Investigation of the P1104A/TYK2 Genetic Variant in a COVID-19 Patient Cohort from Southern Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Clinical and Demographic Data Analysis
2.3. Genetic Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casanova, J.L.; Abel, L. Lethal infectious diseases as inborn errors of immunity: Toward a synthesis of the germ and genetic theories. Annu. Rev. Pathol. 2021, 16, 23–50. [Google Scholar] [CrossRef] [PubMed]
- Poli, M.C.; Aksentijevich, I.; Bousfiha, A.A.; Cunningham-Rundles, C.; Hambleton, S.; Klein, C.; Morio, T.; Picard, C.; Puel, A.; Rezaei, N.; et al. Human inborn errors of immunity: 2024 update on the classification from the International Union of Immunological Societies Expert Committee. J. Hum. Immun. 2025, 1, e20250003. [Google Scholar] [CrossRef]
- Shimoda, K.; Kato, K.; Aoki, K.; Matsuda, T.; Miyamoto, A.; Shibamori, M.; Yamashita, M.; Numata, A.; Takase, K.; Kobayashi, S.; et al. Tyk2 plays a restricted role in IFN alpha signaling, although it is required for IL-12-mediated T cell function. Immunity 2000, 13, 561–571. [Google Scholar] [CrossRef]
- Muromoto, R.; Oritani, K.; Matsuda, T. Current understanding of the role of tyrosine kinase 2 signaling in immune responses. World J. Biol. Chem. 2022, 13, 1–14. [Google Scholar] [CrossRef]
- Fieschi, C.; Dupuis, S.; Catherinot, E.; Feinberg, J.; Bustamante, J.; Breiman, A.; Altare, F.; Baretto, R.; Le Deist, F.; Kayal, S.; et al. Low penetrance, broad resistance, and favorable outcome of interleukin 12 receptor beta1 deficiency: Medical and immunological implications. J. Exp. Med. 2003, 197, 527–535. [Google Scholar] [CrossRef]
- Kreins, A.Y.; Ciancanelli, M.J.; Okada, S.; Kong, X.F.; Ramírez-Alejo, N.; Kilic, S.S.; El Baghdadi, J.; Nonoyama, S.; Mahdaviani, S.A.; Ailal, F.; et al. Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE syndrome. J. Exp. Med. 2015, 212, 1641–1662. [Google Scholar] [CrossRef]
- Duncan, C.J.A.; Mohamad, S.M.B.; Young, D.F.; Skelton, A.J.; Leahy, T.R.; Munday, D.C.; Butler, K.M.; Morfopoulou, S.; Brown, J.R.; Hubank, M.; et al. Human IFNAR2 deficiency: Lessons for antiviral immunity. Sci. Transl. Med. 2015, 7, 307ra154. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Yang, W.; Lee, P.P.W.; Ho, M.H.K.; Yang, J.; Zeng, S.; Chong, C.Y.; Lee, T.L.; Tu, W.; Lau, Y.L. Exome sequencing identifies novel compound heterozygous mutations of IL-10 receptor 1 in neonatal-onset Crohn’s disease. Genes Immun. 2012, 13, 437–442. [Google Scholar] [CrossRef]
- Engelhardt, K.R.; Grimbacher, B. IL-10 in humans: Lessons from the gut, IL-10/IL-10 receptor deficiencies, and IL-10 polymorphisms. Curr. Top. Microbiol. Immunol. 2014, 380, 1–18. [Google Scholar]
- Boisson-Dupuis, S.; Ramirez-Alejo, N.; Li, Z.; Patin, E.; Rao, G.; Kerner, G.; Lim, C.K.; Krementsov, D.N.; Hernandez, N.; Ma, C.S.; et al. Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. Sci. Immunol. 2018, 3, eaau8714. [Google Scholar] [CrossRef] [PubMed]
- Ogishi, M.; Arias, A.A.; Yang, R.; Han, J.E.; Zhang, P.; Rinchai, D.; Halpern, J.; Mulwa, J.; Keating, N.; Chrabieh, M.; et al. Impaired IL-23-dependent induction of IFN-γ underlies mycobacterial disease in patients with inherited TYK2 deficiency. J. Exp. Med. 2022, 219, e20220094. [Google Scholar] [CrossRef] [PubMed]
- Kerner, G.; Ramirez-Alejo, N.; Seeleuthner, Y.; Yang, R.; Ogishi, M.; Cobat, A.; Patin, E.; Quintana-Murci, L.; Boisson-Dupuis, S.; Casanova, J.L.; et al. Homozygosity for TYK2 P1104A underlies tuberculosis in about 1% of patients in a cohort of European ancestry. Proc. Natl. Acad. Sci. USA 2019, 116, 10430–10434. [Google Scholar] [CrossRef] [PubMed]
- Pairo-Castineira, E.; Clohisey, S.; Klaric, L.; Bretherick, A.D.; Rawlik, K.; Pasko, D.; Walker, S.; Parkinson, N.; Fourman, M.H.; Russell, C.D.; et al. Genetic mechanisms of critical illness in COVID-19. Nature 2021, 591, 92–98. [Google Scholar] [CrossRef]
- Kousathanas, A.; Pairo-Castineira, E.; Rawlik, K.; Stuckey, A.; Odhams, C.A.; Walker, S.; Russell, C.D.; Malinauskas, T.; Wu, Y.; Millar, J.; et al. Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature 2022, 607, 97–103. [Google Scholar] [CrossRef]
- Diz-de Almeida, S.; Cruz, R.; Luchessi, A.D.; Lorenzo-Salazar, J.M.; de Heredia, M.L.; Quintela, I.; González-Montelongo, R.; Nogueira Silbiger, V.; Porras, M.S.; Tenorio Castaño, J.A.; et al. Novel risk loci for COVID-19 hospitalization among admixed American populations. eLife 2024, 13, RP93666. [Google Scholar] [CrossRef]
- Casanova, J.L.; Anderson, M.S. Unlocking life-threatening COVID-19 through two types of inborn errors of type I IFNs. J. Clin. Investig. 2023, 133, e166283. [Google Scholar] [CrossRef]
- Dendrou, C.A.; Cortes, A.; Shipman, L.; Evans, H.G.; Attfield, K.E.; Jostins, L.; Barber, T.; Kaur, G.; Kuttikkatte, S.B.; Leach, O.A.; et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci. Transl. Med. 2016, 8, 363ra149. [Google Scholar] [CrossRef]
- Pitlik, S.D. COVID-19 Compared to Other Pandemic Diseases. Rambam Maimonides Med. J. 2020, 11, e0027. [Google Scholar] [CrossRef]
- Kwok, K.O.; Huang, Y.; Tsoi, M.T.F.; Tang, A.; Wong, S.Y.S.; Wei, W.I.; Hui, D.S.C. Epidemiology, clinical spectrum, viral kinetics and impact of COVID-19 in the Asia-Pacific region. Respirology 2021, 26, 322–333. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zhang, Q.; Casanova, J.L.; Su, H.C.; COVID Team. Severe COVID-19 in the young and healthy: Monogenic inborn errors of immunity? Nat. Rev. Immunol. 2020, 20, 455–456. [Google Scholar] [CrossRef] [PubMed]
- Nunes, K.; Araújo Castro ESilva, M.; Rodrigues, M.R.; Lemes, R.B.; Pezo-Valderrama, P.; Kimura, L.; de Sena, L.S.; Krieger, J.E.; Catoia Varela, M.; de Azevedo, L.O.; et al. Admixture’s impact on Brazilian population evolution and health. Science 2025, 388, eadl3564. [Google Scholar] [CrossRef]
- Notarangelo, L.D.; Bacchetta, R.; Casanova, J.L.; Su, H.C. Human Inborn Errors of Immunity: An Expanding Universe. Sci. Immunol. 2020, 5, eabb1662. [Google Scholar] [CrossRef] [PubMed]
- Stokes, E.K. Coronavirus Disease 2019 Case Surveillance—United States, January 22–May 30, 2020. MMWR Morb. Mortal Wkly. Rep. 2020, 69, 759–765. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. The Coronavirus Disease 2019 (COVID-19) Outbreak in China—Summary of a China CDC Report. Available online: https://jamanetwork.com/journals/jama/fullarticle/2762130 (accessed on 31 July 2025).
- Norris, E.T.; Wang, L.; Conley, A.B.; Rishishwar, L.; Mariño-Ramírez, L.; Valderrama-Aguirre, A.; Jordan, I.K. Genetic ancestry, admixture and health determinants in Latin America. BMC Genom. 2018, 19, 861. [Google Scholar] [CrossRef] [PubMed]
- de Souza, A.M.; Resende, S.S.; de Sousa, T.N.; de Brito, C.F.A. A systematic scoping review of the genetic ancestry of the Brazilian population. Genet. Mol. Biol. 2019, 42, 495–508. [Google Scholar] [CrossRef]
- Venner, E.; Patterson, K.; Kalra, D.; Wheeler, M.M.; Chen, Y.J.; Kalla, S.E.; Yuan, B.; Karnes, J.H.; Walker, K.; Smith, J.D.; et al. The frequency of pathogenic variation in the All of Us cohort reveals ancestry-driven disparities. Commun. Biol. 2024, 7, 174. [Google Scholar] [CrossRef] [PubMed]
- Kerner, G.; Laval, G.; Patin, E.; Boisson-Dupuis, S.; Abel, L.; Casanova, J.L.; Quintana-Murci, L. Human ancient DNA analyses reveal the high burden of tuberculosis in Europeans over the last 2000 years. Am. J. Hum. Genet. 2021, 108, 517–524. [Google Scholar] [CrossRef]
- Global Tuberculosis Report 2024, 1st ed.World Health Organization: Geneva, Switzerland, 2024; 1p.
- Knight, S.R.; Ho, A.; Pius, R.; Buchan, I.; Carson, G.; Drake, T.M.; Dunning, J.; Fairfield, C.J.; Gamble, C.; Green, C.A.; et al. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: Development and validation of the 4C Mortality Score. BMJ 2020, 370, m3339. [Google Scholar] [CrossRef]
- Russell, C.D.; Lone, N.I.; Baillie, J.K. Comorbidities, multimorbidity and COVID-19. Nat. Med. 2023, 29, 334–343. [Google Scholar] [CrossRef]
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef]
- Farshbafnadi, M.; Kamali Zonouzi, S.; Sabahi, M.; Dolatshahi, M.; Aarabi, M.H. Aging & COVID-19 susceptibility, disease severity, and clinical outcomes: The role of entangled risk factors. Exp. Gerontol. 2021, 154, 111507. [Google Scholar] [CrossRef]
- Rider, F.; Hauser, W.A.; Yakovlev, A.; Shpak, A.; Guekht, A. Incidence, severity and outcomes of COVID-19 in age and gender matched adults with and without epilepsy in Moscow: A historical cohort study. Seizure Eur. J. Epilepsy 2023, 112, 32–39. [Google Scholar] [CrossRef]
- Vogi, V.; Haschka, D.; Forer, L.; Schwendinger, S.; Petzer, V.; Coassin, S.; Tancevski, I.; Sonnweber, T.; Löffler-Ragg, J.; Puchhammer-Stöckl, E.; et al. Severe COVID-19 disease is associated with genetic factors affecting plasma ACE2 receptor and CRP concentrations. Sci. Rep. 2025, 15, 4708. [Google Scholar] [CrossRef]
- Berghöfer, B.; Frommer, T.; Haley, G.; Fink, L.; Bein, G.; Hackstein, H. TLR7 ligands induce higher IFN-alpha production in females. J. Immunol. 2006, 177, 2088–2096. [Google Scholar] [CrossRef]
- Laffont, S.; Rouquié, N.; Azar, P.; Seillet, C.; Plumas, J.; Aspord, C.; Guéry, J.C. X-Chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-α production of plasmacytoid dendritic cells from women. J. Immunol. 2014, 193, 5444–5452. [Google Scholar] [CrossRef]
- Stoica, G.; Macarie, E.; Michiu, V.; Stoica, R.C. Biologic variation of human immunoglobulin concentration. I. Sex-age specific effects on serum levels of IgG, IgA, IgM and IgD. Med. Interne 1980, 18, 323–332. [Google Scholar] [PubMed]
- Hewagama, A.; Patel, D.; Yarlagadda, S.; Strickland, F.M.; Richardson, B.C. Stronger inflammatory/cytotoxic T-cell response in women identified by microarray analysis. Genes Immun. 2009, 10, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.; Chai, P.S.; Chong, M.Y.; Tohit, E.R.M.; Ramasamy, R.; Pei, C.P.; Pei, C.P.; Vidyadaran, S. Gender effect on in vitro lymphocyte subset levels of healthy individuals. Cell Immunol. 2012, 272, 214–219. [Google Scholar] [CrossRef]
- Franceschi, C.; Capri, M.; Monti, D.; Giunta, S.; Olivieri, F.; Sevini, F.; Panourgia, M.P.; Invidia, L.; Celani, L.; Scurti, M.; et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 2007, 128, 92–105. [Google Scholar] [CrossRef] [PubMed]
- van Splunter, M.; Perdijk, O.; Fick-Brinkhof, H.; Floris-Vollenbroek, E.G.; Meijer, B.; Brugman, S.; Savelkoul, H.F.J.; van Hoffen, E.; Joost van Neerven, R.J. Plasmacytoid dendritic cell and myeloid dendritic cell function in ageing: A comparison between elderly and young adult women. PLoS ONE 2019, 14, e0225825. [Google Scholar] [CrossRef]
- Bartleson, J.M.; Radenkovic, D.; Covarrubias, A.J.; Furman, D.; Winer, D.A.; Verdin, E. SARS-CoV-2, COVID-19 and the Ageing Immune System. Nat. Aging 2021, 1, 769–782. [Google Scholar] [CrossRef]
- Manry, J.; Bastardo, P.; Gervais, A.; Le Voyer, T.; Rosain, J.; Philippot, Q.; Michailidis, E.; Hoffmann, H.H.; Eto, S.; Garcia-Prat, M.; et al. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proc. Natl. Acad. Sci. USA 2022, 119, e2200413119. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, Z.; Li, J.W.; Zhao, H.; Wang, G.Q. Cytokine release syndrome in severe COVID-19: Interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents 2020, 55, 105954. [Google Scholar] [CrossRef] [PubMed]
- Kruglikov, I.L.; Scherer, P.E. The Role of Adipocytes and Adipocyte-Like Cells in the Severity of COVID-19 Infections. Obesity 2020, 28, 1187–1190. [Google Scholar] [CrossRef]
- Simonnet, A.; Chetboun, M.; Poissy, J.; Raverdy, V.; Noulette, J.; Duhamel, A.; Labreuche, J.; Mathieu, D.; Pattou, F.; Jourdain, M.; et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity 2020, 28, 1195–1199. [Google Scholar] [CrossRef]
- Mantovani, A.; Byrne, C.D.; Zheng, M.H.; Targher, G. Diabetes as a risk factor for greater COVID-19 severity and in-hospital death: A meta-analysis of observational studies. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1236–1248. [Google Scholar] [CrossRef]
- Lighter, J.; Phillips, M.; Hochman, S.; Sterling, S.; Johnson, D.; Francois, F.; Stachel, A. Obesity in Patients Younger Than 60 Years Is a Risk Factor for COVID-19 Hospital Admission. Clin. Infect. Dis. 2020, 71, 896–897. [Google Scholar] [CrossRef]
- Alzaid, F.; Julla, J.B.; Diedisheim, M.; Potier, C.; Potier, L.; Velho, G.; Gaborit, B.; Manivet, P.; Germain, S.; Vidal-Trecan, T.; et al. Monocytopenia, monocyte morphological anomalies and hyperinflammation characterise severe COVID-19 in type 2 diabetes. EMBO Mol. Med. 2020, 12, e13038. [Google Scholar] [CrossRef]
- Tamimi, F.; Abusamak, M.; Akkanti, B.; Chen, Z.; Yoo, S.H.; Karmouty-Quintana, H. The case for chronotherapy in Covid-19-induced acute respiratory distress syndrome. Br. J. Pharmacol. 2020, 177, 4845–4850. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Bae, J.H.; Kwon, H.S.; Nauck, M.A. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat. Rev. Endocrinol. 2021, 17, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Casanova, J.L.; Su, H.C. A Global Effort to Define the Human Genetics of Protective Immunity to SARS-CoV-2 Infection. Cell 2020, 181, 1194–1199. [Google Scholar] [CrossRef] [PubMed]
- ISARIC Clinical Characterization Group; Garcia-Gallo, E.; Merson, L.; Kennon, K.; Kelly, S.; Citarella, B.W.; Fryer, D.V.; Shrapnel, S.; Lee, J.; Duque, S.; et al. ISARIC-COVID-19 dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19. Sci. Data 2022, 9, 454. [Google Scholar] [CrossRef] [PubMed]
Non-Severe n = 1190 (%) | Severe n = 636 (%) | p-Value | ||
---|---|---|---|---|
Sex | Male | 552 (46.39) | 342 (53.77) | 0.003 |
Female | 638 (53.61) | 294 (46.23) | ||
Age | 57 (19–100) | 62 (19–102) | <0.001 | |
Skin color | White | 983/1186 (82.89) | 517/635 (81.42) | 0.35 |
Black | 194/1186 (16.36) | 109/635 (17.17) | ||
Other | 9/1186 (0.75) | 9/635 (1.41) | ||
Comorbidities | Chronic Heart Disease | 131/376 (34.84) | 63/173 (36.42) | 0.79 |
Chronic Kidney Disease | 132/384 (34.38) | 63/182 (34.62) | 1.00 | |
Chronic Pulmonary Disease | 52/301 (17.27) | 27/150 (18.00) | 0.95 | |
Obesity | 87/290 (30.00) | 101/185 (54.59) | <0.001 | |
Diabetes | 68/309 (22.01) | 87/179 (48.60) | <0.001 | |
Hypertension | 168/370 (45.41) | 163/222 (73.42) | <0.001 |
Allele | Non-Severe (%) | Severe (%) | p-Value |
---|---|---|---|
G | 2308 (96.97) | 1240 (97.48) | 0.44 |
C | 72 (3.03) | 32 (2.52) |
Non-Severe n = 1190 (%) | Severe n = 636 (%) | OR (95% CI) | p-Value | AIC | |
---|---|---|---|---|---|
GG–GC | 1189 (99.92) | 634 (99.69) | 1.00 | 0.26 | 2363 |
CC | 1 (0.08) | 2 (0.31) | 3.75 (0.34–41.44) |
OR | 95% CI | p-Value | |
---|---|---|---|
CC genotype | 3.34 | 0.32–72.03 | 0.33 |
Male sex | 1.27 | 1.05–1.55 | 0.01 |
Age | 1.02 | 1.01–1.02 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonnenstrahl, G.; Sgarioni, E.; Prado, M.J.; Feira, M.F.; Sbruzzi, R.C.; Fam, B.S.O.; Da Silva Hellwig, A.H.; Cadore, N.A.; Artigalás, O.; da Costa Pereira, A.; et al. Investigation of the P1104A/TYK2 Genetic Variant in a COVID-19 Patient Cohort from Southern Brazil. COVID 2025, 5, 126. https://doi.org/10.3390/covid5080126
Sonnenstrahl G, Sgarioni E, Prado MJ, Feira MF, Sbruzzi RC, Fam BSO, Da Silva Hellwig AH, Cadore NA, Artigalás O, da Costa Pereira A, et al. Investigation of the P1104A/TYK2 Genetic Variant in a COVID-19 Patient Cohort from Southern Brazil. COVID. 2025; 5(8):126. https://doi.org/10.3390/covid5080126
Chicago/Turabian StyleSonnenstrahl, Giulianna, Eduarda Sgarioni, Mayara Jorgens Prado, Marilea Furtado Feira, Renan Cesar Sbruzzi, Bibiana S. O. Fam, Alessandra Helena Da Silva Hellwig, Nathan Araujo Cadore, Osvaldo Artigalás, Alexandre da Costa Pereira, and et al. 2025. "Investigation of the P1104A/TYK2 Genetic Variant in a COVID-19 Patient Cohort from Southern Brazil" COVID 5, no. 8: 126. https://doi.org/10.3390/covid5080126
APA StyleSonnenstrahl, G., Sgarioni, E., Prado, M. J., Feira, M. F., Sbruzzi, R. C., Fam, B. S. O., Da Silva Hellwig, A. H., Cadore, N. A., Artigalás, O., da Costa Pereira, A., Pereira, L. V., Hünemeier, T., & Vianna, F. S. L. (2025). Investigation of the P1104A/TYK2 Genetic Variant in a COVID-19 Patient Cohort from Southern Brazil. COVID, 5(8), 126. https://doi.org/10.3390/covid5080126