Diffusion-Model-Based Downscaling of Observed Sea Surface Height over the Kuroshio Extension Since 2000
Abstract
:1. Introduction
2. Datasets and Methods
2.1. Datasets
2.2. Methods
2.2.1. Diffusion Models
2.2.2. U-Net and SR Generative Adversarial Network (SR-GAN)
2.2.3. Kuroshio Extension SSH Downscaling Diffusion Model
2.2.4. Metrics for Different Model Comparison
2.2.5. 2-Dimensional (2D) Fourier Transforms and Power Spectrum Analysis
2.2.6. Error Ratios in Spectral Analysis
2.2.7. Eddy, Submesoscale Variability, Rossby Number (Ro), and Eddy Kinetic Energy (EKE)
3. Results
3.1. Diffusion-Model-Based Downscaling Using Ocean Reanalysis
3.2. Model Comparison on the GLORYS12 Validation Set
3.3. Application on AVISO and the Intensification of Eddies Since 2004
4. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, L.-L.; Chelton, D.; Le Traon, P.-Y.; Morrow, R. Eddy Dynamics from Satellite Altimetry. Oceanography 2010, 23, 14–25. [Google Scholar] [CrossRef]
- McWilliams, J.C. Submesoscale Currents in the Ocean. Proc. R. Soc. A 2016, 472, 20160117. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Nakano, T.; Chen, S.; Klein, P. Submesoscale Transition from Geostrophic Flows to Internal Waves in the Northwestern Pacific Upper Ocean. Nat. Commun. 2017, 8, 14055. [Google Scholar] [CrossRef]
- Rong, Y.; Liang, X.S. An Information Flow-Based Sea Surface Height Reconstruction Through Machine Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–9. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global Observations of Nonlinear Mesoscale Eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Ballarotta, M.; Ubelmann, C.; Pujol, M.-I.; Taburet, G.; Fournier, F.; Legeais, J.-F.; Faugère, Y.; Delepoulle, A.; Chelton, D.; Dibarboure, G.; et al. On the Resolutions of Ocean Altimetry Maps. Ocean Sci. 2019, 15, 1091–1109. [Google Scholar] [CrossRef]
- Ducet, N.; Le Traon, P.Y.; Reverdin, G. Global High-Resolution Mapping of Ocean Circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res. 2000, 105, 19477–19498. [Google Scholar] [CrossRef]
- Morrow, R.; Le Traon, P.-Y. Recent Advances in Observing Mesoscale Ocean Dynamics with Satellite Altimetry. Adv. Space Res. 2012, 50, 1062–1076. [Google Scholar] [CrossRef]
- Ubelmann, C.; Klein, P.; Fu, L.-L. Dynamic Interpolation of Sea Surface Height and Potential Applications for Future High-Resolution Altimetry Mapping. J. Atmos. Ocean. Technol. 2015, 32, 177–184. [Google Scholar] [CrossRef]
- Taburet, G.; Sanchez-Roman, A.; Ballarotta, M.; Pujol, M.-I.; Legeais, J.-F.; Fournier, F.; Faugere, Y.; Dibarboure, G. DUACS DT2018: 25 Years of Reprocessed Sea Level Altimetry Products. Ocean Sci. 2019, 15, 1207–1224. [Google Scholar] [CrossRef]
- Archer, M.R.; Li, Z.; Fu, L. Increasing the Space–Time Resolution of Mapped Sea Surface Height from Altimetry. J. Geophys. Res. Ocean. 2020, 125, e2019JC015878. [Google Scholar] [CrossRef]
- Fujii, Y.; Rémy, E.; Zuo, H.; Oke, P.; Halliwell, G.; Gasparin, F.; Benkiran, M.; Loose, N.; Cummings, J.; Xie, J.; et al. Observing System Evaluation Based on Ocean Data Assimilation and Prediction Systems: On-Going Challenges and a Future Vision for Designing and Supporting Ocean Observational Networks. Front. Mar. Sci. 2019, 6, 417. [Google Scholar] [CrossRef]
- Le Traon, P.Y.; Nadal, F.; Ducet, N. An Improved Mapping Method of Multisatellite Altimeter Data. J. Atmos. Ocean. Technol. 1998, 15, 522–534. [Google Scholar] [CrossRef]
- Kendon, E.J.; Jones, R.G.; Kjellström, E.; Murphy, J.M. Using and Designing GCM–RCM Ensemble Regional Climate Projections. J. Clim. 2010, 23, 6485–6503. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM Precipitation to the Station Scale Using Statistical Transformations—A Comparison of Methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking Climate Change Modelling to Impacts Studies: Recent Advances in Downscaling Techniques for Hydrological Modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Sunyer, M.A.; Madsen, H.; Ang, P.H. A Comparison of Different Regional Climate Models and Statistical Downscaling Methods for Extreme Rainfall Estimation under Climate Change. Atmos. Res. 2012, 103, 119–128. [Google Scholar] [CrossRef]
- Maraun, D.; Shepherd, T.G.; Widmann, M.; Zappa, G.; Walton, D.; Gutiérrez, J.M.; Hagemann, S.; Richter, I.; Soares, P.M.M.; Hall, A.; et al. Towards Process-Informed Bias Correction of Climate Change Simulations. Nat. Clim. Chang. 2017, 7, 764–773. [Google Scholar] [CrossRef]
- George, T.M.; Manucharyan, G.E.; Thompson, A.F. Deep Learning to Infer Eddy Heat Fluxes from Sea Surface Height Patterns of Mesoscale Turbulence. Nat. Commun. 2021, 12, 800. [Google Scholar] [CrossRef]
- Manucharyan, G.E.; Siegelman, L.; Klein, P. A Deep Learning Approach to Spatiotemporal Sea Surface Height Interpolation and Estimation of Deep Currents in Geostrophic Ocean Turbulence. J. Adv. Model. Earth Syst. 2021, 13, e2019MS001965. [Google Scholar] [CrossRef]
- Fablet, R.; Chapron, B.; Le Sommer, J.; Sévellec, F. Inversion of Sea Surface Currents from Satellite-Derived SST-SSH Synergies with 4DVarNets. J. Adv. Model. Earth Syst. 2024, 16, e2023MS003609. [Google Scholar] [CrossRef]
- Febvre, Q.; Le Sommer, J.; Ubelmann, C.; Fablet, R. Training Neural Mapping Schemes for Satellite Altimetry with Simulation Data. J. Adv. Model. Earth Syst. 2024, 16, e2023MS003959. [Google Scholar] [CrossRef]
- Ho, J.; Jain, A.; Abbeel, P. Denoising Diffusion Probabilistic Models. In NIPS’20: Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 6840–6851. [Google Scholar]
- Song, Y.; Sohl-Dickstein, J.; Kingma, D.P.; Kumar, A.; Ermon, S.; Poole, B. Score-Based Generative Modeling through Stochastic Differential Equations. arXiv 2021, arXiv:2011.13456. [Google Scholar]
- Karras, T.; Aittala, M.; Aila, T.; Laine, S. Elucidating the Design Space of Diffusion-Based Generative Models. Adv. Neural Inf. Process. Syst. 2022, 35, 26565–26577. [Google Scholar]
- Saharia, C.; Ho, J.; Chan, W.; Salimans, T.; Fleet, D.J.; Norouzi, M. Image Super-Resolution via Iterative Refinement. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 4713–4726. [Google Scholar] [CrossRef]
- Addison, H.; Kendon, E.; Ravuri, S.; Aitchison, L.; Watson, P.A. Machine Learning Emulation of a Local-Scale UK Climate Model. arXiv 2022, arXiv:2211.16116. [Google Scholar]
- Mardani, M.; Brenowitz, N.; Cohen, Y.; Pathak, J.; Chen, C.-Y.; Liu, C.-C.; Vahdat, A.; Nabian, M.A.; Ge, T.; Subramaniam, A.; et al. Residual Corrective Diffusion Modeling for Km-Scale Atmospheric Downscaling. arXiv 2024, arXiv:2309.15214. [Google Scholar] [CrossRef]
- Bischoff, T.; Deck, K. Unpaired Downscaling of Fluid Flows with Diffusion Bridges. Artif. Intell. Earth Syst. 2024, 3, e230039. [Google Scholar] [CrossRef]
- Ling, F.; Lu, Z.; Luo, J.-J.; Bai, L.; Behera, S.K.; Jin, D.; Pan, B.; Jiang, H.; Yamagata, T. Diffusion Model-Based Probabilistic Downscaling for 180-Year East Asian Climate Reconstruction. NPJ Clim. Atmos. Sci. 2024, 7, 131. [Google Scholar] [CrossRef]
- Watt, R.A.; Mansfield, L.A. Generative Diffusion-Based Downscaling for Climate. arXiv 2024, arXiv:2404.17752. [Google Scholar]
- Mcwilliams, J.C. The Nature and Consequences of Oceanic Eddies. In Ocean Modeling in an Eddying Regime; Geophysical Monograph Series; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 5–15. ISBN 978-1-118-66643-2. [Google Scholar]
- Dong, C.; McWilliams, J.C.; Liu, Y.; Chen, D. Global Heat and Salt Transports by Eddy Movement. Nat. Commun. 2014, 5, 3294. [Google Scholar] [CrossRef]
- McGillicuddy, D.J. Mechanisms of Physical-Biological-Biogeochemical Interaction at the Oceanic Mesoscale. Annu. Rev. Mar. Sci. 2016, 8, 125–159. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Qiu, B. Oceanic Mass Transport by Mesoscale Eddies. Science 2014, 345, 322–324. [Google Scholar] [CrossRef]
- Ma, X.; Jing, Z.; Chang, P.; Liu, X.; Montuoro, R.; Small, R.J.; Bryan, F.O.; Greatbatch, R.J.; Brandt, P.; Wu, D.; et al. Western Boundary Currents Regulated by Interaction between Ocean Eddies and the Atmosphere. Nature 2016, 535, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, R.; Wunsch, C. Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks. Annu. Rev. Fluid Mech. 2009, 41, 253–282. [Google Scholar] [CrossRef]
- Su, Z.; Wang, J.; Klein, P.; Thompson, A.F.; Menemenlis, D. Ocean Submesoscales as a Key Component of the Global Heat Budget. Nat. Commun. 2018, 9, 775. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Qiu, B.; Luo, Y.; Cai, W.; Yuan, Q.; Liu, Y.; Zhang, H.; Liu, H.; Miao, M.; et al. Submesoscale Inverse Energy Cascade Enhances Southern Ocean Eddy Heat Transport. Nat. Commun. 2023, 14, 1335. [Google Scholar] [CrossRef]
- Wang, S.; Jing, Z.; Wu, L.; Cai, W.; Chang, P.; Wang, H.; Geng, T.; Danabasoglu, G.; Chen, Z.; Ma, X.; et al. El Niño/Southern Oscillation Inhibited by Submesoscale Ocean Eddies. Nat. Geosci. 2022, 15, 112–117. [Google Scholar] [CrossRef]
- Jean-Michel, L.; Eric, G.; Romain, B.-B.; Gilles, G.; Angélique, M.; Marie, D.; Clément, B.; Mathieu, H.; Olivier, L.G.; Charly, R.; et al. The Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 Reanalysis. Front. Earth Sci. 2021, 9, 698876. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Hurlburt, H.E.; Smedstad, O.M.; Halliwell, G.R.; Hogan, P.J.; Wallcraft, A.J.; Baraille, R.; Bleck, R. The HYCOM (HYbrid Coordinate Ocean Model) Data Assimilative System. J. Mar. Syst. 2007, 65, 60–83. [Google Scholar] [CrossRef]
- Sohl-Dickstein, J.; Weiss, E.A.; Maheswaranathan, N.; Ganguli, S. Deep Unsupervised Learning Using Nonequilibrium Thermodynamics. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 2256–2265. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. arXiv 2017, arXiv:1609.04802. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Sasaki, H.; Klein, P.; Qiu, B.; Sasai, Y. Impact of Oceanic-Scale Interactions on the Seasonal Modulation of Ocean Dynamics by the Atmosphere. Nat. Commun. 2014, 5, 5636. [Google Scholar] [CrossRef]
- Klein, P.; Hua, B.L.; Lapeyre, G.; Capet, X.; Le Gentil, S.; Sasaki, H. Upper Ocean Turbulence from High-Resolution 3D Simulations. J. Phys. Oceanogr. 2008, 38, 1748–1763. [Google Scholar] [CrossRef]
- Mensa, J.A.; Garraffo, Z.; Griffa, A.; Özgökmen, T.M.; Haza, A.; Veneziani, M. Seasonality of the Submesoscale Dynamics in the Gulf Stream Region. Ocean Dyn. 2013, 63, 923–941. [Google Scholar] [CrossRef]
- Carrassi, A.; Bocquet, M.; Bertino, L.; Evensen, G. Data Assimilation in the Geosciences: An Overview of Methods, Issues, and Perspectives. WIREs Clim. Chang. 2018, 9, e535. [Google Scholar] [CrossRef]
- Lellouche, J.M.; Ouberdous, M.; Eifler, W. 4D-Var Data Assimilation System for a Coupled Physical-Biological Model. J. Earth Syst. Sci. 2000, 109, 491–502. [Google Scholar] [CrossRef]
- Sasaki, H.; Qiu, B.; Klein, P.; Sasai, Y.; Nonaka, M. Interannual to Decadal Variations of Submesoscale Motions around the North Pacific Subtropical Countercurrent. Fluids 2020, 5, 116. [Google Scholar] [CrossRef]
- Sasaki, H.; Qiu, B.; Klein, P.; Nonaka, M.; Sasai, Y. Interannual Variations of Submesoscale Circulations in the Subtropical Northeastern Pacific. Geophys. Res. Lett. 2022, 49, e2021GL097664. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, Y. The Interannual Variability of Eddy Kinetic Energy in the Kuroshio Large Meander Region and Its Relationship to the Kuroshio Latitudinal Position at 140°E. JGR Ocean. 2022, 127, e2021JC017915. [Google Scholar] [CrossRef]
- Durand, M.; Fu, L.-L.; Lettenmaier, D.P.; Alsdorf, D.E.; Rodriguez, E.; Esteban-Fernandez, D. The Surface Water and Ocean Topography Mission: Observing Terrestrial Surface Water and Oceanic Submesoscale Eddies. Proc. IEEE 2010, 98, 766–779. [Google Scholar] [CrossRef]
- Martínez-Moreno, J.; Hogg, A.M.C.; England, M.H.; Constantinou, N.C.; Kiss, A.E.; Morrison, A.K. Global Changes in Oceanic Mesoscale Currents over the Satellite Altimetry Record. Nat. Clim. Chang. 2021, 11, 397–403. [Google Scholar] [CrossRef]
- Ballarotta, M.; Ubelmann, C.; Bellemin-Laponnaz, V.; Le Guillou, F.; Meda, G.; Anadon, C.; Laloue, A.; Delepoulle, A.; Faugère, Y.; Pujol, M.-I.; et al. Integrating Wide-Swath Altimetry Data into Level-4 Multi-Mission Maps. Ocean Sci. 2025, 21, 63–80. [Google Scholar] [CrossRef]
PSNR (dB) | SSIM | MAE (m) | RMSE | TCC | PCC | |
---|---|---|---|---|---|---|
Bilinear | 50.4494 | 0.9896 | 0.0020 | 0.0030 | 0.9949 | 0.9990 |
SR-GAN | 45.8022 | 0.9797 | 0.0033 | 0.0053 | 0.9970 | 0.9978 |
UNet | 47.4044 | 0.9929 | 0.0040 | 0.0045 | 0.9949 | 0.9996 |
Diffusion | 53.4701 | 0.9942 | 0.0015 | 0.0021 | 0.9982 | 0.9996 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Q.; Jiang, X.; Zhao, Y.; Wang, X. Diffusion-Model-Based Downscaling of Observed Sea Surface Height over the Kuroshio Extension Since 2000. Atmosphere 2025, 16, 570. https://doi.org/10.3390/atmos16050570
Han Q, Jiang X, Zhao Y, Wang X. Diffusion-Model-Based Downscaling of Observed Sea Surface Height over the Kuroshio Extension Since 2000. Atmosphere. 2025; 16(5):570. https://doi.org/10.3390/atmos16050570
Chicago/Turabian StyleHan, Qiuchang, Xingliang Jiang, Yang Zhao, and Xudong Wang. 2025. "Diffusion-Model-Based Downscaling of Observed Sea Surface Height over the Kuroshio Extension Since 2000" Atmosphere 16, no. 5: 570. https://doi.org/10.3390/atmos16050570
APA StyleHan, Q., Jiang, X., Zhao, Y., & Wang, X. (2025). Diffusion-Model-Based Downscaling of Observed Sea Surface Height over the Kuroshio Extension Since 2000. Atmosphere, 16(5), 570. https://doi.org/10.3390/atmos16050570