMed]
- Edraki, A.; Mir, A.; Ibraheim, R.; Gainetdinov, I.; Yoon, Y.; Song, C.-Q.; Cao, Y.; Gallant, J.; Xue, W.; Rivera-Pérez, J.A.; et al. A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing. Mol. Cell 2019, 73, 714–726.e4. [Google Scholar] [CrossRef] [PubMed]
- Lazzarotto, C.R.; Yichao, L.; Ashley, R.F.; Jacqueline, C.; Muyu, Y.; Varun, K.; Elizabeth, U.; GaHyun, L.; Rachael, W.; Azusa, M.; et al. Population-scale cellular GUIDE-seq-2 and biochemical CHANGE-seq-R profiles reveal human genetic variation frequently affects Cas9 off-target activity. bioRxiv, 2025. [Google Scholar] [CrossRef]
- Tsai, S.Q.; Zheng, Z.; Nguyen, N.T.; Liebers, M.; Topkar, V.V.; Thapar, V.; Wyvekens, N.; Khayter, C.; Iafrate, A.J.; Le, L.P.; et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 2015, 33, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Ran, F.A.; Hsu, P.D.; Lin, C.-Y.; Gootenberg, J.S.; Konermann, S.; Trevino, A.E.; Scott, D.A.; Inoue, A.; Matoba, S.; Zhang, Y.; et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013, 154, 1380–1389. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruden, D.M. TIGR-Tas and the Expanding Universe of RNA-Guided Genome Editing Systems: A New Era Beyond CRISPR-Cas. Genes 2025, 16, 896. https://doi.org/10.3390/genes16080896
Ruden DM. TIGR-Tas and the Expanding Universe of RNA-Guided Genome Editing Systems: A New Era Beyond CRISPR-Cas. Genes. 2025; 16(8):896. https://doi.org/10.3390/genes16080896
Chicago/Turabian StyleRuden, Douglas M. 2025. "TIGR-Tas and the Expanding Universe of RNA-Guided Genome Editing Systems: A New Era Beyond CRISPR-Cas" Genes 16, no. 8: 896. https://doi.org/10.3390/genes16080896
APA StyleRuden, D. M. (2025). TIGR-Tas and the Expanding Universe of RNA-Guided Genome Editing Systems: A New Era Beyond CRISPR-Cas. Genes, 16(8), 896. https://doi.org/10.3390/genes16080896