Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (174)

Search Parameters:
Keywords = Eddy diffusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2159 KiB  
Article
A New Depth-Averaged Eulerian SPH Model for Passive Pollutant Transport in Open Channel Flows
by Kao-Hua Chang, Kai-Hsin Shih and Yung-Chieh Wang
Water 2025, 17(15), 2205; https://doi.org/10.3390/w17152205 - 24 Jul 2025
Viewed by 278
Abstract
Various nature-based solutions (NbS)—such as constructed wetlands, drainage ditches, and vegetated buffer strips—have recently demonstrated strong potential for mitigating pollutant transport in open channels and river systems. Numerical modeling is a widely adopted and effective approach for assessing the performance of these interventions. [...] Read more.
Various nature-based solutions (NbS)—such as constructed wetlands, drainage ditches, and vegetated buffer strips—have recently demonstrated strong potential for mitigating pollutant transport in open channels and river systems. Numerical modeling is a widely adopted and effective approach for assessing the performance of these interventions. This study presents the first development of a two-dimensional (2D) meshless advection–diffusion model based on an Eulerian smoothed particle hydrodynamics (SPH) framework, specifically designed to simulate passive pollutant transport in open channel flows. The proposed model marks a pioneering application of the ESPH technique to environmental pollutant transport problems. It couples the 2D depth-averaged shallow water equations with an advection–diffusion equation to represent both fluid motion and pollutant concentration dynamics. A uniform particle arrangement ensures that each fluid particle interacts symmetrically with eight neighboring particles for flux computation. To represent the pollutant transport process, the dispersion coefficient is defined as the sum of molecular and turbulent diffusion components. The turbulent diffusion coefficient is calculated using a prescribed turbulent Schmidt number and the eddy viscosity obtained from a Smagorinsky-type mixing-length turbulence model. Three analytical case studies, including one-dimensional transcritical open channel flow, 2D isotropic and anisotropic diffusion in still water, and advection–diffusion in a 2D uniform flow, are employed to verify the model’s accuracy and convergence. The model demonstrates first-order convergence, with relative root mean square errors (RRMSEs) of approximately 0.2% for water depth and velocity, and 0.1–0.5% for concentration. Additionally, the model is applied to a laboratory experiment involving 2D pollutant dispersion in a 90° junction channel. The simulated results show good agreement with measured velocity and concentration distributions. These findings indicate that the developed model is a reliable and effective tool for evaluating the performance of NbS in mitigating pollutant transport in open channels and river systems. Full article
Show Figures

Figure 1

19 pages, 5629 KiB  
Article
A Numerical Investigation of the Flame Characteristics of a CH4/NH3 Blend Under Different Swirl Intensity and Diffusion Models
by Ahmed Adam, Ayman Elbaz, Reo Kai and Hiroaki Watanabe
Energies 2025, 18(15), 3921; https://doi.org/10.3390/en18153921 - 23 Jul 2025
Viewed by 191
Abstract
This study investigates the effects of diffusion modeling and swirl intensity on flow fields and NO emissions in CH4/NH3 non-premixed swirling flames using large eddy simulations (LESs). Simulations are performed for a 50/50 ammonia–methane blend at three global equivalence ratios [...] Read more.
This study investigates the effects of diffusion modeling and swirl intensity on flow fields and NO emissions in CH4/NH3 non-premixed swirling flames using large eddy simulations (LESs). Simulations are performed for a 50/50 ammonia–methane blend at three global equivalence ratios of 0.77, 0.54, and 0.46 and two swirl numbers of 8 and 12, comparing the unity Lewis number (ULN) and mixture-averaged diffusion (MAD) models against the experimental data includes OH-PLIF and ON-PLIF reported in a prior study by the KAUST group. Both models produce similar flow fields, but the MAD model alters the flame structure and species distributions due to differential diffusion (DD) and limitations in its Flamelet library. Notably, the MAD library lacks unstable flame branch solutions, leading to extensive interpolation between extinction and stable branches. This results in overpredicted progress variable source terms and reactive scalars, both within and beyond the flame zone. The ULN model better reproduces experimental OH profiles and localizes NO formation near the flame front, whereas the MAD model predicts broader NO distributions due to nitrogen species diffusion. Higher swirl intensities shorten the flame and shift NO production upstream. While a low equivalence ratio provides enough air for good mixing, lower ammonia and higher NO contents in exhaust gases, respectively. Full article
Show Figures

Figure 1

23 pages, 9064 KiB  
Article
A Computational Thermo-Fluid Dynamics Simulation of Slot Jet Impingement Using a Generalized Two-Equation Turbulence Model
by Antonio Mezzacapo, Rossella D’Addio and Giuliano De Stefano
Energies 2025, 18(14), 3862; https://doi.org/10.3390/en18143862 - 20 Jul 2025
Viewed by 1021
Abstract
In this study, a computational thermo-fluid dynamics simulation of a wide-slot jet impingement heating process is performed. The present configuration consists of a turbulent incompressible air jet impinging orthogonally on an isothermal cold plate at a Reynolds number of around 11,000. The two-dimensional [...] Read more.
In this study, a computational thermo-fluid dynamics simulation of a wide-slot jet impingement heating process is performed. The present configuration consists of a turbulent incompressible air jet impinging orthogonally on an isothermal cold plate at a Reynolds number of around 11,000. The two-dimensional mean turbulent flow field is numerically predicted by solving Reynolds-averaged Navier–Stokes (RANS) equations, where the two-equation eddy viscosity k-ω model is utilized for turbulence closure. As the commonly used shear stress transport variant overpredicts heat transfer at the plate due to excessive turbulent diffusion, the recently developed generalized k-ω (GEKO) model is considered for the present analysis, where the primary model coefficients are suitably tuned. Through a comparative analysis of the various solutions against one another, in addition to reference experimental and numerical data, the effectiveness of the generalized procedure in predicting both the jet flow characteristics and the heat transfer at the plate is thoroughly evaluated, while determining the optimal set of model parameters. By improving accuracy within the RANS framework, the importance of model adaptability and parameter tuning for this specific fluid engineering application is demonstrated. This study offers valuable insights for improving predictive capability in turbulent jet simulations with broad engineering implications, particularly for industrial heating or cooling systems relying on wide-slot jet impingement. Full article
(This article belongs to the Special Issue Computational Fluids Dynamics in Energy Conversion and Heat Transfer)
Show Figures

Figure 1

18 pages, 2946 KiB  
Article
Feasibility of Observing Glymphatic System Activity During Sleep Using Diffusion Tensor Imaging Analysis Along the Perivascular Space (DTI-ALPS) Index
by Chang-Soo Yun, Chul-Ho Sohn, Jehyeong Yeon, Kun-Jin Chung, Byong-Ji Min, Chang-Ho Yun and Bong Soo Han
Diagnostics 2025, 15(14), 1798; https://doi.org/10.3390/diagnostics15141798 - 16 Jul 2025
Viewed by 419
Abstract
Background/Objectives: The glymphatic system plays a crucial role in clearing brain metabolic waste, and its dysfunction has been correlated to various neurological disorders. The Diffusion Tensor Imaging Analysis Along the Perivascular Space (DTI-ALPS) index has been proposed as a non-invasive marker of [...] Read more.
Background/Objectives: The glymphatic system plays a crucial role in clearing brain metabolic waste, and its dysfunction has been correlated to various neurological disorders. The Diffusion Tensor Imaging Analysis Along the Perivascular Space (DTI-ALPS) index has been proposed as a non-invasive marker of glymphatic function by measuring diffusivity along perivascular spaces; however, its sensitivity to sleep-related changes in glymphatic activity has not yet been validated. This study aimed to evaluate the feasibility of using the DTI-ALPS index as a quantitative marker of dynamic glymphatic activity during sleep. Methods: Diffusion tensor imaging (DTI) data were obtained from 12 healthy male participants (age = 24.44 ± 2.5 years; Pittsburgh Sleep Quality Index (PSQI) < 5), once while awake and 16 times during sleep, following 24 h sleep deprivation and administration of 10 mg zolpidem. Simultaneous MR-compatible electroencephalography was used to determine whether the subject was asleep or awake. DTI preprocessing included eddy current correction and tensor fitting. The DTI-ALPS index was calculated from nine regions of interest in projection and association areas aligned to standard space. The final analysis included nine participants (age = 24.56 ± 2.74 years; PSQI < 5) who maintained a continuous sleep state for 1 h without awakening. Results: Among nine ROI pairs, three showed significant increases in the DTI-ALPS index during sleep compared to wakefulness (Friedman test; p = 0.027, 0.029, 0.034). These ROIs showed changes at 14, 19, and 25 min after sleep induction, with FDR-corrected p-values of 0.024, 0.018, and 0.018, respectively. Conclusions: This study demonstrated a statistically significant increase in the DTI-ALPS index within 30 min after sleep induction through time-series DTI analysis during wakefulness and sleep, supporting its potential as a biomarker reflecting glymphatic activity. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

25 pages, 14432 KiB  
Article
Source Term-Based Synthetic Turbulence Generator Applied to Compressible DNS of the T106A Low-Pressure Turbine
by João Isler, Guglielmo Vivarelli, Chris Cantwell, Francesco Montomoli, Spencer Sherwin, Yuri Frey, Marcus Meyer and Raul Vazquez
Int. J. Turbomach. Propuls. Power 2025, 10(3), 13; https://doi.org/10.3390/ijtpp10030013 - 4 Jul 2025
Viewed by 445
Abstract
Direct numerical simulations (DNSs) of the T106A low-pressure turbine were conducted for various turbulence intensities and length scales to investigate their effects on flow behaviour and transition. A source-term formulation of the synthetic eddy method (SEM) was implemented in the Nektar++ spectral/hp [...] Read more.
Direct numerical simulations (DNSs) of the T106A low-pressure turbine were conducted for various turbulence intensities and length scales to investigate their effects on flow behaviour and transition. A source-term formulation of the synthetic eddy method (SEM) was implemented in the Nektar++ spectral/hp element framework to introduce anisotropic turbulence into the flow field. A single sponge layer was imposed, which covers the inflow and outflow regions just downstream and upstream of the inflow and outflow boundaries, respectively, to avoid acoustic wave reflections on the boundary conditions. Additionally, in the T106A model, mixed polynomial orders were utilized, as Nektar++ allows different polynomial orders for adjacent elements. A lower polynomial order was employed in the outflow region to further assist the sponge layer by coarsening the mesh and diffusing the turbulence near the outflow boundary. Thus, this study contributes to the development of a more robust and efficient model for high-fidelity simulations of turbine blades by enhancing stability and producing a more accurate flow field. The main findings are compared with experimental and DNS data, showing good agreement and providing new insights into the influence of turbulence length scales on flow separation, transition, wake behaviour, and loss profiles. Full article
Show Figures

Graphical abstract

14 pages, 3860 KiB  
Article
Large Eddy Simulations on the Diffusion Features of the Cold-Vented Natural Gas Containing Sulfur
by Xu Sun, Meijiao Song, Sen Dong, Dongying Wang, Yibao Guo, Jinpei Wang and Jingjing Yu
Processes 2025, 13(6), 1940; https://doi.org/10.3390/pr13061940 - 19 Jun 2025
Viewed by 335
Abstract
For cold venting processes frequently employed in oil and gas fields, precisely predicting the instantaneous diffusion process of the vented explosive and/or toxic gases is of great importance, which cannot be captured by the Reynolds-averaged Navier–Stokes (RANS) method. In this paper, the large [...] Read more.
For cold venting processes frequently employed in oil and gas fields, precisely predicting the instantaneous diffusion process of the vented explosive and/or toxic gases is of great importance, which cannot be captured by the Reynolds-averaged Navier–Stokes (RANS) method. In this paper, the large eddy simulation (LES) method is introduced for gas diffusion in an open space, and the diffusion characteristics of the sulfur-containing natural gas in the cold venting process is analyzed numerically. Firstly, a LES solution procedure of compressible gas diffusion is proposed based on the ANSYS Fluent 2022, and the numerical solution is verified using benchmark experiments. Subsequently, a computational model of the sulfur-containing natural gas diffusion process under the influence of a wind field is established, and the effects of wind speed, sulfur content, the venting rate and a downstream obstacle on the natural gas diffusion process are analyzed in detail. The results show that the proposed LES with the DSM sub-grid model is able to capture the transient diffusion process of heavy and light gases released in turbulent wind flow; the ratio between the venting rate and wind speed has a decisive influence on the gas diffusion process: a large venting rate increases the vertical diffusion distance and makes the gas cloud fluctuate more, while a large wind speed decreases the vertical width and stabilizes the gas cloud; for an obstacle located closely downstream, the venting pipe makes the vented gas gather on the windward side and move toward the ground, increasing the risk of ignition and poisoning near the ground. The LES solution procedure provides a more powerful tool for simulating the cold venting process of natural gas, and the results obtained could provide a theoretical basis for the safety evaluation and process optimization of sulfur-containing natural gas venting. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

27 pages, 16552 KiB  
Article
Vertical Dense Jets in Crossflows: A Preliminary Study with Lattice Boltzmann Methods
by Maria Grazia Giordano, Jérôme Jacob, Piergiorgio Fusco, Sabina Tangaro and Daniela Malcangio
Fluids 2025, 10(6), 159; https://doi.org/10.3390/fluids10060159 - 16 Jun 2025
Viewed by 403
Abstract
The dramatic increase in domestic and industrial waste over recent centuries has significantly polluted water bodies, threatening aquatic life and human activities such as drinking, recreation, and commerce. Understanding pollutant dispersion is essential for designing effective waste management systems, employing both experimental and [...] Read more.
The dramatic increase in domestic and industrial waste over recent centuries has significantly polluted water bodies, threatening aquatic life and human activities such as drinking, recreation, and commerce. Understanding pollutant dispersion is essential for designing effective waste management systems, employing both experimental and computational techniques. Among Computational Fluid Dynamics (CFD) techniques, the Lattice Boltzmann Method (LBM) has emerged as a novel approach based on a discretized Boltzmann equation. The versatility and parallelization capability of this method makes it particularly attractive for fluid dynamics simulations using high-performance computing. Motivated by its successful application across various scientific disciplines, this study explores the potential of LBM to model pollutant mixing and dilution from outfalls into surface water bodies, focusing specifically on vertical dense jets in crossflow (JICF), a key scenario for the diffusion of brine from desalination plants. A full-LBM scheme is employed to model both the hydrodynamics and the transport of the saline concentration field, and Large Eddy Simulations (LES) are employed in the framework of LBM to reduce computational costs typically associated with turbulence modeling, together with a recursive regularization procedure for the collision operator to achieve greater stability. Several key aspects of vertical dense JICF are considered. The simulations successfully capture general flow characteristics corresponding to jets with varying crossflow parameter urF and most of the typical vortical structures associated with JICF. Relevant quantities such as the terminal rise height, the impact distance, the dilution at the terminal rise height, and the dilution at the impact point are compared with experimental results and semi-empirical relations. The results show a systematic underestimation of these quantities, but the key trends are successfully captured, highlighting LBM’s promise as a tool for simulating wastewater dispersion in aquatic environments. Full article
(This article belongs to the Special Issue CFD Applications in Environmental Engineering)
Show Figures

Figure 1

18 pages, 7618 KiB  
Article
Diffusion-Model-Based Downscaling of Observed Sea Surface Height over the Kuroshio Extension Since 2000
by Qiuchang Han, Xingliang Jiang, Yang Zhao and Xudong Wang
Atmosphere 2025, 16(5), 570; https://doi.org/10.3390/atmos16050570 - 9 May 2025
Viewed by 384
Abstract
Satellite altimetry measurements enable the resolution of ocean variability from basin-scale to mesoscale. However, the spatial resolution is still limited. The two-dimensional map from the merged data for all the available altimetry satellites can resolve mesoscale eddies down to 150 km in mid-latitudes, [...] Read more.
Satellite altimetry measurements enable the resolution of ocean variability from basin-scale to mesoscale. However, the spatial resolution is still limited. The two-dimensional map from the merged data for all the available altimetry satellites can resolve mesoscale eddies down to 150 km in mid-latitudes, for example. We introduce a generative diffusion model to downscale a merged altimetry dataset, which is applied to the eddy-rich Kuroshio Extension region from 2000 to 2022. A reanalysis dataset with a high-resolution model at a horizontal scale of approximately 12 km is employed to train the diffusion model. Using the trained generative diffusion model, the merged dataset at a grid size of 1/4° is downscaled. It was demonstrated that this trained generative diffusion model outperforms the other two high-resolution reanalyses and neural-network-based datasets. The downscaled data reproduce the spatial patterns and power spectra of satellite along-track measurements. The analysis also indicates that eddy kinetic energy at horizontal scales less than 250 km has intensified by 10.14 cm2/s2 (2.07%) per decade since 2004 in the Kuroshio Extension region. Our results underscore the potential of generative diffusion models in downscaling satellite altimetry datasets and improving our understanding of ocean dynamics at mesoscales. Full article
Show Figures

Figure 1

33 pages, 74461 KiB  
Article
Comparing Depth-Integrated Models to Compute Overland Flow in Steep-Sloped Watersheds
by Gergely Ámon, Katalin Bene and Richard Ray
Hydrology 2025, 12(4), 67; https://doi.org/10.3390/hydrology12040067 - 22 Mar 2025
Viewed by 552
Abstract
On steep-sloped watersheds, high-intensity, short-duration rainfall events are the leading causes of flash floods. Typical overland flow analysis assumes sheet-like flow with a shallow water depth. However, the natural creek beds in steep watersheds produce complex and intense flows with a shallow depth [...] Read more.
On steep-sloped watersheds, high-intensity, short-duration rainfall events are the leading causes of flash floods. Typical overland flow analysis assumes sheet-like flow with a shallow water depth. However, the natural creek beds in steep watersheds produce complex and intense flows with a shallow depth and high velocity. According to the hydrodynamical modeling processes for open channel turbulent flow, calculating rainfall-induced overland flow becomes a complex task. Steep topography requires a highly refined numerical mesh, which demands a more complex simulation process. Depth-integrated models with distributed parameters provide useful methods to capture the behavior of steep watersheds. This study investigates the watershed’s overland flow behavior by varying turbulent flow parameters and monitoring possible model errors. The refined modeling places a heavy demand on numerical solvers used for simulating the overland flow motion. This paper examines different depth-integrated model solvers applied to artificial watersheds and compares results produced by the different solver types. This study found that the Shallow Water Equation solutions produced the most consistent and stable results, with the Local Inertia Approximation solutions performing adequately. Adding Large Eddy Simulation to these solutions tended to overcomplicate Shallow Water solutions but generally improved Large Eddy solutions. The Diffuse Wave Equation solutions produced erratic results, losing stability and accuracy as watershed slopes steepened and flow paths became complex. Full article
(This article belongs to the Special Issue Hydrodynamics and Water Quality of Rivers and Lakes)
Show Figures

Figure 1

37 pages, 13736 KiB  
Article
Identification of the Aeroacoustic Emission Source Regions Within a Ceiling Swirl Diffuser
by Philipp Ostmann, Martin Kremer and Dirk Müller
Acoustics 2025, 7(1), 9; https://doi.org/10.3390/acoustics7010009 - 24 Feb 2025
Viewed by 768
Abstract
The acoustic emissions of ventilation systems and their subcomponents contribute to the perceived overall comfort in indoor environments and are, therefore, the subject of research. In contrast to fans, there is little research on the aeroacoustic properties of air diffusers (often referred to [...] Read more.
The acoustic emissions of ventilation systems and their subcomponents contribute to the perceived overall comfort in indoor environments and are, therefore, the subject of research. In contrast to fans, there is little research on the aeroacoustic properties of air diffusers (often referred to as outlets). This study investigates a commercially available ceiling swirl diffuser. Using a hybrid approach, a detailed three-dimensional large-eddy simulation is coupled with a perturbed wave equation to capture the aeroacoustic processes within the diffuser. The flow model is validated for the investigated operating point of 470 m3/h using laser-optical and acoustic measurements. To identify the noise sources, the acoustic pressure is sampled with various receivers and on cut sections to evaluate the cross-power spectral density, and the sound-pressure level distribution on cut sections is evaluated. It is found that the plenum attenuates the noise near its acoustic eigenmodes and thus dominates other noise sources by several orders of magnitude. By implementing the plenum walls as sound-absorbing, the overall sound-pressure level is predicted to decrease by nearly 10 dB/Hz. Other relevant geometric features are the mounting beam and the guide elements, which are responsible for flow-borne noise emissions near 698 Hz and 2699 Hz, respectively. Full article
Show Figures

Graphical abstract

18 pages, 2097 KiB  
Article
Large Eddy Simulations of Methane Emission from Landfill and Mathematical Modeling in the Far Field
by Andrea Boghi, Neil R. P. Harris and Kennedy Waombo
Atmosphere 2025, 16(2), 186; https://doi.org/10.3390/atmos16020186 - 6 Feb 2025
Cited by 1 | Viewed by 1078
Abstract
Greenhouse gases such as methane will be generated from the landfilling of municipal waste. The emissions of noxious gas from landfills and other waste disposal areas can present a significant hazard to the environment and to the health of the population if not [...] Read more.
Greenhouse gases such as methane will be generated from the landfilling of municipal waste. The emissions of noxious gas from landfills and other waste disposal areas can present a significant hazard to the environment and to the health of the population if not properly controlled. In order to have the harmful gas controlled and mitigate the environmental pollution, the extent to which the gas will be transported into the air at some time in the future must be estimated. The emission estimates (inventories) are combined with atmospheric observations and modeling techniques. In this work, large eddy simulation (LES) is used to determine the dispersion of methane in the atmosphere at large distances from the landfill. The methane is modeled as an active scalar, which diffuses from the landfill with a given mass flux. The Boussinesq approximation has been used to embed the effect of the buoyancy in the momentum equation. A logarithmic velocity profile has been used to model the wind velocity. The results in the far field show that the mean concentration and concentration rms of methane, appropriately scaled, are self-similar functions of a certain combination of the coordinates. Furthermore, the LES results are used to fit the parameters of the Gaussian plume model. This result can be used to optimize the placement of the atmospheric receptors and reduce their numbers in the far-field region, to improve emissions estimates and reduce the costs. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

14 pages, 5565 KiB  
Article
Experimental and Numerical Research on Swirl Flow in Straight Conical Diffuser
by Dejan Ilić, Jelena Svorcan, Đorđe Čantrak and Novica Janković
Processes 2025, 13(1), 182; https://doi.org/10.3390/pr13010182 - 10 Jan 2025
Cited by 1 | Viewed by 829
Abstract
The main objective of the current study is a detailed (both numerical and experimental) investigation of the highly unsteady and complex swirl flow in a straight conical diffuser (with a total divergence angle of 8.6°) generated by an axial fan impeller. Pressure, and [...] Read more.
The main objective of the current study is a detailed (both numerical and experimental) investigation of the highly unsteady and complex swirl flow in a straight conical diffuser (with a total divergence angle of 8.6°) generated by an axial fan impeller. Pressure, and axial and tangential velocity profiles along several cross-sections were measured by original classical probes in two different flow regimes at the inlet: the modified solid body type of moderate swirl and the solid body type of strong swirl and reverse flow; they were additionally confirmed/validated by laser Doppler anemometry measurements. Computational studies of spatial, unsteady, viscous, compressible flows were performed in ANSYS Fluent by large eddy simulation. The fan was neglected, and its effect was replaced by the pressure and velocity profiles assigned along the inlet and outlet boundaries. The two sets of data obtained were compared, and several conclusions were drawn. In general, the relative errors of the pressure profiles (2–5%) were lower than the observed discrepancies in the axial velocity profiles (5–40% for the first and 15–50% for the second flow regime, respectively). The employed reduced numerical model can be considered acceptable since it provides insights into the complexity of the investigated swirl flow. Full article
(This article belongs to the Special Issue Turbulence Models for Turbomachinery)
Show Figures

Figure 1

18 pages, 5168 KiB  
Article
Large Eddy Simulation of Flow Around Twin Tower Buildings in Tandem Arrangements with Upstream Corner Modification
by Deqian Zheng, Xueyuan Wu, Yuzhe Zhu, Wenyong Ma and Pingzhi Fang
Atmosphere 2024, 15(12), 1540; https://doi.org/10.3390/atmos15121540 - 22 Dec 2024
Viewed by 681
Abstract
The aerodynamic performance of twin tall buildings immersed in the atmospheric boundary layer was numerically investigated by adopting the spatial-averaged large eddy simulation (LES) method. This study focused on the effects of corner cutting and chamfering. The buildings were both square and sectional [...] Read more.
The aerodynamic performance of twin tall buildings immersed in the atmospheric boundary layer was numerically investigated by adopting the spatial-averaged large eddy simulation (LES) method. This study focused on the effects of corner cutting and chamfering. The buildings were both square and sectional with a width-to-height ratio of 1:6, and were arranged in a tandem configuration with a spacing ratio of 2.0. The corner-cutting and chamfering measures were only applied to the upstream cylinder, with a corner modification rate of 10%. To generate the turbulent inflow boundary condition (IBC) for LES, steady-state equilibrium IBC expressions were introduced into the vortex method, which were implemented in the commercial code Ansys Fluent. The present simulation method and solution parameters were first verified by comparing the simulated wind field and the wind pressure distribution on a single tall building with those of the wind tunnel test. The influences of the corner-cutting and chamfering measures on the wind load of the tandem buildings were then comparatively studied concerning the statistical values of their aerodynamic force coefficients and wind pressure coefficients. The influence mechanism was analyzed based on the simulated time-averaged flow field and the instantaneous vortex structure around the buildings. The results indicated that upstream corner-cutting and chamfering measures can induce a diffusion angle shift in the separated shear flow from the leading edge of the upstream building, thus affecting the separation and reattachment of the separated upstream flow on the downstream building. Among the measures studied, upstream corner cutting is more effective in reducing wind pressure and aerodynamic force coefficients. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

18 pages, 18950 KiB  
Article
Effects of Elliptical and Circular Nozzles on Diesel Spray Characteristics Under High Ambient Density
by Qinghai Sun, Run Zou, Liangyu Li, Huan Wen, Feng Li, Wei Yang and Tiexiong Su
Appl. Sci. 2024, 14(24), 11699; https://doi.org/10.3390/app142411699 - 15 Dec 2024
Viewed by 879
Abstract
In this paper, the macroscopic and microscopic characteristics of diesel spray with elliptical and circular nozzles were investigated under an ambient density of 65.6 kg/m3 by combining an optical test and numerical simulation method of VOF-Spray One-Way Coupling and Large Eddy Simulation. [...] Read more.
In this paper, the macroscopic and microscopic characteristics of diesel spray with elliptical and circular nozzles were investigated under an ambient density of 65.6 kg/m3 by combining an optical test and numerical simulation method of VOF-Spray One-Way Coupling and Large Eddy Simulation. Two elliptical nozzles with varying aspect ratios (1.25 and 1.5) and a circular nozzle were employed for comparison, with the same cross-sectional area. The results demonstrated that the spray tip penetration (STP) of elliptical nozzles was significantly diminished in comparison to that of the circular nozzle and that STP for the elliptical nozzle with a larger aspect ratio was observed to be smaller, primarily due to the elevated aerodynamic drag and accelerated kinetic energy dissipation. The spray cone angle (SCA) of elliptical nozzles was greater than that of the circular nozzle. The average SCA of the elliptical nozzle with a larger aspect ratio was the greatest in both planes. The spray asymmetry with elliptical nozzles resulted in the instability of the spray boundary, leading to the earlier fragmentation and atomization of the spray and faster radial diffusion. For the same STP, the elliptical nozzle with a larger aspect ratio exhibited the greatest spray area in both planes. Elliptical nozzles are subject to a greater degree of inhomogeneous shear than circular nozzles, which results in an accelerated rate of droplet breakage and a concomitant decrease in Sauter Mean Diameter. Full article
Show Figures

Figure 1

17 pages, 2807 KiB  
Article
Anomalous Diffusion by Ocean Waves and Eddies
by Joey J. Voermans, Alexander V. Babanin, Alexei T. Skvortsov, Cagil Kirezci, Muhannad W. Gamaleldin, Henrique Rapizo, Luciano P. Pezzi, Marcelo F. Santini and Petra Heil
J. Mar. Sci. Eng. 2024, 12(11), 2036; https://doi.org/10.3390/jmse12112036 - 11 Nov 2024
Viewed by 1293
Abstract
Understanding the dispersion of floating objects and ocean properties at the ocean surface is crucial for various applications, including oil spill management, debris tracking and search and rescue operations. While mesoscale turbulence has been recognized as a primary driver of dispersion, the role [...] Read more.
Understanding the dispersion of floating objects and ocean properties at the ocean surface is crucial for various applications, including oil spill management, debris tracking and search and rescue operations. While mesoscale turbulence has been recognized as a primary driver of dispersion, the role of submesoscale processes is poorly understood. This study investigates the largely unexplored mechanism of dispersion by refracted wave fields. In situ observations demonstrate significantly faster and distinct dispersion patterns for objects influenced by wind, waves and currents compared to those solely driven by ocean currents. Numerical simulations of wave fields refracted by ocean eddies corroborate these findings, revealing diffusivities that exceed those of turbulent diffusion at scales up to 10 km during energetic sea states. Our results highlight the importance of ocean waves in dispersing surface material, suggesting that refracted wave fields may play a significant role in submesoscale spreading. As atmospheric forcing at the ocean surface will only strengthen due to anthropogenic contributions, additional research into wave refraction is necessary. This requires concurrent high-resolution measurements of wind, waves and currents to inform the revisions of large-scale coupled models to better include the submesoscale physics. Full article
Show Figures

Figure 1

Back to TopTop