Floristic Diversity and Stand Structure of Tree Species in Historical Rubber Plantations (Hevea brasiliensis Wild ex A. Juss) in Sankuru, DR Congo: Implications for Biodiversity Conservation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Inventory Method
2.2.2. Experimental Design, Sampling, and Botanical Inventory
2.3. Data Analysis
2.3.1. Composition and Floristic Richness of Rubber Plantations
- Degree of disturbance of rubber plantations
- Relative density
- Relative dominance
- Importance value index
- Species rarefaction and individual-species curves
- Horizontal and vertical structure
2.3.2. Characterization of Floristic Diversity in Rubber Plantations
2.3.3. Assessing the Similarity of Different Plantations
3. Results
3.1. Rubberwood Density in the Inventory Year (2023) for Both Types of Plantations
3.2. Floristic Composition of Sankuru Rubber Plantations
3.2.1. Floristic Richness and Basal Area
3.2.2. Relative Abundance
3.2.3. Relative Dominance of Species
3.2.4. Relative Dominance of Families
3.2.5. Species Rarefaction Curve
3.2.6. Importance Value Index of Species and Families
3.3. Floristic Diversity of Sankuru Rubber Plantations
3.3.1. Shannon Diversity Index
3.3.2. Simpson’s Diversity Index
3.3.3. Piélou Equitability Index
3.3.4. Floristic Similarity of Different Plantation Types
3.4. Structure of Rubber Plantations in Sankuru
3.5. Vertical Structure of Rubber Plantations in Sankuru
3.6. Species Light—Requirement Composition
3.7. Chorological Spectra and Phytogeographical Affinity of Two Plantation Types
4. Discussion
4.1. Methodological
4.1.1. Inventory Protocol and Sampling
4.1.2. Floristic and Structural Characterization of Sankuru Rubber Plantations
4.2. Current Density of Historical Rubber Plantations in Sankuru
4.3. Floristic Composition of Historical Rubber Plantations in Sankuru
4.3.1. Floristic Richness, Specificity, Diversity, and Similarity Indices
4.3.2. Species Rarefaction Curve and Area-Species Curve
4.4. Structure of Historical Rubber Plantations in Sankuru
4.5. Functional Composition and Disturbance in Historic Rubber Plantations in Sankuru: Challenges for Biodiversity Conservation
4.6. The Role of Sankuru Rubber Plantations as Secondary Reservoirs of Guinean-Congolese Biodiversity and Ecological Corridors in a Deforestation Context
4.7. Implications for Biodiversity Conservation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DBH | Diameter at Breast Height |
G | Basal Area |
DRC | Democratic Republic of the Congo |
INERA | National Institute for Agronomic Study and Research |
PI | Pioneer Index |
NDVI | Normalized Difference Vegetation Index |
NTFP | Non-Timber Forest Product |
REDD+ | Reducing Emissions from Deforestation and Forest Degradation. The “+” refers to the Role of Conservation, Sustainable Forest Management, and Enhancement of Forest Carbon Stocks in Developing Countries |
References
- Tiko, J.M.; Ndjadi, S.S.; Obandza-ayessa, J.L.; Banga, D.B.; Balandi, J.B.; Musavandalo, C.M.; Pierre, J.; Mweru, M.; Michel, B.; Rakotondrasoa, O.L.; et al. Farmers’ Perception of Ecosystem Services Provided by Historical Rubber Plantations in Sankuru Province, DR Congo. Conservation 2025, 5, 7. [Google Scholar] [CrossRef]
- Michel, B.; Lumbuenamo, R.; Konunga, G.; Kasereka, P. Développement des Outils et Méthodes d’Aide à la Décision dans des Dires Protégées (AP) Diblées par le 11ème FED en République Démocratique du Congo, 2016; Union Européenne—Délégation en République Démocratique du Congo: Kinshasa, Democratic Republic of the Congo, 2017. [Google Scholar]
- Gitz, V.; Meybeck, A.; Pinizzotto, S.; Nair, L.; Penot, E.; Baral, H.; Xu, J. Sustainable Development of Rubber Plantations: Challenges and Opportunities. In Proceedings of the XV World Forestry Congress, Seoul, Republic of Korea, 2–6 May 2022; pp. 1–10. [Google Scholar]
- Lewis, S.L.; Edwards, D.P.; Galbraith, D. Increasing Human Dominance of Tropical Forests. Science 2015, 349, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Aide, T.M.; Ma, Y.; Liu, W.; Cao, M. Demand for Rubber Is Causing the Loss of High Diversity Rain Forest in SW China. Biodivers. Conserv. 2007, 16, 1731–1745. [Google Scholar] [CrossRef]
- Patari, P.; Barma, M.D.; Devi, H.B.; Dasgupta, S. Large Scale Hevea Brasiliensis Plantation Impact on Non-Human Primate and Floral Diversity in Khowai District of Tripura. Environ. Ecol. 2023, 41, 1400–1407. [Google Scholar] [CrossRef]
- Lan, G.; Wu, Z.; Chen, B.; Xie, G. Species Diversity in a Naturally Managed Rubber Plantation in Hainan Island, South China. Trop. Conserv. Sci. 2017, 10, 1940082917712427. [Google Scholar] [CrossRef]
- Gouyon, A.; de Foresta, H.; Levang, P. Does ‘Jungle Rubber’ Deserve Its Name? An Analysis of Rubber Agroforestry Systems in Southeast Sumatra. Agrofor. Syst. 1993, 22, 181–206. [Google Scholar] [CrossRef]
- Wibawa, G.; Joshi, L.; Van Noordwijk, M.; Penot, E. Rubber Based Agroforestry Systems (RAS) as Alternatives for Rubber Monoculture System. In Proceedings of the International Natural Rubber Conference—IRRDB Annual Meeting, Ho Chi Minh City, Vietnam, 13–17 November 2006; p. 22. [Google Scholar]
- Beuve-Mery, J. Enquête Socio-Économique Dans Les Territoires de Lodja—Lomela—Kole, Province Du Sankuru, RDC Contribuant à La Formulation d’ Un Projet de Promotion Des Activités Génératrices de Revenu Dans La Zone d’ Influence Du Parc de La Salonga. Unpublished Master’s Thesis, Université de Liège, Liège, Belgique, 2015; p. 116. [Google Scholar]
- De Roover, E. Analyse de la chaîne de valeur hévéa selon la méthode VCA4D, dans les territoires de Lodja et Lomela, province du Sankuru, RDC, en vue de la relance de la filière. Unpublished Master’s Thesis, Université de Liège, Liège, Belgique, 2022. 109. Available online: https://matheo.uliege.be/bitstream/2268.2/13863/4/TFE_final_DEROOVER.pdf (accessed on 16 December 2024).
- Wang, Y.; Hollingsworth, P.M.; Zhai, D.; West, C.D.; Green, J.M.H.; Chen, H.; Hurni, K.; Su, Y.; Warren-Thomas, E.; Xu, J.; et al. High-Resolution Maps Show That Rubber Causes Substantial Deforestation. Nature 2023, 623, 340–346. [Google Scholar] [CrossRef] [PubMed]
- APROMAC. Production de Caoutchouc en Côte d’Ivoire. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038970 (accessed on 18 December 2024).
- Ballo, E.K. Effet de Differentes Techniques Culturales sur les Parametres agro- Physiologiques et Sanitaires de l’Hevea (Hevea brasiliensis MUELL. ARG) au Sud-Ouest de la Côte d’Ivoire Candidat. 2019. Available online: https://dicames.online/jspui/handle/20.500.12177/4010?mode=full (accessed on 19 December 2024).
- Coulibaly, B. Évaluation de la capacité de séquestration de Carbone par une Plantation d’hévéa en Côte d’Ivoire; Centre National de Recherche Agronomique (CNRA): Abidjan, Côte d’Ivoire, 2023. [Google Scholar]
- Nsele, M.K.; Ndjadi, S.S.; Musavandalo, C.M.; Mujike, D.N.; Bachinyaga, I.M.; Kalumbu, J.T.; Mutwedu, E.M.; Tiko, J.M.; Murhula, S.I.; Tshamba Y’onyowokoma, F.; et al. Community Perceptions and Determinants of the Sustained Conservation of Historical Rubber Plantations in the Lomela and Lodja Territories, Sankuru Province, Democratic Republic of the Congo. Conservation 2025, 5, 33. [Google Scholar] [CrossRef]
- Enabel. Description de l’action. In Neutralité Climatique, Conservation et économie Verte à Partir d’une Filière Hévéa Inclusive dans les Territoires de Lomela et Lodja (Province du Sankuru); Enabel: Bruxelles, Belgium, 2022; Volume 32, pp. 1–39. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://capacity4dev.europa.eu/media/127576/download/6b4f3f2d-8b32-4267-94b2-72f8b4953b40_en&ved=2ahUKEwisjJ_OsZqLAxVbr1YBHfKBIG0QFnoECBIQAQ&usg=AOvVaw0N_YbUHrjYaX1gPjI5tqtl (accessed on 3 June 2023).
- Tiko, J.M.; Ndjadi, S.S.; Obandza-ayessa, J.L.; Pierre, J.; Mweru, M.; Michel, B.; Beeckman, H.; Rakotondrasoa, O.L.; Pierre, J.; To, M. Carbon Sequestration Potential in Rubber Plantations: A Complementary Approach to Tropical Forest Conservation Strategies, a Review. Earth 2025, 6, 21. [Google Scholar] [CrossRef]
- Singh, W.; Zakari, S.; Wu, J.; Yang, B.; Jiang, X.J.; Zhu, X.; Zou, X.; Zhang, W.; Chen, C.; Singh, R.; et al. A Global Review of Rubber Plantations: Impacts on Ecosystem Functions, Mitigations, Future Directions, and Policies for Sustainable Cultivation. Sci. Total Environ. 2021, 796, 148948. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.P.; Heleno, R.H.; Costa, J.M.; Valente, M.; Mata, V.A.; Gonçalves, S.C.; da Silva, A.A.; Alves, J.; Ramos, J.A. Natural Woodlands Hold More Diverse, Abundant, and Unique Biota than Novel Anthropogenic Forests: A Multi-Group Assessment. Eur. J. For. Res. 2019, 138, 461–472. [Google Scholar] [CrossRef]
- Dow Goldman, E.; Weisse, M.; Harris, N.; Schneider, M. Estimating the Role of Seven Commodities in Agriculture-Linked Deforestation: Oil Palm, Soy, Cattle, Wood Fiber, Cocoa, Coffee, and Rubber; World Resources Institute: Washington, DC, USA, 2020; pp. 1–22. [Google Scholar] [CrossRef]
- Descals, A.; Wich, S.; Meijaard, E.; Gaveau, D.L.A.; Peedell, S.; Szantoi, Z. High-Resolution Global Map of Smallholder and Industrial Closed-Canopy Oil Palm Plantations. Earth Syst. Sci. Data 2021, 13, 1211–1231. [Google Scholar] [CrossRef]
- Carlson, K.M.; Curran, L.M.; Ratnasari, D.; Pittman, A.M.; Soares-Filho, B.S.; Asner, G.P.; Trigg, S.N.; Gaveau, D.A.; Lawrence, D.; Rodrigues, H.O. Committed Carbon Emissions, Deforestation, and Community Land Conversion from Oil Palm Plantation Expansion in West Kalimantan, Indonesia. Proc. Natl. Acad. Sci. USA 2012, 109, 7559–7564. [Google Scholar] [CrossRef] [PubMed]
- Zou, R.; Sultan, H.; Muse Muhamed, S.; Khan, M.N.; Pan, J.; Liao, W.; Li, Q.; Cheng, S.; Tian, J.; Cao, Z.; et al. Sustainable Integration of Rubber Plantations within Agroforestry Systems in China: Current Research and Future Directions. Plant Sci. Today 2024, 11, 421–431. [Google Scholar] [CrossRef]
- Qi, D.; Wu, Z.; Yang, C.; Tao, Z.; Zhao, L.; Zhang, Y.; Fu, Q. Exploration and Practice of Rubber Based Agroforestry Complex Systems in China. Adv. Biosci. Biotechnol. 2023, 14, 479–491. [Google Scholar] [CrossRef]
- Lisingo, J. Organisation Spatiale de La Diversité Spécifique d’arbres En Forêt Tropicale Dans Le Bassin Nord-Est de La Cuvette Centrale Congolaise Département d’Ecologie et Gestion Des Ressources Végétales. Ph.D. Thesis, University of Kisangani, Kisangani, Democratic Republic of the Congo, 2016. [Google Scholar]
- Ngueliele, A. La Problématique de la Gestion Des Déchets Liquides Dans la Province du Sankuru en République Démocratique du CONGO. Unpublished P.h.D. Thesis, Université Libre de Bruxelles, Bruxelles, Belgium, 2022. [Google Scholar]
- Picard, N. Manuel de Construction d’ Équations Allométriques Pour l’Estimation Du Volume et La Biomasse Des Arbres; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Apg, I.V. An Update of the Angiosperm Phylogeny Group Classification for the Orders and Families of Flowering Plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing—[Logiciel]; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Beina, D. Diversité Floristique de La Forêt Dense Semi-Décidue de Mbaïki, En République Centrafricaine: Étude Expérimentale de l’impact de Deux Types d’intervention Sylvicole. Ph.D. Thesis, Université de Picardie Jules Verne, Amiens, France, 2011; p. 218. [Google Scholar]
- Hamiliton, A. African Forests. In Tropical Rain Forest Ecosystems: Biogeographical and Ecological Studies (Ecosystems of the World 14B); Leith, H., Werger, M.J.A., Eds.; Elsevier: Amsterdam, The Netherlands, 1989; Volume 4, pp. 155–182. [Google Scholar]
- Senterre, B. Recherches Méthodologiques Pour La Typologie de La Végétation et La Phytogéographie Des Forêts Denses d’Afrique Tropicale. Acta Bot. Gall. 2005, 152, 409–419. [Google Scholar] [CrossRef]
- Tchouto, M.G.P.; De Boer, W.F.; De Wilde, J.J.F.E.; Van der Maesen, L.J.G. Diversity Patterns in the Flora of the Campo-Ma’an Rain Forest, Cameroon: Do Tree Species Tell It All? Biodivers. Conserv. 2006, 15, 1353–1374. [Google Scholar] [CrossRef]
- Nhimba, S.M. Étude floristique, écologique et phytosociologique des forêts de l’île Mbiye à Kisangani, République Démocratique du Congo. P.h.D. Thesis, Université libre de Bruxelles, Faculté des Sciences—Sciences biologiques, Bruxelles, Belgium, 2008. [Google Scholar]
- Lebrun, J.P.; Stork, A.L.; Goldblatt, P.; Gautier, L.; Polhill, R.M. Enumération Des Plantes à Fleurs d’Afrique Tropicale; Conservatoire et Jardin Botaniques de la Ville de Geneve: Genève, Switzerland, 1997; Volume 4, p. 178. [Google Scholar]
- Ndjele, M. Les Éléments Phytogéographiques Endémiques Dans La Flore Vasculaire Du Zaïre. Ph.D. Thesis, Université Libre de Bruxelles, Bruxelles, Belgium, 1998. [Google Scholar]
- Sonké, B. Études floristiques et structurales des forêts de la Réserve de Faune du Dja (Cameroun). Ph.D. Thesis, Faculté des Sciences, Université Libre de Bruxelles (ULB), Bruxelles, Belgium, 1998; p. 267. [Google Scholar]
- Collier, J. L’hévéaculture chez les autochtones du Nord-Sankuru. Bulletin Agricole du Congo belge. 1957. Vol. XLVIII, N°6, p. 1465. Available online: https://www.abebooks.com/book-search/title/bulletin-agricole-du-congo-belge/?utm_source=chatgpt.com (accessed on 3 June 2023).
- Fox, J. Using the R Commander; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Fox, J.; Bouchet-Valat, M. Rcmdr: R Commander (2.9-2) [Logiciel]. 2024. Available online: https://cran.r-project.org/web/packages/Rcmdr/index.html (accessed on 16 December 2024).
- Hawthorne, W. Holes and the Sums of Parts in Ghanaian Forest: Regeneration, Scale and Sustainable Use. Proc. R. Soc. Edinb. Sect. B Biol. Sci. 1996, 104, 75–176. [Google Scholar] [CrossRef]
- Aya Diane, H.L. Biodiversité et Gestion Durable Des Ecosystèmes Végétation Des Zones Anciennement Occupées Par Les Plantations Au Sud-Est Du Parc National de Taï (Sud-Ouest de La Côte d’Ivoire). Geoscience 2023. [Google Scholar] [CrossRef]
- Picard, N.; Saint-André, L.; Henry, M. Manual for Building Tree Volume and Biomass Allometric Equations: From Field Measurement to Prediction. Manual for Building Tree Volume and Biomass Allometric Equations: From Field Measurement to Prediction, FAO; Food and Agricultural Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Bauwens, S.; Fayolle, A. Protocole de Collecte Des Données Sur Le Terrain et Au Laboratoire Nécessaires Pour Quantifier La Biomasse Aérienne Des Arbres et Pour l’établissement d’équations Allométriques; Nature +: London, UK, 2014. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pielou, E.C. Shannon’s Formula as a Measure of Specific Diversity: Its Use and Misuse. Am. Nat. 1966, 100, 463–465. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Felfili, J.M.; da Silva Júnior, M.C.; Sevilha, A.C.; Fagg, C.W.; Teles Walter, B.M.; Nogueira, P.E.; Rezende, A.V. Diversity, Floristic and Structural Patterns of Cerrado Vegetation in Central Brazil. Plant Ecol. 2004, 175, 37–46. [Google Scholar] [CrossRef]
- Magurran, A.E. Measuring Biological Diversity. 2004, p. 264. Available online: http://www2.ib.unicamp.br/profs/thomas/NE002_2011/maio10/Magurran%202004%20c2-4.pdf (accessed on 1 June 2025).
- Sørensen, T. A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species and Its Application to Analyses of the Vegetation on Danish Commons. Biol. Shrifter 2024, 4, 1–32. [Google Scholar]
- Lokonda, M. Structure Forestière, Propriétés Physico-Chimiques Du Sol et Indices Pédo-Anthracologiques de Perturbations Comparés Entre La Forêt Monodominante à Gilbertiodendron Dewevrei (De Wild.) J. Léonard et La Forêt Mixte Adjacente. Cas de La Réserve Forestière. Ph.D. Thesis, Université de Kisangani, Kisangani, Democratic Republic of the Congo, 2018. [Google Scholar]
- Gillet, J. Mosaïque Forestière Du Nord de La République Du Congo: Origines et Modalités de Gestion Du Congo: Origines et Modalités de Gestion. République du Congo. 2013. Available online: https://agris.fao.org/search/en/providers/122397/records/64738c6cce9437aa76febe17 (accessed on 16 December 2024).
- Kasekete, D.K.; Ligot, G.; Mweru, J.P.M.; Drouet, T.; Rousseau, M.; Moango, A.; Bourland, N. Growth, Productivity, Biomass and Carbon Stock in Eucalyptus Saligna and Grevillea Robusta Plantations in North Kivu, Democratic Republic of the Congo. Forests 2022, 13, 1508. [Google Scholar] [CrossRef]
- Doucet, J.-L. L’alliance Délicate de La Gestion Forestière et de La Biodiversité Dans Les Forêts Du Centre de Gabon. Ph.D. Thesis, Faculté Universitaire des Sciences Agronomiques de Gembloux, Gembloux, Belgium, 2003; p. 323. [Google Scholar] [CrossRef]
- Sonké, B. Forêts de La Reserve Du Dja (Cameroun), Études Floristiques et Structurales. Scr. Bot. Belg. 2004, 32, 144. [Google Scholar]
- Gonmadje, C.F.; Doumenge, C.; Sunderland, T.C.H.; Balinga, M.P.B.; Sonké, B. Analyse Phytogéographique Des Forêts d’Afrique Centrale: Le Cas Du Massif de Ngovayang (Cameroun). Plant Ecol. Evol. 2012, 145, 152–164. [Google Scholar] [CrossRef]
- Hubau, W.; Lewis, S.L.; Phillips, O.L.; Affum-Baffoe, K.; Beeckman, H.; Cuní-Sanchez, A.; Daniels, A.K.; Ewango, C.E.N.; Fauset, S.; Mukinzi, J.M.; et al. Asynchronous Carbon Sink Saturation in African and Amazonian Tropical Forests. Nature 2020, 579, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Blanc, L. Les Formations Forestières Du Parc National de Cat Tien (Viêtnam): Caractérisation Structurale et Floristique, Étude de La Régénération Naturelle et de La Dynamique Successionnelle. Ph.D. Thesis, Université Claude Bernard-Lyon, Villeurbanne, France, 1998. [Google Scholar]
- Phillips, O.L.; Martínez, R.V.; Vargas, P.N.; Monteagudo, A.L.; Zans, M.E.C.; Sánchez, W.G.; Cruz, A.P.; Timaná, M.; Yli-Halla, M.; Rose, S. Efficient Plot-Based Floristic Assessment of Tropical Forests Oliver. J. Trop. Ecol. 2003, 19, 629–645. [Google Scholar] [CrossRef]
- Kouob, B.S. Organisation de La Diversité Végétale Dans Les Forêts Matures de Terre Ferme Du Sud-Est Cameroun. Ph.D. Thesis, Université Libre de Bruxelles, Brussels, Belgium, 2009; p. 188. [Google Scholar]
- Amani, C. Vegetation Patterns and Role of Edaphic Heterogeneity on Plant Communities in Semi-Deciduous Forests from the Congo Basin; Universite Libre De Bruxelles: Brussel, Belgium, 2011; pp. 2010–2011. [Google Scholar]
- Mobunda, J.; Ndongo, E.; Miafuntila, B.P.; Ebwa, J.; Meniko, J.P. Analyse Socio-Environnementale Des Indicateurs de La Dynamique Du Climat Tels Que Perçus Par La Population Riveraine de La Réserve Forestière de Masako. Rev. Marocaine Sci. Agron. Vétérinaires 2020, 8, 151–157. [Google Scholar]
- Bustillo, E.; Raets, L.; Beeckman, H.; Bourland, N.; Rousseau, M.; Hubau, W.; De Mil, T. Evaluation Du Potentiel Énergétique de La Biomasse Aérienne Ligneuse Des Anciennes Plantations de l’INERA Yangambi; CIFOR: Bogor, Indonesia, 2018. [Google Scholar]
- Yuan, X.; Yang, B.; Liu, W.; Wu, J.; Li, X. Intercropping with Cash Crops Promotes Sustainability of Rubber Agroforestry: Insights from Litterfall Production and Associated Carbon and Nutrient Fluxes. Eur. J. Agron. 2024, 154, 127071. [Google Scholar] [CrossRef]
- Anahendo, F. Contribution à l’Étude Des Forets Sacrées Du Secteur Lukumbe En République Démocratique Du Congo. Mouv. Enjeux Sociaux 2022, 122, 94–101. [Google Scholar]
- Ayingweu, C.L. Analyse Phytogeographique de La Flore Forestiere Du Secteur Du Kasai Au Congo-Kinshasa. Syst. Geogr. Plants 2001, 71, 859. [Google Scholar] [CrossRef]
- Leplae, E. La Culture de l’Hévéa Au Congo Belge. Rev. Bot. Appliquée D’agriculture Colon. 1926, 6, 204–218. [Google Scholar] [CrossRef]
- Meniko, T.H.; Drazo, A.; Iyongo, L.; Mweru, M.; Akaibe, D.; Bogaert, J. Affiliation Aux Habitats et Mobilité Spécifique de Rongeurs Dans Un Paysage Fragmenté à Masako. In Les Forêts de la Tshopo: Écologie, Histoire et Composition; Presses Agronomiques de Gembloux: Gembloux, Belgium, 2020; p. 31. [Google Scholar]
- Joshi, L. Jungle Rubber: A Traditional Agroforestry System Under Pressure; International Centre for Research in Agroforestry (ICRAF): Bogor, Indonesia, 2002. [Google Scholar]
- Awokou, K.; Ganglo, C.; Azontondé, H.; Adjakidje, V.; De Foucault, B. Caractéristiques Structurales et Écologiques Des Phytocénoses Forestières de La Forêt Classée d’itchèdè (Département Du Plateau, Sud-Est Bénin). Sci. Nat. 2009, 6, 127–139. [Google Scholar] [CrossRef]
- Devineau, J.L. Structure et Dynamique de Quelques Forets Tropophiles del’ Ouest Africain (Cote d’ivoire). Ph.D. Thesis, Université Pierre et Marie Curie-Paris VI, Paris, France, 2009; p. 71. [Google Scholar]
- Schnitzer, S.A.; Bongers, F. Increasing Liana Abundance and Biomass in Tropical Forests: Emerging Patterns and Putative Mechanisms. Ecol. Lett. 2011, 14, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Appiah-Badu, K.; Anning, A.K.; Eshun, B.; Mensah, G. Land Use Effects on Tree Species Diversity and Soil Properties of the Awudua Forest, Ghana. Glob. Ecol. Conserv. 2022, 34, e02051. [Google Scholar] [CrossRef]
- Norden, N.; Chazdon, R.L.; Chao, A.; Jiang, Y.; Vílchez-Alvarado, B. Resilience of Tropical Rain Forests: Tree Community Reassembly in Secondary Forests. Ecol. Lett. 2009, 12, 385–394. [Google Scholar] [CrossRef] [PubMed]
Territories | Site | Type of Plantation | Average Altitude (m) | Number of Subplots (0.25 ha) | Number of Plots (1 ha) |
---|---|---|---|---|---|
Lomela | Mukumari/INERA | State-Owned | 548.6 | 40 | 10 |
Lodja | Shenga | Peasant | 556.3 | 4 | 1 |
Lodja | Etakamela | Peasant | 531.1 | 16 | 4 |
Lodja | Tsheko | Peasant | 520.4 | 8 | 2 |
Lodja | Edjondjo | Peasant | 502.2 | 8 | 2 |
Lodja | Loketo | Peasant | 505.1 | 4 | 1 |
Total | 80 | 20 |
Parameters | State Plantations | Peasant Plantations | p-Value | ||
---|---|---|---|---|---|
Total | Average per Hectare (Mean ± SD) | Total | Average per Hectare (Mean ± SD) | ||
Number of trees | 6353 | 635 ± 84.06 | 8277 | 828 ± 144.62 | 0.00034 |
Number of species | 75 | 41 ± 7.49 | 74 | 28 ± 4.59 | 0.00034 |
Number of genera | 63 | 25 ± 2.3 | 71 | 27.5 ± 4.86 | - |
Number of families | 27 | 19 ± 3.06 | 33 | 16 ± 1.62 | 0.00556 |
Basal area | 298.8 | 29.88 ± 5.8 | 413.7 | 41.37 ± 7.57 | 0.00142 |
State Plantations | Peasant Plantations | ||
---|---|---|---|
Species | IVI (%) | Species | IVI (%) |
Hevea brasiliensis | 61.76 | Hevea brasiliensis | 84.44 |
Plagiostyles africana | 7.17 | Plagiostyles africana | 2.64 |
Petersianthus macrocarpus | 5.08 | Piptadeniastrum africanum | 1.58 |
Hymenocardia ulmoides | 4.14 | Barteria nigritana | 1.56 |
Piptadeniastrum africanum | 2.43 | Hymenocardia ulmoides | 0.86 |
Bellucia grossularioides | 2.20 | Petersianthus macrocarpus | 0.79 |
Caloncoba welwitschii | 1.15 | Trilepisium madagascariense | 0.76 |
Pterocarpus soyauxii | 0.89 | Funtumia elastica | 0.71 |
Grewia trinervia | 0.87 | Antiaris toxicaria | 0.53 |
Gilletiodendron kisantuense | 0.86 | Pterocarpus soyauxii | 0.49 |
Albizia gummifera | 0.84 | Symphonia globulifera | 0.45 |
Barteria nigritana | 0.69 | Celtis tessmannii | 0.42 |
Carapa procera | 0.64 | Elaeis guineensis | 0.37 |
Trilepisium madagascariense | 0.62 | Staudtia kamerunensis | 0.31 |
Funtumia elastica | 0.59 | Coelocaryon preussii | 0.27 |
Albizia adianthifolia | 0.53 | Canarium schweinfurthii | 0.23 |
Celtis tessmannii | 0.51 | Pycnanthus angolensis | 0.23 |
Macaranga spinosa | 0.48 | Treculia africana | 0.21 |
Macaranga monandra | 0.45 | Trichilia heudelotii | 0.19 |
Treculia africana | 0.43 | Carapa procera | 0.19 |
Odyendea gabunensis | 0.40 | Macaranga monandra | 0.19 |
Uapaca heudelotii | 0.40 | Alstonia boonei | 0.17 |
Voacanga chalotiana | 0.39 | Allanblackia floribunda | 0.17 |
Antiaris toxicaria | 0.37 | Albizia gummifera | 0.16 |
Heisteria parvifolia | 0.35 | Caloncoba welwitschii | 0.14 |
Trichilia prieureana | 0.35 | Margaritaria discoidea | 0.12 |
Coelocaryon preussii | 0.34 | Albizia ferruginea | 0.10 |
Cynometra sessiliflora | 0.34 | Grewia trinervia | 0.10 |
Strombosiopsis tetrandra | 0.26 | Macaranga spinosa | 0.09 |
Dialium excelsum | 0.25 | Lannea welwitschii | 0.08 |
Scorodophloeus zenkeri | 0.23 | Blighia welwitschii | 0.08 |
Parinari excelsa | 0.21 | Uapaca heudelotii | 0.07 |
Albizia ferruginea | 0.21 | Ficus exaspera | 0.07 |
Staudtia kamerunensis | 0.20 | Pachylobus osika | 0.07 |
Pycnanthus angolensis | 0.20 | Tetrapleura tetraptera | 0.07 |
Garcinia punctata | 0.18 | Myrianthus arboreus | 0.06 |
Combretum lokele | 0.17 | Tridesmostemon | 0.06 |
Dialium pachyphyllum | 0.15 | Xylopia africana | 0.06 |
Cleistanthus caudatus | 0.14 | Chrysophyllum africana | 0.06 |
Myrianthus arboreus | 0.12 | Maesopsis eminii | 0.06 |
Trichilia gilgiana | 0.12 | Morinda lucida | 0.05 |
Microdesmis yafungana | 0.12 | Entandrophragma cylindricum | 0.05 |
Albizia kalkora | 0.12 | Milicia excelsa | 0.04 |
Cynometra hankei | 0.11 | Pentaclethra macrophylla | 0.04 |
Symphonia globulifera | 0.11 | Tetrorchidium didymostemon | 0.04 |
Prioria oxyphylla | 0.11 | Raphia sp. | 0.04 |
Xylopia aethiopica | 0.10 | Cleistanthus caudatus | 0.04 |
Musanga cecropioides | 0.10 | Polygala parviflora | 0.04 |
Garcinia kola | 0.10 | Cola gigantea | 0.03 |
Ricinodendron heudelotii | 0.10 | Odyendea gabunensis | 0.03 |
Julbernardia seretii | 0.10 | Amphimas pterocarpoides | 0.03 |
Trichilia heudelotii | 0.09 | Melicope accedens | 0.03 |
Blighia welwitschii | 0.09 | Diogoa zenkeri | 0.03 |
Entandrophragma candollei | 0.09 | Tabernaemontana crassa | 0.03 |
Cleistopholis glauca | 0.09 | Ongokea gore | 0.03 |
Strombosia grandifolia | 0.08 | Ricinodendron heudelotii | 0.03 |
Turraeanthus africanus | 0.08 | Anonidium mannii | 0.02 |
Ongokea gore | 0.07 | Dialium excelsum | 0.02 |
Autranella congolensis | 0.07 | Aidia micrantha | 0.02 |
Uapaca guineensis | 0.06 | Grossera macrantha | 0.02 |
Tessmannia africana | 0.06 | Garcinia epunctata | 0.02 |
Amphimas pterocarpoides | 0.05 | Leonardoxa romii | 0.02 |
Allanblackia floribunda | 0.05 | Microdesmis yafungana | 0.02 |
Leplaea laurentii | 0.05 | Leplaea laurentii | 0.02 |
Zanthoxylum gilletii | 0.05 | Ceiba pentandra | 0.01 |
Aidia micrantha | 0.05 | Parinari excelsa | 0.01 |
Pseudospondias microcarpa | 0.04 | Cynometra hankei | 0.01 |
Alstonia boonei | 0.04 | Musanga cecropioides | 0.01 |
Copaifera religiosa | 0.03 | Turraeanthus africanus | 0.01 |
Strombosia pustulata | 0.03 | Anthonotha fragrans | 0.01 |
Paramacrolobium coeruleum | 0.03 | Syncephalum dulcificum | 0.01 |
Entandrophragma angolense | 0.02 | Diospyros crassiflora | 0.01 |
Sterculia dawei | 0.01 | Entandrophragma angolense | 0.01 |
Irvingia excelsa | 0.01 | Pachylobus edulis | 0.01 |
Lannea welwitschii | 0.01 | ||
Total | 100 | Total | 100 |
State Plantations | Peasant Plantations | ||
---|---|---|---|
Botanical Families | IVI (%) | Botanical Families | IVI (%) |
Euphorbiaceae | 69.96 | Euphorbiaceae | 87.45 |
Fabaceae | 7.33 | Fabaceae | 2.53 |
Lecythidaceae | 5.08 | Moraceae | 1.61 |
Phyllanthaceae | 4.74 | Passifloraceae | 1.56 |
Melastomataceae | 2.20 | Phyllanthaceae | 1.09 |
Meliaceae | 1.44 | Apocynaceae | 0.90 |
Moraceae | 1.41 | Myristicaceae | 0.81 |
Achariaceae | 1.15 | Lecythidaceae | 0.79 |
Apocynaceae | 1.01 | Clusiaceae | 0.63 |
Malvaceae | 0.88 | Meliaceae | 0.47 |
Olacaceae | 0.79 | Cannabaceae | 0.42 |
Myristicaceae | 0.73 | Arecaceae | 0.41 |
Passifloraceae | 0.69 | Burseraceae | 0.31 |
Cannabaceae | 0.51 | Achariaceae | 0.14 |
Clusiaceae | 0.44 | Malvaceae | 0.14 |
Simaroubaceae | 0.40 | Sapotaceae | 0.12 |
Urticaceae | 0.22 | Annonaceae | 0.08 |
Chrysobalanaceae | 0.21 | Anacardiaceae | 0.08 |
Annonaceae | 0.19 | Sapindaceae | 0.08 |
Combretaceae | 0.17 | Urticaceae | 0.07 |
Pandaceae | 0.12 | Rubiaceae | 0.07 |
Sapindaceae | 0.09 | Rhamnaceae | 0.06 |
Sapotaceae | 0.07 | Olacaceae | 0.05 |
Rutaceae | 0.05 | Polygalaceae | 0.04 |
Rubiaceae | 0.05 | Simaroubaceae | 0.03 |
Anacardiaceae | 0.05 | Rutaceae | 0.03 |
Irvingiaceae | 0.01 | Pandaceae | 0.02 |
Chrysobalanaceae | 0.01 | ||
Asteraceae | 0.01 | ||
Ebenaceae | 0.01 | ||
Total | 100 | Total | 100 |
Index | State Plantations | Peasant Plantations | p-Value | ||
---|---|---|---|---|---|
Total | Mean ± SD | Total | Mean ± SD | ||
Shannon (H′) | 1.87 | 1.71 ± 0.53 | 0.93 | 0.86 ± 0.42 | 0.0010 |
Fairness (J) | 0.43 | 0.46 ± 0.13 | 0.22 | 0.26 ± 0.12 | 0.0017 |
Simpson (1-D) | 0.60 | 0.58 ± 0.17 | 0.28 | 0.29 ± 0.16 | 0.0010 |
Chorology | State Plantation | Peasant Plantation | ||
---|---|---|---|---|
N | % | N | % | |
Guinean-Congolese endemic species | ||||
OGC | 35 | 47.30 | 36 | 49.32 |
BGC | 25 | 33.78 | 20 | 27.40 |
FC | 3 | 4.05 | 4 | 5.48 |
C | 1 | 1.35 | - | - |
Sous-total | 64 | 86.48 | 60 | 82.2 |
Wide-ranging species | ||||
AA | 2 | 2.70 | 3 | 4.11 |
AM | 1 | 1.35 | 1 | 1.37 |
Paléo | - | - | 1 | 1.37 |
Pan | - | - | 1 | 1.37 |
Sous-total | 1 | 1.35 | 3 | 4.11 |
Linking species | ||||
AT | 7 | 9.46 | 7 | 9.59 |
Sous-total | 7 | 9.46 | 7 | 9.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mobunda Tiko, J.; Ndjadi, S.S.; Azenge, J.P.; Sikuzani, Y.U.; Badesire, L.A.; Lucungu, P.B.; Nsele, M.K.; Balandi, J.B.; Obandza-Ayessa, J.L.; Matabaro, J.M.; et al. Floristic Diversity and Stand Structure of Tree Species in Historical Rubber Plantations (Hevea brasiliensis Wild ex A. Juss) in Sankuru, DR Congo: Implications for Biodiversity Conservation. Conservation 2025, 5, 37. https://doi.org/10.3390/conservation5030037
Mobunda Tiko J, Ndjadi SS, Azenge JP, Sikuzani YU, Badesire LA, Lucungu PB, Nsele MK, Balandi JB, Obandza-Ayessa JL, Matabaro JM, et al. Floristic Diversity and Stand Structure of Tree Species in Historical Rubber Plantations (Hevea brasiliensis Wild ex A. Juss) in Sankuru, DR Congo: Implications for Biodiversity Conservation. Conservation. 2025; 5(3):37. https://doi.org/10.3390/conservation5030037
Chicago/Turabian StyleMobunda Tiko, Joël, Serge Shakanye Ndjadi, Jean Pierre Azenge, Yannick Useni Sikuzani, Lebon Aganze Badesire, Prince Baraka Lucungu, Maurice Kesonga Nsele, Julien Bwazani Balandi, Jémima Lydie Obandza-Ayessa, Josué Muganda Matabaro, and et al. 2025. "Floristic Diversity and Stand Structure of Tree Species in Historical Rubber Plantations (Hevea brasiliensis Wild ex A. Juss) in Sankuru, DR Congo: Implications for Biodiversity Conservation" Conservation 5, no. 3: 37. https://doi.org/10.3390/conservation5030037
APA StyleMobunda Tiko, J., Ndjadi, S. S., Azenge, J. P., Sikuzani, Y. U., Badesire, L. A., Lucungu, P. B., Nsele, M. K., Balandi, J. B., Obandza-Ayessa, J. L., Matabaro, J. M., Mweru, J. P. M., Rakotondrasoa, O. L., & Hulu, J. P. M. T. (2025). Floristic Diversity and Stand Structure of Tree Species in Historical Rubber Plantations (Hevea brasiliensis Wild ex A. Juss) in Sankuru, DR Congo: Implications for Biodiversity Conservation. Conservation, 5(3), 37. https://doi.org/10.3390/conservation5030037