Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (177)

Search Parameters:
Keywords = Euphorbiaceae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2108 KiB  
Review
Phytochemical Composition and Multifunctional Applications of Ricinus communis L.: Insights into Therapeutic, Pharmacological, and Industrial Potential
by Tokologo Prudence Ramothloa, Nqobile Monate Mkolo, Mmei Cheryl Motshudi, Mukhethwa Michael Mphephu, Mmamudi Anna Makhafola and Clarissa Marcelle Naidoo
Molecules 2025, 30(15), 3214; https://doi.org/10.3390/molecules30153214 - 31 Jul 2025
Viewed by 329
Abstract
Ricinus communis (Euphorbiaceae), commonly known as the castor oil plant, is prized for its versatile applications in medicine, industry, and agriculture. It features large, deeply lobed leaves with vibrant colours, robust stems with anthocyanin pigments, and extensive root systems for nutrient absorption. Its [...] Read more.
Ricinus communis (Euphorbiaceae), commonly known as the castor oil plant, is prized for its versatile applications in medicine, industry, and agriculture. It features large, deeply lobed leaves with vibrant colours, robust stems with anthocyanin pigments, and extensive root systems for nutrient absorption. Its terminal panicle-like inflorescences bear monoecious flowers, and its seeds are enclosed in prickly capsules. Throughout its various parts, R. communis harbours a diverse array of bioactive compounds. Leaves contain tannins, which exhibit astringent and antimicrobial properties, and alkaloids like ricinine, known for anti-inflammatory properties, as well as flavonoids like rutin, offering antioxidant and antibacterial properties. Roots contain ellagitannins, lupeol, and indole-3-acetic acid, known for anti-inflammatory and liver-protective effects. Seeds are renowned for ricin, ricinine, and phenolic compounds crucial for industrial applications such as biodegradable polymers. Pharmacologically, it demonstrates antioxidant effects from flavonoids and tannins, confirmed through minimum inhibitory concentration (MIC) assays for antibacterial activity. It shows potential in managing diabetes via insulin signalling pathways and exhibits anti-inflammatory properties by activating nuclear factor erythroid 2-related factor 2 (Nrf2). Additionally, it has anti-fertility effects and potential anticancer activity against cancer stem cells. This review aims to summarize Ricinus communis’s botanical properties, therapeutic uses, chemical composition, pharmacological effects, and industrial applications. Integrating the current knowledge offers insights into future research directions, emphasizing the plant’s diverse roles in agriculture, medicine, and industry. Full article
Show Figures

Figure 1

25 pages, 6142 KiB  
Article
Cancer Chemopreventive Potential of Claoxylon longifolium Grown in Southern Thailand: A Bioassay-Guided Isolation of Vicenin 1 as the Active Compound and In Silico Studies on Related C-Glycosyl Flavones
by Chuanchom Khuniad, Lutfun Nahar, Anupam D. Talukdar, Rajat Nath, Kenneth J. Ritchie and Satyajit D. Sarker
Molecules 2025, 30(15), 3173; https://doi.org/10.3390/molecules30153173 - 29 Jul 2025
Viewed by 353
Abstract
Claoxylon longifolium (Euphorbiaceae) is an indigenous vegetable that has been used in southern Thai traditional medicine and cuisine. A bioassay-guided approach was adopted to investigate the phytochemicals and chemopreventive potential of C. longifolium leaves and stems. Phytochemical investigation of the active MeOH fractions [...] Read more.
Claoxylon longifolium (Euphorbiaceae) is an indigenous vegetable that has been used in southern Thai traditional medicine and cuisine. A bioassay-guided approach was adopted to investigate the phytochemicals and chemopreventive potential of C. longifolium leaves and stems. Phytochemical investigation of the active MeOH fractions afforded six known compounds, including caffeic acid (1), isovitexin (2), and vicenins 1–3 (3–5) from leaves and hexadecanoic acid methyl ester (6) from stems. Their structures were determined by spectroscopic means. Ten constituents were tentatively identified from the oily fractions of stems by GC-MS. Non-cytotoxic concentrations of compounds 16 were identified using the MTT cell viability assay. The ability of compounds 16 at non-cytotoxic concentrations to induce Nrf2 activation, correlating to their potential chemopreventive properties, was determined using a luciferase reporter assay in the AREc32 cell line. Only vicenin 1 (3) was considered to be a potent chemopreventive compound, as it increased luciferase activity by 2.3-fold. In silico studies on compounds 25 and vitexin (16) revealed the potential of these compounds as cancer chemopreventive and chemotherapeutic agents. This study provides the first report on the chemopreventive properties of C. longifolium. All identified and isolated compounds are reported here for the first time from this species. Full article
Show Figures

Graphical abstract

18 pages, 2839 KiB  
Article
Alien Flora on Weizhou Island, Northern South China Sea: Inventory and Invasion Risk Assessment
by Hong Wei, Xuan Wu and Linyu Bai
Diversity 2025, 17(8), 508; https://doi.org/10.3390/d17080508 - 24 Jul 2025
Viewed by 293
Abstract
Islands subjected to anthropogenic disturbance are highly susceptible to alien plant invasions. However, the alien floral diversity of China’s islands has been insufficiently studied, hindering its control. Weizhou Island (northern South China Sea) has experienced long-term human exploitation. We inventorized its alien, naturalized, [...] Read more.
Islands subjected to anthropogenic disturbance are highly susceptible to alien plant invasions. However, the alien floral diversity of China’s islands has been insufficiently studied, hindering its control. Weizhou Island (northern South China Sea) has experienced long-term human exploitation. We inventorized its alien, naturalized, and invasive vascular plants (based on herbarium specimen data for 2018–2024 and surveys of 112 plots); analyzed species composition, origins, life forms, and habitats; and conducted an invasive species risk assessment. This identified 203 aliens, including infraspecific and hybrid taxa, 129 (63.5%) naturalized and 71 (55.0% of the naturalized species) invasive. The aliens were dominated by the Fabaceae, Asteraceae, and Euphorbiaceae, particularly genera such as Euphorbia, Senna, and Portulaca, originating primarily in North America, Oceania, and Africa. Perennial herbs were the most common lifeform, followed by annual herbs and shrubs. Invasion hotspots were primarily abandoned farmland, roadsides, and agricultural lands. Using the Analytic Hierarchy Process, we classified the 71 invasive species as representing high-risk, moderate-risk, and low-risk (20, 16, and 35 species, respectively). Bidens pilosa, Ageratum conyzoides, Opuntia dillenii, and Leucaena leucocephala pose severe threats to the island ecosystem. This first complete inventory of the alien flora on Weizhou Island offers critical insight into the management of invasive alien plants in island ecosystems. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

36 pages, 3151 KiB  
Article
Floristic Diversity and Stand Structure of Tree Species in Historical Rubber Plantations (Hevea brasiliensis Wild ex A. Juss) in Sankuru, DR Congo: Implications for Biodiversity Conservation
by Joël Mobunda Tiko, Serge Shakanye Ndjadi, Jean Pierre Azenge, Yannick Useni Sikuzani, Lebon Aganze Badesire, Prince Baraka Lucungu, Maurice Kesonga Nsele, Julien Bwazani Balandi, Jémima Lydie Obandza-Ayessa, Josué Muganda Matabaro, Jean Pierre Mate Mweru, Olivia Lovanirina Rakotondrasoa and Jean Pierre Meniko To Hulu
Conservation 2025, 5(3), 37; https://doi.org/10.3390/conservation5030037 - 21 Jul 2025
Viewed by 530
Abstract
The rubber plantations in Sankuru province, located in the Democratic Republic of Congo (DRC), have historically been pivotal to the regional economy. However, the absence of suitable silvicultural practices has promoted self-regeneration, resulting in the proliferation of diverse species. This study aims to [...] Read more.
The rubber plantations in Sankuru province, located in the Democratic Republic of Congo (DRC), have historically been pivotal to the regional economy. However, the absence of suitable silvicultural practices has promoted self-regeneration, resulting in the proliferation of diverse species. This study aims to characterize species richness and plant structure of these plantations. To this end, 80 subplots measuring 0.25 hectares were meticulously established, with a proportionate division between state-owned and farmer plantations. The results obtained from this study indicate that these plantations are home to approximately 105 species, classified into 33 distinct botanical families, with dominant families such as Fabaceae, Meliaceae, Euphorbiaceae, Olacaceae, Clusiaceae, and Moraceae. Despite the similarity between the two types of plantations (Cs = 58%), significant disparities were observed in terms of individuals, 635 ± 84.06 and 828 ± 144.62 (p < 10−3); species, 41 ± 7.49 and 28 ± 4.59 (p < 10−3); families, 19 ± 3.06 and 16 ± 1.62 (p < 10−2); and basal area, 29.88 ± 5.8 and 41.37 ± 7.57 (p < 10−2) for state and peasant plantations, respectively. State plantations exhibited greater diversity (H′ = 1.87) and enhanced equity (J’ = 0.43) than peasant plantations. The diametric structure exhibited an inverted J-shaped distribution, indicating constant and regular regeneration of these plantations. The upper canopy dominates the vertical structure in both types of plantations, with a significantly higher proportion in peasant plantations (83.60%) than in state plantations (73.8%), ANOVA (F (2.24 = 21.78), df = 24; p = 4.03 × 10−6). The findings indicate that the sustainable management of these plantations could incorporate agroecological principles to promote the coexistence of rubber production and biodiversity conservation while contributing to the restoration of degraded ecosystems and the well-being of local communities. Full article
Show Figures

Figure 1

23 pages, 1565 KiB  
Article
Proteomic Analysis and Expression of Selected Genes During the Early Somatic Embryogenesis of Jatropha curcas L.
by Anamarel Edzná Medina-Hernández, Ileana Vera-Reyes, Emmanuel Ríos-Castro, Juan José Torres-Ruiz, Teresa Ponce-Noyola, Gabriela Trejo-Tapia, Adriana Garay-Arroyo, Josefina Barrera-Cortés and Ana C. Ramos-Valdivia
Int. J. Mol. Sci. 2025, 26(13), 6384; https://doi.org/10.3390/ijms26136384 - 2 Jul 2025
Viewed by 1096
Abstract
Jatropha curcas L. is a shrub of the Euphorbiaceae family with non-toxic varieties found in Mexico that holds significant potential for biofuel production and other industrial applications. However, its limited in vitro regenerative capacity is a barrier to the development of productive species. [...] Read more.
Jatropha curcas L. is a shrub of the Euphorbiaceae family with non-toxic varieties found in Mexico that holds significant potential for biofuel production and other industrial applications. However, its limited in vitro regenerative capacity is a barrier to the development of productive species. Somatic embryogenesis (SE) offers a strategy to establish a regeneration system to overcome these challenges and enable genetic improvement. In this work, proteomic and gene expression analyses were utilized to identify key factors involved in SE induction in a non-toxic variety of J. curcas. Two-dimensional electrophoresis (2-DE) in combination with mass spectrometry was used to compare the proteomes of pre-globular and globular somatic embryos. RT-qPCR was used for gene expression analysis of the BBM, AGL15, SERK, IAA26 and eIF3f genes. The globular stage showed enrichment in the pathways related to carbohydrate and energy metabolism, protein folding, and stress response. In addition, the gene expression analysis of selected genes revealed a significantly elevated expression of BBM, AGL15, and IAA26 in globular embryos compared to pre-globular embryos. In contrast, SERK expression was low, and eIF3f expression remained unchanged between stages. These expression patterns may contribute to developmental arrest at the globular stage. These findings provide new insights into the molecular mechanisms regulating early SE in J. curcas and offer potential strategies for improving its propagation and industrial applications. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics: 3rd Edition)
Show Figures

Figure 1

27 pages, 1379 KiB  
Article
A Multifaceted Exploration of Shirakiopsis indica (Willd) Fruit: Insights into the Neuropharmacological, Antipyretic, Thrombolytic, and Anthelmintic Attributes of a Mangrove Species
by Mahathir Mohammad, Md. Jahirul Islam Mamun, Mst. Maya Khatun, Md. Hossain Rasel, M Abdullah Al Masum, Khurshida Jahan Suma, Mohammad Rashedul Haque, Sayed Al Hossain Rabbi, Md. Hemayet Hossain, Hasin Hasnat, Nafisah Mahjabin and Safaet Alam
Drugs Drug Candidates 2025, 4(3), 31; https://doi.org/10.3390/ddc4030031 - 1 Jul 2025
Viewed by 476
Abstract
Background: Shirakiopsis indica (Willd.) (Family: Euphorbiaceae), a mangrove species found in the Asian region, is a popular folkloric plant. Locally, the plant is traditionally used to treat various types of ailments, especially for pain relief. Therefore, the current study investigates the neuropharmacological, [...] Read more.
Background: Shirakiopsis indica (Willd.) (Family: Euphorbiaceae), a mangrove species found in the Asian region, is a popular folkloric plant. Locally, the plant is traditionally used to treat various types of ailments, especially for pain relief. Therefore, the current study investigates the neuropharmacological, antipyretic, thrombolytic, and anthelmintic properties of the S. indica fruit methanolic extract (SIF-ME). Methods: The neuropharmacological activity was evaluated using several bioactive assays, and the antipyretic effect was investigated using the yeast-induced pyrexia method, both in Swiss albino mice models. Human blood clot lysis was employed to assess thrombolytic activity, while in vitro anthelmintic characteristics were tested on Tubifex tubifex. Insights into phytochemicals from SIF-ME have also been reported from a literature review, which were further subjected to molecular docking, pass prediction, and ADME/T analysis and validated the wet-lab outcomes. Results: In the elevated plus maze test, SIF-ME at 400 mg/kg demonstrated significant anxiolytic effects (200.16 ± 1.76 s in the open arms, p < 0.001). SIF-ME-treated mice exhibited increased head dipping behavior and spent a longer time in the light box, confirming strong anxiolytic activity in the hole board and light–dark box tests, respectively. It (400 mg/kg) also significantly reduced depressive behavior during forced swimming and tail suspension tests (98.2 ± 3.83 s and 126.33 ± 1.20 s, respectively). The extract induced strong locomotor activity, causing mice’s mobility to gradually decrease over time in the open field and hole cross tests. The antipyretic effect of SIF-ME (400 mg/kg) was minimal using the yeast-induced pyrexia method, while it (100 μg/mL) killed T. tubifex in 69.33 ± 2.51 min, indicating a substantial anthelmintic action. SIF-ME significantly reduced blood clots by 67.74% (p < 0.001), compared to the control group’s 5.56%. The above findings have also been predicted by in silico molecular docking studies. According to the molecular docking studies, the extract’s constituents have binding affinities ranging from 0 to −10.2 kcal/mol for a variety of human target receptors, indicating possible pharmacological activity. Conclusions: These findings indicate that SIF-ME could serve as a promising natural source of compounds with neuropharmacological, anthelmintic, thrombolytic, and antipyretic properties. Full article
(This article belongs to the Section Drug Candidates from Natural Sources)
Show Figures

Figure 1

10 pages, 4166 KiB  
Communication
The Absolute Configuration Determination of Patagonic Acid
by Eva E. Soto-Guzmán, Hilda J. Pagaza-Ibarra, Antonio J. Oliveros-Ortiz, Gabriela Rodríguez-García, Yliana López, Brenda Y. Bedolla-García, Carlos M. Cerda-García-Rojas, Christine Thomassigny, Mario A. Gómez-Hurtado, Armando Talavera-Alemán and Rosa E. del Río
Molbank 2025, 2025(3), M2027; https://doi.org/10.3390/M2027 - 23 Jun 2025
Viewed by 409
Abstract
(−)-Patagonic acid (1) is a clerodane diterpene isolated from several plants from the Alismataceae, Asteraceae, Euphorbiaceae, Fabaceae, Lamiaceae, Salicaceae, Sapindaceae, and Velloziaceae families, and its biological potential as an inhibitor of butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) and as an anti-inflammatory compound [...] Read more.
(−)-Patagonic acid (1) is a clerodane diterpene isolated from several plants from the Alismataceae, Asteraceae, Euphorbiaceae, Fabaceae, Lamiaceae, Salicaceae, Sapindaceae, and Velloziaceae families, and its biological potential as an inhibitor of butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) and as an anti-inflammatory compound has been described. Furthermore, the enantiomer (+)-1 is also described in Fabaceae and Verbenaceae. A lack of formal studies about the absolute configuration (AC) determination of 1 is emphasized. Thus, the present manuscript describes the AC determination of patagonic acid (1). The chemical correlation of (−)-1 from (−)-hardwickiic acid (2) was achieved by a simplistic oxidative process. The specific rotation value and electronic circular dichroism (ECD) analysis allowed for the AC determination of (−)-1 as (5R,8R,9S,10R)-(−)-patagonic acid. ECD revealed a positive exciton chirality (EC) phenomenon in both (−)-1 and (−)-2, which is directly associated with their configuration and conformational preferences, which were assessed by DFT calculations at the B3LYP/DGDZVP level of theory. Since the NMR data of (+)-1 are fully coincident with those from its enantiomer studied herein, the chirality of (5S,8S,9R,10S)-(+)-patagonic acid could also be determined. These experimental conclusions deeply complement the literature related to clerodane compounds biosynthesized in several families of plants of scientific interest. Full article
(This article belongs to the Section Natural Product Chemistry)
Show Figures

Graphical abstract

22 pages, 3884 KiB  
Review
Castor: A Renewed Oil Crop for the Mediterranean Environment
by Valeria Cafaro, Giorgio Testa and Cristina Patanè
Agronomy 2025, 15(6), 1402; https://doi.org/10.3390/agronomy15061402 - 6 Jun 2025
Viewed by 964
Abstract
Castor (Ricinus communis L.) is a plant belonging to the Euphorbiaceae family originated from Asia or Africa and well adapted to the Mediterranean environment. As an oilseed crop with a high oil content (35–65%), it is nowadays used for biofuels production, with [...] Read more.
Castor (Ricinus communis L.) is a plant belonging to the Euphorbiaceae family originated from Asia or Africa and well adapted to the Mediterranean environment. As an oilseed crop with a high oil content (35–65%), it is nowadays used for biofuels production, with a large potential for applications in chemical and pharmaceutical sectors as well. As for other oilseed crops, the interest towards this crop has grown exponentially in the past decades because of the necessity of limiting fossil fuels, obtaining clean energy, and use of a renewable energy source as required by RED (Renewable Energy Directive) within the European Union. Moreover, castor has a great adaptability in different soil and climate conditions, and it is known as a low-key maintenance crop. These characteristics, together with the necessity of increasing renewable energy sources, with the possibility of re-evaluating marginal lands, make castor the ideal plant to be exploited in the years to come. This review aims at giving useful information regarding its cultivation and soil and climate requirements, providing an overview on its spread on the market. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

35 pages, 9270 KiB  
Article
Ethnobotany of Lao Isan Ethnic Group from Na Chueak District, Maha Sarakham Province, Northeastern Thailand
by Piyaporn Saensouk, Surapon Saensouk, Thawatphong Boonma, Auemporn Junsongduang, Sombat Appamaraka, Kamonwan Koompoot, Khamfa Chanthavongsa and Tammanoon Jitpromma
Horticulturae 2025, 11(5), 497; https://doi.org/10.3390/horticulturae11050497 - 4 May 2025
Cited by 1 | Viewed by 824
Abstract
This study investigates the plant diversity, ethnobotanical knowledge, and traditional uses of plants by the Lao Isan ethnic group in Na Chueak District, Maha Sarakham Province, Thailand. A total of 109 plant species, representing 48 families, were identified, with the Fabaceae, Euphorbiaceae, and [...] Read more.
This study investigates the plant diversity, ethnobotanical knowledge, and traditional uses of plants by the Lao Isan ethnic group in Na Chueak District, Maha Sarakham Province, Thailand. A total of 109 plant species, representing 48 families, were identified, with the Fabaceae, Euphorbiaceae, and Rubiaceae families being the most prevalent. This study highlights the ecological and cultural significance of these plants, many of which serve multiple purposes, including food, medicine, and other purposes. A use value analysis revealed that plants such as Schleichera oleosa (Lour.) Oken, Trigonostemon reidioides (Kurz) Craib, and Vietnamosasa pusilla (A.Chev. & A.Camus) T.Q.Nguyen have high functional importance in local cultural and medical practices. The Relative Frequency of Citation indicated that these species are integral to the community’s plant knowledge, with Trigonostemon reidioides and Vietnamosasa pusilla being especially prominent. Additionally, 62 species were identified for medicinal use, emphasizing the community’s reliance on plant-based remedies. This study also discusses the Informant Consensus Factor and Fidelity Level, which reveal strong agreement on the effectiveness of certain plants, particularly for treating digestive, respiratory, and wound healing conditions. This research contributes to the documentation of ethnobotanical knowledge, emphasizing the importance of traditional plant use for cultural continuity and sustainable resource management. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

16 pages, 3677 KiB  
Article
Effects of Anethole on Renal Function of Swiss Mice
by Romário Pinheiro-Lustosa, Neide Maria Silva Gondim-Pereira, Sarah Aparecida dos Santos Alves, Christina Maeda Takiya, Kerly Shamyra da Silva-Alves, Ana Acacia Sá Pinheiro, Andrelina Noronha Coelho-de-Souza, Maria Diana Moreira-Gomes, Celso Caruso-Neves and José Henrique Leal-Cardoso
Pharmaceuticals 2025, 18(4), 541; https://doi.org/10.3390/ph18040541 - 8 Apr 2025
Viewed by 489
Abstract
Background/Objectives: Anethole, a terpenoid with several pharmacologic effects, is the major constituent of the essential oil of Croton zehntneri (EOCz), Pax & K. Hoffm, Euphorbiaceae. Due to the mild renal toxicity associated with high doses of EOCz, its potential therapeutic effects on several [...] Read more.
Background/Objectives: Anethole, a terpenoid with several pharmacologic effects, is the major constituent of the essential oil of Croton zehntneri (EOCz), Pax & K. Hoffm, Euphorbiaceae. Due to the mild renal toxicity associated with high doses of EOCz, its potential therapeutic effects on several diseases, and the fact that its chemical composition consists of 80% anethole, the renal effects of anethole in mice were investigated. Methods: Mice were randomly divided into eight groups, dosed daily as follows: Group 1—CTRL (control; vehicle only); Groups 2—A100, 3—A1252x, and 4—A250 (dosed with 100, 125 twice daily, and 250 mg/kg, per os anethole); Group 5—SUBAKI (i.p. albumin to induce hyperproteinemia and proteinuria; subclinical acute kidney injury); and Groups 6—SUBAKI+A100, 7—SUBAKI+A1252x, and 8—SUBAKI+A250 (per os anethole + i.p. albumin). Results: The A1252x and A250 groups significantly increased urinary proteinuria and interstitial inflammation (p < 0.001, for these groups). SUBAKI+A100, SUBAKI+A1252x, and SUBAKI+A250 showed a neither protective nor additive effect in the proteinuria induced by anethole and by administered albumin. The anethole-induced proteinuria was spontaneously reversible in approximately 4 weeks. In vitro experiments showed that anethole (300 µg/mL) inhibits albumin uptake from the culture medium by tubular cells. Conclusions: Anethole at high doses bears renal acute toxicity that, although mild and spontaneously fully reversible, must be taken into consideration in a cost–benefit analysis. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

17 pages, 3145 KiB  
Review
Secondary Metabolites from Croton Species and Their Biological Activity on Cell Cycle Regulators
by Jorge Augusto Alamillo-Vásquez, Claudia-Anahí Pérez-Torres, Enrique Ibarra-Laclette, Feliza Ramón-Farías, Pilar Nicasio-Torres and Fulgencio Alatorre-Cobos
Metabolites 2025, 15(4), 216; https://doi.org/10.3390/metabo15040216 - 23 Mar 2025
Viewed by 1276
Abstract
Plant-based traditional medicine integrates beliefs, knowledge, and practices to prevent and treat multiple diseases. Croton is a large and worldwide-spread genus belonging to Euphorbiaceae, a family well known for comprising many species with medicinal properties due to its high diversity of phytochemical constituents [...] Read more.
Plant-based traditional medicine integrates beliefs, knowledge, and practices to prevent and treat multiple diseases. Croton is a large and worldwide-spread genus belonging to Euphorbiaceae, a family well known for comprising many species with medicinal properties due to its high diversity of phytochemical constituents with biological activities. Among the various benefits of Croton species in traditional medicine, its use in cancer treatment has recently received significant attention from the scientific community. This review provides a general overview of different studies on the Croton genus in the research for alternative cancer treatments and the impact of its secondary metabolite catalog on cell cycle targets. Our analysis indicates that just under 30 secondary metabolites have been identified so far in latex and extracts obtained from leaves, twigs, or bark from 22 different Croton species. Based on standard assays using cell lines or human platelets, these molecules show multiple biological activities mainly compromising cell viability and cell cycle progression, supporting the ethnobotanical use of Croton species for cancer treatment. Several studies indicate that Croton metabolites target CDK–cyclin complexes and signaling routes that trigger apoptosis; however, further studies are needed to better understand the molecular mechanisms underlying Croton metabolites’ effects and their accurate future applications in cancer treatment. Full article
Show Figures

Figure 1

32 pages, 1780 KiB  
Systematic Review
South African Medicinal Plants Traditionally Used for Wound Treatment: An Ethnobotanical Systematic Review
by Farzana Fisher (née Rahiman), Charlene Africa, Jeremy Klaasen and Randall Fisher
Plants 2025, 14(5), 818; https://doi.org/10.3390/plants14050818 - 5 Mar 2025
Cited by 1 | Viewed by 2163
Abstract
Microbial contamination of chronic wounds complicates their treatment. Traditional knowledge systems and the diversity of indigenous medicinal plants create a haven for traditional medicine practices in South Africa (SA). This systematic review aims to present a comprehensive ethnobotanical report of traditional medicines used [...] Read more.
Microbial contamination of chronic wounds complicates their treatment. Traditional knowledge systems and the diversity of indigenous medicinal plants create a haven for traditional medicine practices in South Africa (SA). This systematic review aims to present a comprehensive ethnobotanical report of traditional medicines used in the documented empirical wound healing studies in SA. Google Scholar, PubMed, Medline EBSCOhost, Science Direct, and Scopus were sourced using the keywords/terminologies “South Africa”, “medicinal plants”, “traditional medicine” “indigenous”, “skin”, “wound”, “ethnobotany”, “survey”, “interview”, and “treatment” in different combinations. Relevant and unpublished records were retrieved from the Global Electronic Thesis Database. The searching process identified 32,419 records, of which 4005 studies were screened. Following the removal of 1795 duplicates, the remaining 2210 sources were screened by title and abstract, and 133 full-text reports were accessed and evaluated. Plants traditionally used for wound-healing purposes comprised 222 species belonging to 71 families, namely Asteraceae (predominantly the Helichrysum species), Asphodelaceae, Fabaceae, Solanaceae, and Euphorbiaceae. Plant organs used for medicinal remedies included leaves, roots, and bark prepared as poultices, infusions, decoctions, gel/ointments/lotions, and pastes. This review provides a valuable reference for future phytochemical and pharmacological studies and highlights the need for further ethnobotanical research to treat wounds in SA. Full article
(This article belongs to the Special Issue Genetic Resources and Ethnobotany in Aromatic and Medicinal Plants)
Show Figures

Figure 1

14 pages, 7116 KiB  
Article
Chloroplast Markers for Detecting Chinese Tallow (Triadica sebifera) DNA in Environmental Samples
by Rabiu O. Olatinwo, Mohammad Bataineh, Jennifer M. Standley, Anthony P. Abbate, Geoffrey R. Williams and Pierre W. Lau
Forests 2025, 16(3), 437; https://doi.org/10.3390/f16030437 - 27 Feb 2025
Viewed by 691
Abstract
DNA analysis of environmental samples (eDNA) provides a non-intrusive approach to identify organisms, characterize biological communities, and assess biodiversity, including the detection and monitoring of invasive plant effects. However, the use of eDNA for specific applications, such as targeted-species detection, geographic and floral [...] Read more.
DNA analysis of environmental samples (eDNA) provides a non-intrusive approach to identify organisms, characterize biological communities, and assess biodiversity, including the detection and monitoring of invasive plant effects. However, the use of eDNA for specific applications, such as targeted-species detection, geographic and floral source tracing, and assessment of invasive plant ecological and environmental effects, requires the development of species-specific genetic primers. Chinese tallow (Triadica sebifera (L.) Small) is a non-native high-impact invader, capable of changing fire regimes, native biodiversity, nutrient cycling, and wildlife habitat and populations, that is expanding in range and abundance throughout the southern United States. In this study, we investigated and identified specific genetic sites, markers, in the tallow chloroplast genome and developed sets of primers for tallow eDNA detection. Two sets of tallow primers were developed, tallow-specific primers and tallow-related primers. Both sets of primers can be used for tallow eDNA detection, with higher target specificity for tallow-specific primers. Primers were subsequently validated for target specificity against closely related species, samples of tallow tissue, and honey and honey bee-collected pollen from areas with tallow. We found that tallow-specific primers differentiated tallow eDNA from closely related species, demonstrating target specificity. Furthermore, a sequence analysis of the tallow-related primers in the polymerase chain reaction accurately distinguished members of the Hippomaninae subtribe, including tallow, from other subtribe or subfamily members within the Euphorbiaceae. Ultimately, the genetic markers and the corresponding sets of primers will facilitate eDNA analysis of tallow for several applications, including detection and monitoring in water and soil, assurance of honey quality and floral source tracing, and perhaps serving as a model for determining plant use by pollinators. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

17 pages, 3218 KiB  
Article
Anthelmintic Potential and In Silico Studies of Ricinoleic Acid from the Seed Oil of Ricinus communis L.
by Temesgen Berhanu, Eyael Tewelde, Mariamawit Y. Yeshak, Daniel Bisrat and Kaleab Asres
Int. J. Mol. Sci. 2025, 26(4), 1636; https://doi.org/10.3390/ijms26041636 - 14 Feb 2025
Cited by 2 | Viewed by 1024
Abstract
The prevalence of human intestinal helminth parasitic infections is extensive, with over half of the global population estimated to suffer from these infections. Traditionally, various plant species, including Ricinus communis L. (Euphorbiaceae), are used to treat helminth infections. In this study, ricinoleic acid [...] Read more.
The prevalence of human intestinal helminth parasitic infections is extensive, with over half of the global population estimated to suffer from these infections. Traditionally, various plant species, including Ricinus communis L. (Euphorbiaceae), are used to treat helminth infections. In this study, ricinoleic acid was isolated from the base hydrolysate of the petroleum ether seed extract of R. communis using column chromatography and transformed into ricinoleic acid methyl ester through esterification. The extract, ricinoleic acid and its methyl ester were evaluated for their anthelmintic activities against the model organism Caenorhabditis elegans. The results revealed that at a concentration of 1 mg/mL, ricinoleic acid and its methyl ester killed 97.40% and 97.83% of C. elegans worms, respectively. Molecular docking studies of ricinoleic acid on succinate dehydrogenase (SDH), glucose-6-phosphate 1-dehydrogenase (G6PD), and tubulin beta-2 chain (TBB2C) revealed that ricinoleic acid has a more favorable interaction with succinate dehydrogenase (−5.408 kcal/mol) compared to glucose-6-phosphate 1-dehydrogenase (−3.758 kcal/mol) and tubulin beta-2 chain (−1.444 kcal/mol). Furthermore, Absorption, Distribution, Metabolism, and Excretion (ADME) analyses unveiled that ricinoleic acid adheres to Lipinski’s rule of five, positioning it as a potential compound to treat helminths. The current study demonstrated that R. communis seed oil possesses genuine anthelmintic activity against C. elegans, which is likely due to ricinoleic acid. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

51 pages, 948 KiB  
Review
Pharmacological Significance, Medicinal Use, and Toxicity of Extracted and Isolated Compounds from Euphorbia Species Found in Southern Africa: A Review
by Ipeleng Kopano Rosinah Kgosiemang, Relebohile Lefojane, Ayodeji Mathias Adegoke, Oludare Ogunyemi, Samson Sitheni Mashele and Mamello Patience Sekhoacha
Plants 2025, 14(3), 469; https://doi.org/10.3390/plants14030469 - 5 Feb 2025
Cited by 2 | Viewed by 2414
Abstract
This study documents the Euphorbiaceae family of plants in Southern Africa, with a focus on their traditional medicinal applications, pharmacological properties, toxicity, and active secondary metabolites. A review of the literature from scientific journals, books, dissertations, and conference papers spanning from 1962 to [...] Read more.
This study documents the Euphorbiaceae family of plants in Southern Africa, with a focus on their traditional medicinal applications, pharmacological properties, toxicity, and active secondary metabolites. A review of the literature from scientific journals, books, dissertations, and conference papers spanning from 1962 to 2023 was conducted for 15 Euphorbia species. Recent findings indicate that specific compounds found in Euphorbia plants exhibit significant biological and pharmacological properties. However, the white sticky latex sap they contain is highly toxic, although it may also have medicinal applications. Phytochemical analyses have demonstrated that these plants exhibit beneficial effects, including antibacterial, antioxidant, antiproliferative, anticancer, anti-inflammatory, antiviral, antifungal, and anti-HIV activities. Key phytochemicals such as euphol, cycloartenol, tirucallol, and triterpenoids contribute to their therapeutic efficacy, along with various proteins like lectin and lysozyme. Despite some Euphorbiaceae species undergoing screening for medicinal compounds, many remain insufficiently examined, highlighting a critical gap in the research literature. Given their historical usage, further investigations are essential to evaluate the medicinal significance of Euphorbia species through detailed studies of isolated compounds and their pharmacokinetics and pharmacodynamics. This research will serve as a valuable resource for future inquiries into the benefits of lesser-studied Euphorbia species. Full article
Show Figures

Figure 1

Back to TopTop