Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,534)

Search Parameters:
Keywords = European Energy Union

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1529 KB  
Article
What Can We Do in Bucharest? The Issues of Decarbonising Large District Heating Systems
by Jacek Kalina, Wiktoria Pohl, Wojciech Kostowski, Andrzej Sachajdak, Celino Craiciu and Lucian Vișcoțel
Energies 2026, 19(3), 716; https://doi.org/10.3390/en19030716 - 29 Jan 2026
Abstract
District heating systems are central to Europe’s decarbonisation strategy and its 2050 climate-neutrality objective. However, district heating is deeply embedded in the socio-economic system and the built environment. This makes compliance with policy targets at the local level particularly challenging. The issues are [...] Read more.
District heating systems are central to Europe’s decarbonisation strategy and its 2050 climate-neutrality objective. However, district heating is deeply embedded in the socio-economic system and the built environment. This makes compliance with policy targets at the local level particularly challenging. The issues are attributable to two factors. Firstly, the process is characterised by a high degree of complexity and multidimensionality. Secondly, there is a scarcity of local resources (e.g., land, surface waters, waste heat, etc.). In Bucharest, Romania, the largest district heating system in the European Union, the process of decarbonisation represents a particularly complex challenge. The system is characterised by large physical dimensions, high technical wear, heavy dependence on natural gas, significant heat losses and complex governance structures. This paper presents a strategic planning exercise for aligning the Bucharest system with the Energy Efficiency Directive 2023/1791. Drawing on system data, investment modelling, and local resource mapping from the LIFE22-CET-SET_HEAT project, the study evaluates scenarios for 2028 and 2035 that shift heat generation from natural gas to renewable, waste heat, and high-efficiency sources. The central objective is the identification of opportunities and issues. Options include large-scale heat pumps, waste-to-energy, geothermal and solar heat. Heat demand profiles and electricity price dynamics are used to evaluate economic feasibility and operational flexibility. The findings show that the decarbonisation heat supply in Bucharest is technically possible, but financial viability hinges on phased investments, interinstitutional coordination, regulatory reforms and access to EU funding. The study concludes with recommendations for staged implementation, coordinated governance and socio-economic measures to safeguard heat affordability and system reliability. Full article
(This article belongs to the Special Issue 11th International Conference on Smart Energy Systems (SESAAU2025))
27 pages, 3218 KB  
Article
Energy Efficiency and International Regulation of Single-Phase Induction Motors: Evidence from Tests in the Brazilian Market
by Abrão Garcia Oliveira Junior, Welson Bassi, Francisco Antônio Marino Salotti, Hédio Tatizawa, Antônio Quirino da Silva Neto and Danilo Ferreira de Souza
Energies 2026, 19(3), 712; https://doi.org/10.3390/en19030712 - 29 Jan 2026
Abstract
Single-phase induction motors account for a significant share of energy consumption in residential, commercial, and rural applications. However, unlike three-phase motors, they still lack specific regulation in Brazil. This paper aims to identify the main construction types of these motors and their performance [...] Read more.
Single-phase induction motors account for a significant share of energy consumption in residential, commercial, and rural applications. However, unlike three-phase motors, they still lack specific regulation in Brazil. This paper aims to identify the main construction types of these motors and their performance characteristics, to map international regulations based on Minimum Energy Performance Standards (MEPS) and to assess the actual efficiency of motors available on the Brazilian market. The adopted methodology combined an extensive literature review with laboratory tests conducted in accordance with IEC Standard 60034-2-1, using a sample of 48 motors from various manufacturers. The results confirmed that split-phase, capacitor-start, permanent-split capacitor, and two-capacitor motors exhibit distinct performance characteristics that determine their suitability for different applications. The analysis of international regulation revealed that the European Union, the United States, and several other countries have already established normative criteria for single-phase motors, ranging from labelling requirements to the reach of MEPS. Finally, the analysis of the test results revealed that most single-phase motors available on the Brazilian market fail to meet the minimum efficiency levels established by the standards. Full article
Show Figures

Figure 1

39 pages, 2155 KB  
Article
Developing Energy Citizenship—Empowerment Through Engagement and (Co-)Ownership, Individually and in Energy Communities
by Jens Lowitzsch, Michiel Heldeweg, Julia Epp and Monika Bucha
Soc. Sci. 2026, 15(1), 56; https://doi.org/10.3390/socsci15010056 - 22 Jan 2026
Viewed by 100
Abstract
Opportunities for citizens to become prosumers have grown rapidly with renewable energy (RE) technologies reaching grid parity. The European Union’s ability to harness this potential depends on empowering energy citizens, fostering active engagement, and overcoming resistance to RE deployment. European energy law introduced [...] Read more.
Opportunities for citizens to become prosumers have grown rapidly with renewable energy (RE) technologies reaching grid parity. The European Union’s ability to harness this potential depends on empowering energy citizens, fostering active engagement, and overcoming resistance to RE deployment. European energy law introduced “renewable self-consumers” and “active customers” with rights to consume, sell, store, and share RE, alongside rights for citizens collectively organised in energy communities. This article explores conditions for inclusive citizen engagement and empowerment within the RE system. Building on an ownership- and governance-oriented approach, we further develop the concept of energy citizenship, focusing on three elements: conditions for successful engagement, individual versus collective (financial) participation, and the role of public (co-)ownership in fostering inclusion. The analysis is supported by 82 semi-structured interviews, corroborating our theoretical lens. Findings show that participation, especially of vulnerable consumers, relies on an intact “engagement chain,” while energy communities remain an underused instrument for inclusion. Institutional environments enabling municipalities and public entities to act as pace-making (co-)owners are identified as key. Complementing the market and the State, civil society holds important potential to enhance engagement. Inspired by the 2017 European Pillar of Social Rights, we propose a corresponding “European Pillar of Energy Rights.” Full article
(This article belongs to the Special Issue From Vision to Action: Citizen Commitment to the European Green Deal)
Show Figures

Figure 1

26 pages, 4074 KB  
Article
Implementation of the Just-in-Time Philosophy in Coal Production Processes as an Approach to Supporting Energy Transition and Reducing Carbon Emissions
by Dariusz Prostański, Radosław Marlęga and Slavko Dragić
Energies 2026, 19(2), 544; https://doi.org/10.3390/en19020544 - 21 Jan 2026
Viewed by 89
Abstract
In the context of Poland’s commitments under the European Union’s climate policy, including the European Green Deal and the Fit for 55 package, as well as the decision to ban imports of hard coal from Russia and Belarus, ensuring the stability of the [...] Read more.
In the context of Poland’s commitments under the European Union’s climate policy, including the European Green Deal and the Fit for 55 package, as well as the decision to ban imports of hard coal from Russia and Belarus, ensuring the stability of the domestic market for energy commodities is becoming a key challenge. The response to these needs is the Coal Platform concept developed by the KOMAG Institute of Mining Technology (KOMAG), which aims to integrate data on hard coal resources, production, and demand. The most important problem is not the just-in-time (JIT) strategy itself, but the lack of accurate, up-to-date data and the high technological and organizational inertia on the production side. The JIT strategy assumes an ability to predict future demand well in advance, which requires advanced analytical tools. Therefore, the Coal Platform project analyses the use of artificial intelligence algorithms to forecast demand and adjust production to actual market needs. The developed mathematical model (2024–2030) takes into account 12 variables, and the tested forecasting methods (including ARX and FLNN) exhibit high accuracy, which together make it possible to reduce overproduction, imports, and CO2 emissions, supporting the country’s responsible energy transition. This article describes approaches to issues related to the development of the Coal Platform and, above all, describes the concept, preliminary architecture, and data model. As an additional element, a mathematical model and preliminary results of research on forecasting methods in the context of historical data on hard coal production and consumption are presented. The core innovation lies in integrating the just-in-time (JIT) philosophy with AI-driven forecasting and scenario-based planning within a cloud-ready Coal Platform architecture, enabling dynamic resource management and compliance with decarbonization targets. Full article
Show Figures

Figure 1

33 pages, 2502 KB  
Review
A Review of Heat Wave Impacts on the Food–Energy–Water Nexus and Policy Response
by Manman Wang, Sze Yui Lu, Hairong Xin, Yuxuan Fan, Hao Zhang, Sujata Saunik and Rajib Shaw
Climate 2026, 14(1), 27; https://doi.org/10.3390/cli14010027 - 21 Jan 2026
Viewed by 285
Abstract
Heat waves have emerged as an escalating climate threat, triggering cascading disruptions across food, energy, and water systems, thereby undermining resilience and sustainability. However, reviews addressing heat wave impacts on the food–energy–water (FEW) nexus remain scarce, resulting in a fragmented understanding of cross-system [...] Read more.
Heat waves have emerged as an escalating climate threat, triggering cascading disruptions across food, energy, and water systems, thereby undermining resilience and sustainability. However, reviews addressing heat wave impacts on the food–energy–water (FEW) nexus remain scarce, resulting in a fragmented understanding of cross-system interactions and limiting the ability to assess cascading risks under extreme heat. This critical issue is examined through bibliometric analysis, scoping review, and policy analysis. A total of 103 publications from 2015 to 2024 were retrieved from Web of Science and Scopus, and 63 policy documents from the United States, the European Union, Japan, China, and India were collected for policy analysis. Bibliometric analysis was conducted to identify the most influential articles, journals, countries, and research themes in this field. The scoping review indicates that agricultural losses are most frequently reported (32), followed by multiple impacts (19) and cross-sectoral disruptions (18). The use of spatial datasets and high-frequency temporal data remains limited, and community-scale studies and cross-regional comparisons are uncommon. Mechanism synthesis reveals key pathways, including direct system-specific stress on food production, water availability, and energy supply; indirect pressures arising from rising demand and constrained supply across interconnected systems; cascading disruptions mediated by infrastructure and system dependencies; and maladaptation risks associated with uncoordinated sectoral responses. Policy analysis reveals that most countries adopt sector-based adaptation approaches with limited across-system integration, and insufficient data and monitoring infrastructures. Overall, this study proposes an integrated analytical framework for understanding heat wave impacts on the FEW nexus, identifies critical research and governance gaps, and provides conceptual and practical guidance for advancing future research and strengthening coordinated adaptation across food, energy, and water sectors. Full article
(This article belongs to the Special Issue Climate Change and Food Sustainability: A Critical Nexus)
Show Figures

Figure 1

10 pages, 322 KB  
Technical Note
Small and Medium-Sized Enterprises Climate Accounting Made Easy
by Hans Sanderson, Mariana Costa Moreira Maia, Frank Akowuge Dugasseh, Delove Abraham Asiedu and Annabeth Aagaard
Climate 2026, 14(1), 26; https://doi.org/10.3390/cli14010026 - 21 Jan 2026
Viewed by 88
Abstract
The European Union’s decarbonization strategy relies on transparent and accurate climate data across value chains. Yet, existing sustainability reporting frameworks mainly target large companies, often neglecting small and medium-sized enterprises (SMEs). Although SMEs are largely exempt from mandatory reporting under recent regulatory simplifications, [...] Read more.
The European Union’s decarbonization strategy relies on transparent and accurate climate data across value chains. Yet, existing sustainability reporting frameworks mainly target large companies, often neglecting small and medium-sized enterprises (SMEs). Although SMEs are largely exempt from mandatory reporting under recent regulatory simplifications, they play a critical role in Scope 3 emissions, which dominate the carbon footprints of larger firms. This paper presents two complementary, freely accessible digital tools designed to support credible carbon accounting. The first tool, Climate Compass, is a government-sanctioned tool that aligns with the GHG Protocol and has been used by >10,000 SMEs in Denmark to calculate Scopes 1, 2, and 3 emissions through a user-friendly interface. The second, a newly developed online cradle-to-gate life cycle assessment (LCA) tool, supports product-level carbon footprinting using open-source emission factor databases. The cradle-to-gate approach reflects typical SME production profiles and emphasizes embodied CO2e from raw materials, transport, and energy consumption. Together, these tools enable researchers to effectively assess SMEs emissions in the value chain and thus support decarbonization while supplying reliable data to larger companies. The tool democratizes emissions analysis and supports regulatory and market demands and strengthens SMEs contribution to Europe’s low-carbon transition. Full article
Show Figures

Figure 1

11 pages, 1564 KB  
Article
On Possibility of Converting Electricity Generation System Based on Fossil Fuels to Fully Renewable—Polish Case
by Andrzej Szlęk
Energies 2026, 19(2), 483; https://doi.org/10.3390/en19020483 - 19 Jan 2026
Viewed by 192
Abstract
The energy sector in all countries around the world is undergoing a transformation, with the main trend being the increasing share of renewable sources. Some countries, such as those in the European Union, have set themselves the goal of completely phasing out fossil [...] Read more.
The energy sector in all countries around the world is undergoing a transformation, with the main trend being the increasing share of renewable sources. Some countries, such as those in the European Union, have set themselves the goal of completely phasing out fossil fuels by 2050. Currently, the energy systems of European countries are far from this goal, and fossil fuels play a key role in balancing energy systems. This article presents a one-year simulation of a hypothetical Polish energy system based solely on renewable sources and utilizing biomethane, synthetic ammonia, and solid biomass as sources to ensure energy supply in the event of unfavorable weather conditions, which means a lack of wind and solar radiation. Six variants of these systems were analyzed, demonstrating the feasibility of such a system using only biogas as a stabilizing fuel. The required generating capacities of wind turbines, photovoltaic panels, and installations for converting biomethane, ammonia, and solid biomass into electricity were determined. Calculations were based on historical data recorded in 2024 in the Polish energy system. It was found that by increasing currently installed PV and wind turbines by a factor of 4.8 and installing 24 GW of ICE engines fueled with biomethane and an additional 10 GW of ORC modules, current electricity demand would be covered 100% by renewable energy sources. The same goal can be achieved without ORC modules by increasing the installed power of PV and wind turbines by a factor of 6.8. The novelty of this research is the application of the fully renewable concept of electricity generation systems to Polish reality using real-life data. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

10 pages, 2128 KB  
Proceeding Paper
Artificial Neural Network Model for Predicting the Characteristics of a Solar Vacuum Tube System for Domestic Hot Water Heating
by Mariyana Sestrimska, Nikolay Komitov and Margarita Terziyska
Eng. Proc. 2026, 122(1), 10; https://doi.org/10.3390/engproc2026122010 - 15 Jan 2026
Viewed by 125
Abstract
The use of different energy sources for heating and year-round domestic water heating is driven by the European Union’s increasingly strict environmental and climate requirements. For this reason, consumers are seeking alternatives and show growing interest in implementing installations that utilize solar energy. [...] Read more.
The use of different energy sources for heating and year-round domestic water heating is driven by the European Union’s increasingly strict environmental and climate requirements. For this reason, consumers are seeking alternatives and show growing interest in implementing installations that utilize solar energy. Modern households typically employ at least two different energy sources for this purpose. In practice, these are hybrid installations that, depending on the season, can operate with one, two, or more energy sources. The system examined in this paper is of this type, comprising a pellet boiler, solar vacuum tubes, and electric heaters. Managing such a system is complex, and based on the conducted studies, process optimization can be pursued. This report presents an artificial neural network (ANN) model developed to predict the behavior of a real solar installation for domestic hot water heating during the summer season. This study aims, through the obtained model, to forecast the system’s performance during transitional periods such as autumn and spring, thereby enabling more efficient control. Full article
Show Figures

Figure 1

26 pages, 3009 KB  
Article
How Environmental Assurances and Certifications Shape Environmental Scores and Their Relationship with Environmental Controversies: Evidence from the Main European Union Companies
by Francisco José González Sánchez, Ana María Moreno Adalid, Gracia Rubio Martín and Daniel Cid Moreno
Sustainability 2026, 18(2), 908; https://doi.org/10.3390/su18020908 - 15 Jan 2026
Viewed by 125
Abstract
This study examines whether environmental assurance and environmental management certifications are associated with subsequent environmental performance and reputational exposure in European Union listed firms. Using Refinitiv Eikon panel data for 441 firms (1773 firm-year observations) from 2017–2023, we analyze environmental pillar sub-scores (Emissions, [...] Read more.
This study examines whether environmental assurance and environmental management certifications are associated with subsequent environmental performance and reputational exposure in European Union listed firms. Using Refinitiv Eikon panel data for 441 firms (1773 firm-year observations) from 2017–2023, we analyze environmental pillar sub-scores (Emissions, Resource Use, and Innovation) and three intensity indicators (energy, pollution, and recycled waste intensity). We estimate firm fixed-effects models for performance outcomes and Firth’s logistic regression models for media-reported environmental controversies, using lagged assurance/certification indicators. Environmental assurance is consistently associated with higher environmental sub-scores and with lower energy and pollution intensity, alongside higher recycled waste intensity. In contrast, certification effects are weaker and more heterogeneous across intensity-based indicators. Regarding reputational exposure, assured firms show a higher likelihood of subsequent media-reported environmental controversies, which is consistent with heightened scrutiny and visibility rather than evidence of intent. These findings inform boards, assurance providers, investors, and policymakers seeking to strengthen the credibility and use of corporate environmental information. Full article
Show Figures

Figure 1

43 pages, 5996 KB  
Article
Dynamic and Balanced Monitoring of the Path to Carbon Neutrality Among European Union Countries: The DETA Framework for Energy Transition Assessment
by Magdalena Tutak, Jarosław Brodny and Wieslaw Wes Grebski
Energies 2026, 19(2), 358; https://doi.org/10.3390/en19020358 - 11 Jan 2026
Viewed by 169
Abstract
This paper addresses the highly important and timely issue of the energy transition, a topic of particular relevance within the European Union (EU), which has long been a global leader in pursuing climate neutrality. The article proposes a novel framework for monitoring energy [...] Read more.
This paper addresses the highly important and timely issue of the energy transition, a topic of particular relevance within the European Union (EU), which has long been a global leader in pursuing climate neutrality. The article proposes a novel framework for monitoring energy transition progress and its temporal dynamics across the EU countries, adopting a decade-long analytical horizon. The research employs the Dynamic Energy Transition Assessment (DETA) method, which is structured around five key pillars of the energy transition: (1) decarbonization and the shift toward clean energy; (2) energy security and system resilience; (3) energy justice, health impacts, and affordability; (4) energy efficiency and energy management; (5) development, innovation, and modernization of energy infrastructure. Applying this method enabled the study to meet its central objective: evaluating the level of development of these pillars, analyzing the balance among them, and examining both the direction and speed of changes over time. This dynamic approach integrates three core components of transformation processes, state, quality (coherence), and pace of change, offering an innovative combination of structural and temporal perspectives. The originality of this framework lies in its ability to capture the multidimensional and evolving nature of the energy transition. The study is based on 19 indicators, with indicator weights determined through Entropy and Criteria Importance Through Intercriteria Correlation (CRITIC) analytical methods, while pillar weights were assigned using the AHP method in alignment with EU strategic priorities. The findings reveal substantial variation and dynamism in the implementation of energy transition processes across the EU countries. Denmark, Sweden, Germany, France, Portugal, and Spain demonstrate the highest performance in terms of both quality and dynamism, whereas Malta, Cyprus, and Luxembourg perform the weakest. The proposed methodology and the resulting assessment of the level, quality, and dynamics of transformation processes offer broad practical applications. In particular, they can support the monitoring of progress toward EU climate and energy policy goals and inform management and decision-making aimed at achieving a resilient, sustainable, and equitable energy transition. Full article
Show Figures

Figure 1

20 pages, 1911 KB  
Article
Spatial Analysis of the Progress of Energy Transition in Europe
by Aurelia Rybak, Andrzej Wilk and Jarosław Joostberens
Energies 2026, 19(2), 353; https://doi.org/10.3390/en19020353 - 11 Jan 2026
Viewed by 126
Abstract
The aim of the presented research was to conduct a spatial analysis of the progress of energy transition in countries of the European Union. The energy transition is understood as replacing fossil fuels with renewable energy sources, reducing greenhouse gas emissions, and improving [...] Read more.
The aim of the presented research was to conduct a spatial analysis of the progress of energy transition in countries of the European Union. The energy transition is understood as replacing fossil fuels with renewable energy sources, reducing greenhouse gas emissions, and improving the energy efficiency of the EU economy. The analysis used statistical data obtained from Eurostat. These data were subjected to spatial analysis, enabling the identification of hot spots and clusters representing spatial variations in the degree of transformation progress. This allowed for the identification of countries with similar dynamics of change, as well as the differences between clusters. The weights of the explanatory variables and the energy transition progress index (ETPI) were also determined. The results obtained allowed the proposal of strategies and energy policies for individual clusters. The ETPI clearly shows that more than half of the EU countries have values of this index below their average. The maximum value of the index is 67% (for Denmark), and only two countries achieved an index of 50%. Therefore, even the leaders of the transition did not achieve their goals completely. There are still areas that need improvement, such as the decarbonization of transportation, industry, and construction. Countries that are lagging behind in their transition should implement measures to accelerate the achievement of decarbonization goals, both in the short term and strategically. Full article
Show Figures

Figure 1

19 pages, 1163 KB  
Article
Impact of Alternative Fuels on IMO Indicators
by José Miguel Mahía-Prados, Ignacio Arias-Fernández and Manuel Romero Gómez
Gases 2026, 6(1), 4; https://doi.org/10.3390/gases6010004 - 8 Jan 2026
Viewed by 297
Abstract
This study provides a comprehensive analysis of the impact of different marine fuels such as heavy fuel oil (HFO), methane, methanol, ammonia, or hydrogen, on energy efficiency and pollutant emissions in maritime transport, using a combined application of the Energy Efficiency Design Index [...] Read more.
This study provides a comprehensive analysis of the impact of different marine fuels such as heavy fuel oil (HFO), methane, methanol, ammonia, or hydrogen, on energy efficiency and pollutant emissions in maritime transport, using a combined application of the Energy Efficiency Design Index (EEDI), Energy Efficiency Operational Indicator (EEOI), and Carbon Intensity Indicator (CII). The results show that methane offers the most balanced alternative, reducing CO2 by more than 30% and improving energy efficiency, while methanol provides an intermediate performance, eliminating sulfur and partially reducing emissions. Ammonia and hydrogen eliminate CO2 but generate NOx (nitrogen oxides) emissions that require mitigation, demonstrating that their environmental impact is not negligible. Unlike previous studies that focus on a single fuel or only on CO2, this work considers multiple pollutants, including SOx (sulfur oxides), H2O, and N2, and evaluates the economic cost of emissions under the European Union Emissions Trading System (EU ETS). Using a representative model ship, the study highlights regulatory gaps and limitations within current standards, emphasizing the need for a global system for monitoring and enforcing emissions rules to ensure a truly sustainable and decarbonized maritime sector. This integrated approach, combining energy efficiency, emissions, and economic evaluation, provides novel insights for the scientific community, regulators, and maritime operators, distinguishing itself from previous multicriteria studies by simultaneously addressing operational performance, environmental impact, and regulatory gaps such as unaccounted NOx emissions. Full article
Show Figures

Figure 1

23 pages, 673 KB  
Article
Advanced Energy Collection and Storage Systems: Socio-Economic Benefits and Environmental Effects in the Context of Energy System Transformation
by Alina Yakymchuk, Bogusława Baran-Zgłobicka and Russell Matia Woruba
Energies 2026, 19(2), 309; https://doi.org/10.3390/en19020309 - 7 Jan 2026
Viewed by 568
Abstract
The rapid advancement of energy collection and storage systems (ECSSs) is fundamentally reshaping global energy markets and accelerating the transition toward low-carbon energy systems. This study provides a comprehensive assessment of the economic benefits and systemic effects of advanced ECSS technologies, including photovoltaic-thermal [...] Read more.
The rapid advancement of energy collection and storage systems (ECSSs) is fundamentally reshaping global energy markets and accelerating the transition toward low-carbon energy systems. This study provides a comprehensive assessment of the economic benefits and systemic effects of advanced ECSS technologies, including photovoltaic-thermal (PV/T) hybrid systems, advanced batteries, hydrogen-based storage, and thermal energy storage (TES). Through a mixed-methods approach combining techno-economic analysis, macroeconomic modeling, and policy review, we evaluate the cost trajectories, performance indicators, and deployment impacts of these technologies across major economies. The paper also introduces a novel economic-mathematical model to quantify the long-term macroeconomic benefits of large-scale ECSS deployment, including GDP growth, job creation, and import substitution effects. Our results indicate significant cost reductions for ECSS by 2050, with battery storage costs projected to fall below USD 50 per kilowatt-hour (kWh) and green hydrogen production reaching as low as USD 1.2 per kilogram. Large-scale ECSS deployment was found to reduce electricity costs by up to 12%, lower fossil fuel imports by up to 25%, and generate substantial GDP growth and job creation, particularly in regions with supportive policy frameworks. Comparative cross-country analysis highlighted regional differences in economic effects, with the European Union, China, and the United States demonstrating the highest economic gains from ECSS adoption. The study also identified key challenges, including high capital costs, material supply risks, and regulatory barriers, emphasizing the need for integrated policies to accelerate ECSS deployment. These findings provide valuable insights for policymakers, industry stakeholders, and researchers aiming to design effective strategies for enhancing energy security, economic resilience, and environmental sustainability through advanced energy storage technologies. Full article
(This article belongs to the Special Issue Energy Economics and Management, Energy Efficiency, Renewable Energy)
Show Figures

Figure 1

39 pages, 6731 KB  
Article
Implementation Pathways for the Sustainable Development of China’s 3D Printing Industry Under the “Dual Carbon” Goals: Policy Optimization and Technological Innovation
by Liuyu Xuan and Yu Zhao
Sustainability 2026, 18(2), 591; https://doi.org/10.3390/su18020591 - 7 Jan 2026
Viewed by 269
Abstract
This study systematically examines the policy and technological pathways for the sustainable development of China’s 3D printing industry under the “Dual Carbon” goals. A three-dimensional sustainability framework is developed, integrating resource efficiency, environmental performance, and socio-economic value. Based on this framework, the study [...] Read more.
This study systematically examines the policy and technological pathways for the sustainable development of China’s 3D printing industry under the “Dual Carbon” goals. A three-dimensional sustainability framework is developed, integrating resource efficiency, environmental performance, and socio-economic value. Based on this framework, the study conducts a full-process analysis covering design, material preparation, manufacturing, post-processing, use, and recycling stages. The analysis identifies key carbon-reduction mechanisms of 3D printing, including material savings, reduced energy consumption, lightweight-enabled emission reduction, and distributed manufacturing. A comparative analysis of China, the European Union, and the United States reveals major constraints in China’s 3D printing sector, particularly in top-level policy design, standardization systems, legal frameworks, industrial coordination, and low-carbon core technologies. Based on these findings, the study proposes a dual-driven development pathway integrating policy optimization and technological innovation. From an institutional perspective, this pathway emphasizes green policy incentives, including strategic planning, standard setting, green finance, and collaborative governance. From a technological perspective, it highlights the importance of low-carbon material development, refined energy-efficiency management, life-cycle carbon accounting platforms, and value creation across the product life cycle. Overall, the study demonstrates that effective policy–technology synergy is essential for transforming theoretical carbon-reduction potential into scalable and practical outcomes, providing a systematic analytical framework for academic research and actionable guidance for policymakers and industry stakeholders. Full article
Show Figures

Figure 1

37 pages, 927 KB  
Review
Circular Economy Pathways for Critical Raw Materials: European Union Policy Instruments, Secondary Supply, and Sustainable Development Outcomes
by Sergiusz Pimenow, Olena Pimenowa and Włodzimierz Rembisz
Sustainability 2026, 18(2), 562; https://doi.org/10.3390/su18020562 - 6 Jan 2026
Viewed by 469
Abstract
Achieving sustainable development in the low-carbon transition requires securing critical raw materials (CRMs) while reducing environmental burdens and strengthening industrial resilience (SDGs 7, 9, 12, 13). This review synthesizes 2016–2025 evidence on how the European Union’s policy package—the Critical Raw Materials Act (CRMA), [...] Read more.
Achieving sustainable development in the low-carbon transition requires securing critical raw materials (CRMs) while reducing environmental burdens and strengthening industrial resilience (SDGs 7, 9, 12, 13). This review synthesizes 2016–2025 evidence on how the European Union’s policy package—the Critical Raw Materials Act (CRMA), the Batteries Regulation, the Ecodesign for Sustainable Products Regulation (ESPR) with Digital Product Passports (DPPs), and the recast Waste Shipments Regulation (WSR)—shapes markets for secondary supply in battery-relevant metals such as lithium, cobalt, nickel, copper, aluminum, and rare earths. We apply a structured scoping review protocol to map the state of the art across policy instruments (EPR, ecodesign/DPP, recycled content mandates, recovery targets, shipment controls) and value chain stages (collection, preprocessing, refining, manufacturing). The analysis highlights benefits, including clearer investment signals, improved traceability, and emerging opportunities for industrial symbiosis, but also identifies drawbacks such as heterogeneous standards, compliance costs, and trade frictions. Evidence gaps remain, especially in causal ex post assessments, price pass-through, and interoperability of MRV/DPP systems. The paper contributes by (i) providing an integrative framework linking policy instruments, value chain stages, and investment signals for secondary CRM supply, and (ii) outlining a research agenda for rigorous ex post evaluation, improved MRV/DPP data architectures, and better alignment between EU trade rules, circularity, and a just energy transition. Full article
Show Figures

Figure 1

Back to TopTop