The Absolute Configuration Determination of Patagonic Acid
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Plant Material
4.3. Extraction and Isolation of (−)-Hardwickiic Acid (2)
4.4. Chemical Correlation of (−)-Patagonic Acid (1) from (−)-Hardwickiic Acid (2)
4.5. Conformational Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lima, J.R.; Marinho, E.M.; Alencar de Menezes, J.E.S.; Mendes, F.R.S.; da Silva, A.W.; Ferreira, M.K.A.; Santos, O.L.; Barbosa, I.M.; Marinho, E.S.; Marinho, M.M.; et al. Biological properties of clerodane-type diterpenes. J. Anal. Pharm. Res. 2022, 11, 56–64. [Google Scholar]
- Martínez-Casares, R.M.; Hernández-Vázquez, L.; Mandujano, A.; Sánchez-Pérez, L.; Pérez-Gutiérrez, S.; Pérez-Ramos, J. Anti-inflammatory and cytotoxic activities of clerodane-type diterpenes. Molecules 2023, 28, 4744. [Google Scholar] [CrossRef]
- Hagiwara, H. Total syntheses of clerodane diterpenoids—A review. Nat. Prod. Commun. 2019, 14. [Google Scholar] [CrossRef]
- Li, R.; Morris-Natschkeb, S.L.; Lee, K.-H. Clerodane diterpenes: Sources, structures, and biological activities. Nat. Prod. Rep. 2016, 33, 1166–1226. [Google Scholar] [CrossRef]
- Rivera, A.P.; Fiani, F.; Castillo, M. 15α-Hydroxy-β-amyrin and patagonic acid from Baccharis magellanica and Baccharis patagonica. J. Nat. Prod. 1988, 51, 155–157. [Google Scholar] [CrossRef]
- Kobayashi, J.; Sekiguchi, M.; Shigemori, H.; Ohsaki, A. Echinophyllins A and B, novel nitrogen-containing clerodane diterpenoids from Echinodorus macrophyllus. Tetrahedron Lett. 2000, 41, 2939–2943. [Google Scholar] [CrossRef]
- Singh, P.; Jain, S.; Jakupovic, J. Clerodane derivatives from Grangea maderaspatana. Phytochemistry 1988, 27, 1537–1539. [Google Scholar] [CrossRef]
- Mora, S.; Castro, V.; Poveda, L.; Chavarría, M.; Murillo, R. Two new 3,4-seco-ent-kaurenes and other constituents from the Costa Rican endemic species Croton megistocarpus. Helv. Chim. Acta 2011, 94, 1888–1892. [Google Scholar] [CrossRef]
- Pinto, A.C.; Braga, W.F.; Rezende, C.M.; Garrido, F.M.S.; Veiga, V.F.; Bergter, L.; Patitucci, M.L.; Antunes, O.A.C. Separation of acid diterpenes of Copaifera cearensis Huber ex Ducke by flash chromatography using potassium hydroxide impregnated silica gel. J. Braz. Chem. Soc. 2000, 11, 355–360. [Google Scholar] [CrossRef]
- Avila, D.; Medina, J.D.; Deeming, A.J. A new clerodane-type diterpenoid from Eperua leucantha. J. Nat. Prod. 1992, 55, 845–850. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Lin, J.-J.; Chen, S.-R.; Hwang, T.-L.; Fang, S.-Y.; Korinek, M.; Chen, C.-Y.; Lin, Y.-S.; Wu, T.-Y.; Yen, M.-H.; et al. Clerodane diterpenoids from Callicarpa hypoleucophylla and their anti-inflammatory activity. Molecules 2020, 25, 2288. [Google Scholar] [CrossRef] [PubMed]
- Bi, D.-W.; Zhao, Y.-X.; Qiu, X.; Zhang, X.-C.; Zhou, Y.-L.; Zeb, M.A.; Pang, W.-H.; Li, R.; Wang, M.-R.; Cheng, B.; et al. Callicarpanes A–L, twelve new clerodane diterpenoids with NLRP3 inflammasome inhibitory activity from Callicarpa integerrima. Chem. Biodivers. 2023, 20, e202200985. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, V.U.; Farooq, U.; Abbaskhan, A.; Hussain, J.; Abbasi, M.A.; Nawaz, S.A.; Choudhary, M.I. Four new diterpenoids from Ballota limbata. Helv. Chim. Acta 2004, 87, 682–689. [Google Scholar] [CrossRef]
- Ayatollahi, S.A.; Kobarfard, F.; Asgarpanah, J.; Rahmati, R.M.; Fanai, G.; Iqbal, C.M. Diterpenoids of Otostegia persica (Burm.) Boiss. DARU 2009, 17, 290–293. [Google Scholar]
- Wang, W.; Ali, Z.; Li, X.-C.; Smillie, T.A.; Guo, D.-A.; Khan, I.A. New clerodane diterpenoids from Casearia sylvestris. Fitoterapia 2009, 80, 404–407. [Google Scholar] [CrossRef]
- Huang, Z.; Jiang, M.-Y.; Zhou, Z.-Y.; Xu, D. Two new clerodane diterpenes from Dodonaea viscosa. Z. Naturforsch. B 2010, 65, 83–86. [Google Scholar] [CrossRef]
- Pinto, M.E.F.; da Silva, M.S.; Schindler, E.; Barbosa, F.J.M.; dos Santos, E.-B.R.; Castello-Branco, M.V.S.; de Fatima, A.M.; Fechine, T.J. 3′,8″-biisokaempferide, a cytotoxic biflavonoid and other chemical constituents of Nanuza plicata (Velloziaceae). J. Braz. Chem. Soc. 2010, 21, 1819–1824. [Google Scholar] [CrossRef]
- Heymann, H.; Tezuka, Y.; Kikuchi, T.; Supriyadna, S. Constituents of Sindora sumatrana MIQ. III. New trans-clerodane diterpenoids from the dried pods. Chem. Pharm. Bull. 1994, 42, 1202–1207. [Google Scholar] [CrossRef]
- Jung, H.J.; Chung, S.Y.; Nam, J.W.; Chae, S.W.; Lee, Y.-J.; Seo, E.-K.; Lee, H.J. Inhibition of P-glycoprotein-induced multidrug resistance by a clerodane-type diterpenoid from Sindora sumatrana. Chem. Biodivers. 2010, 7, 2095–2101. [Google Scholar] [CrossRef]
- Jang, D.S.; Min, H.-Y.; Jeong, Y.-H.; Lee, S.K.; Seo, E.-K. Di-and sesqui-terpenoids isolated from the pods of Sindora sumatrana and their potential to inhibit lipopolysaccharide-induced nitric oxide production. Arch. Pharm. Res 2004, 27, 291–294. [Google Scholar] [CrossRef]
- Iqbal, K.; Malik, A.; Mukhtar, N.; Anis, I.; Khan, S.N.; Choudhary, M.I. α-Glucosidase inhibitory constituents from Duranta repens. Chem. Pharm. Bull. 2004, 52, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Batista, J.M.; Da Silva Bolzani, V. Determination of the absolute configuration of natural product molecules using vibrational circular dichroism. Stud. Nat. Prod. Chem. 2014, 41, 383–417. [Google Scholar] [CrossRef]
- Kong, L.Y.; Wang, P. Determination of the Absolute Configuration of Natural Products. Chin. J. Nat. Med. 2013, 11, 193–198. [Google Scholar] [CrossRef]
- Gómez-Hurtado, M.A.; Torres-Valencia, J.M.; Manríquez-Torres, J.; del Río, R.E.; Motilva, V.; García-Mauriño, S.; Ávila, J.; Talero, E.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P. Absolute configuration of labdanes and ent-clerodanes from Chromolaena pulchella by vibrational circular dichroism. Phytochemistry 2011, 72, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Misra, R.; Pandey, R.C.; Dev, S. The absolute stereochemistry of hardwickiic acid and its congeners. Tetrahedron Lett. 1968, 9, 2681–2684. [Google Scholar] [CrossRef]
- Huang, B.; Guo, L.; Jia, Y. Protecting-group-free enantioselective synthesis of (−)-pallavicinin and (+)-neopallavicinin. Angew. Chem. Int. Ed. 2015, 54, 13599–13603. [Google Scholar] [CrossRef]
- Badovskaya, L.A.; Povarova, L.V. Oxidation of furans (Review). Chem. Heterocycl. Compd. 2009, 45, 1023–1034. [Google Scholar] [CrossRef]
- Talavera-Alemán, A.; Gómez-Hurtado, M.A.; Rodríguez-García, G.; Ochoa-Zarzosa, A.; Thomassigny, C.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P.; del Río, R.E. Preparation and cytotoxic evaluation of vouacapane oxidation products. Heterocycles 2020, 100, 207–224. [Google Scholar] [CrossRef]
- Nishidono, Y.; Tanaka, K. Structural revision of tinotufolins from Tinospora crispa leaves guided by empirical rules and DFT calculations. J. Nat. Prod. 2024, 87, 774–782. [Google Scholar] [CrossRef]
- Nishidono, Y.; Tanaka, K. New clerodane diterpenoids from Solidago altissima and stereochemical elucidation via 13C NMR chemical shift analysis. Tetrahedron 2022, 110, 132691. [Google Scholar] [CrossRef]
- Bellier, T.G.; Fomo, F.F.A.; Mas-Claret, E.; Langat, M.K.; Frese, M.; Nouga, B.A.; Duplex, W.A.; Kamdem, W.A.F.; Sewald, N.; Ndjakou, L.B. Cytotoxic clerodane diterpenoids from the roots of Casearia barteri Mast. RSC Adv. 2024, 14, 23109–23117. [Google Scholar] [CrossRef]
- Escandón-Rivera, S.M.; Andrade-Cetto, A.; Rosas-Ramírez, D.G.; Arreguín-Espinosa, R. Phytochemical screening and isolation of new ent-clerodane diterpenoids from Croton guatemalensis Lotsy. Plants 2022, 11, 3159. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zheng, Z.; Chen, C.; Wang, H.; Liu, H.; Li, J.; Sun, C.; Lou, H.; Pan, W. New clerodane diterpenoids from Callicarpa pseudorubella and their antitumor proliferative activity. Fitoterapia 2024, 174, 105878. [Google Scholar] [CrossRef]
- You, J.-Q.; Liu, Y.-N.; Zhou, J.-S.; Sun, X.-Y.; Lei, C.; Mu, Q.; Li, J.-Y.; Hou, A.-J. cis-Clerodane Diterpenoids with structural diversity and anti-inflammatory activity from Tinospora crispa. Chin. J. Chem. 2022, 40, 2882–2892. [Google Scholar] [CrossRef]
- Weiss, U.; Ziffer, H. Cotton effects of α,β-unsaturated carboxylic acids. J. Org. Chem. 1963, 28, 1248–1251. [Google Scholar] [CrossRef]
- Beecham, A.F. The CD of αβ-unsaturated lactones. Tetrahedron 1972, 28, 5543–5554. [Google Scholar] [CrossRef]
- Nyulászi, L. Near UV spectra of furan and its derivatives. J. Mol. Struct. 1992, 273, 133–138. [Google Scholar] [CrossRef]
- Bustos-Brito, C.; Montaño-Hernández, P.Y.; Salas-Huerta, O.; Ramírez-González, D.I.; Pérez-Juanchi, D.; Torres-Medicis, J.P.; Macías-Rubalcava, M.L.; Bedolla-García, B.Y.; Zamudio, S.; Quijano, L.; et al. Phytotoxic neo-clerodane and rearranged neo-clerodane type diterpenoids from Salvia albiflora. Tetrahedron 2025, 174, 134490. [Google Scholar] [CrossRef]
- Rasyid, F.A.; Fukuyoshi, S.; Ando, H.; Miyake, K.; Atsumi, T.; Fujie, T.; Saito, Y.; Goto, M.; Shinya, T.; Mikage, M.; et al. A novel clerodane diterpene from Vitex cofassus. Chem. Pharm. Bull. 2017, 65, 116–120. [Google Scholar] [CrossRef]
- Katiyar, A.; Thompson, W.H. Temperature dependence of peptide conformational equilibria from simulations at a single temperature. J. Phys. Chem. A 2021, 125, 2374–2384. [Google Scholar] [CrossRef]
- Dong, M. A Minireview on Temperature dependent protein conformational sampling. Protein J. 2021, 40, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, S.; Rositano, V.; Senaldi, L.; Bernardi, A.; Allegrini, P.; Appendino, G. Scalemic natural products. Nat. Prod. Rep. 2023, 40, 1647–1671. [Google Scholar] [CrossRef] [PubMed]
- Arreaga-González, H.M.; Oliveros-Ortiz, H.J.; del Río, R.E.; Rodríguez-García, G.; Torres-Valencia, J.M.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P.; Gómez-Hurtado, M.A. Methodology for the absolute configuration determination of epoxythymols using the constituents of Piptothrix areolare. J. Nat. Prod. 2021, 84, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Arreaga-González, H.M.; Pardo-Novoa, J.C.; del Río, R.E.; Rodríguez-García, G.; Torres-Valencia, J.M.; Manríquez-Torres, J.J.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P.; Gómez-Hurtado, M.A. Methodology for the absolute configuration determination of epoxythymols using the constituents of Ageratina glabrata. J. Nat. Prod. 2018, 81, 63–71. [Google Scholar] [CrossRef]
- Finefield, J.M.; Sherman, D.H.; Kreitman, M.; Williams, R.M. Enantiomeric Natural Products: Occurrence and Biogenesis. Angew. Chem. Int. Ed. 2012, 51, 4802–4836. [Google Scholar] [CrossRef]
- Yu, J.-H.; Zhai, H.-J.; Yu, Z.-P.; Zhang, Q.-Q.; Ge, Y.-X.; Zhang, Y.-Y.; Jiang, C.-S.; Zhang, H. Methyl 2-naphthoates from a traditional Chinese herb Morinda officinalis var. officinalis. Tetrahedron 2009, 75, 3793–3801. [Google Scholar] [CrossRef]
- Yu, J.-H.; Yu, Z.-P.; Capon, R.J.; Zhang, H. Natural Enantiomers: Occurrence, Biogenesis and Biological Properties. Molecules 2022, 27, 1279. [Google Scholar] [CrossRef]
- Ceramella, J.; Iacopetta, D.; Franchini, A.; De Luca, M.; Saturnino, C.; Andreu, I.; Sinicropi, M.S.; Catalano, A. A Look at the Importance of Chirality in Drug Activity: Some Significative Examples. Appl. Sci. 2022, 12, 10909. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soto-Guzmán, E.E.; Pagaza-Ibarra, H.J.; Oliveros-Ortiz, A.J.; Rodríguez-García, G.; López, Y.; Bedolla-García, B.Y.; Cerda-García-Rojas, C.M.; Thomassigny, C.; Gómez-Hurtado, M.A.; Talavera-Alemán, A.; et al. The Absolute Configuration Determination of Patagonic Acid. Molbank 2025, 2025, M2027. https://doi.org/10.3390/M2027
Soto-Guzmán EE, Pagaza-Ibarra HJ, Oliveros-Ortiz AJ, Rodríguez-García G, López Y, Bedolla-García BY, Cerda-García-Rojas CM, Thomassigny C, Gómez-Hurtado MA, Talavera-Alemán A, et al. The Absolute Configuration Determination of Patagonic Acid. Molbank. 2025; 2025(3):M2027. https://doi.org/10.3390/M2027
Chicago/Turabian StyleSoto-Guzmán, Eva E., Hilda J. Pagaza-Ibarra, Antonio J. Oliveros-Ortiz, Gabriela Rodríguez-García, Yliana López, Brenda Y. Bedolla-García, Carlos M. Cerda-García-Rojas, Christine Thomassigny, Mario A. Gómez-Hurtado, Armando Talavera-Alemán, and et al. 2025. "The Absolute Configuration Determination of Patagonic Acid" Molbank 2025, no. 3: M2027. https://doi.org/10.3390/M2027
APA StyleSoto-Guzmán, E. E., Pagaza-Ibarra, H. J., Oliveros-Ortiz, A. J., Rodríguez-García, G., López, Y., Bedolla-García, B. Y., Cerda-García-Rojas, C. M., Thomassigny, C., Gómez-Hurtado, M. A., Talavera-Alemán, A., & del Río, R. E. (2025). The Absolute Configuration Determination of Patagonic Acid. Molbank, 2025(3), M2027. https://doi.org/10.3390/M2027