Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (592)

Search Parameters:
Keywords = EVs origin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2577 KiB  
Article
Single-Atom Catalysts Dispersed on Graphitic Carbon Nitride (g-CN): Eley–Rideal-Driven CO-to-Ethanol Conversion
by Jing Wang, Qiuli Song, Yongchen Shang, Yuejie Liu and Jingxiang Zhao
Nanomaterials 2025, 15(14), 1111; https://doi.org/10.3390/nano15141111 - 17 Jul 2025
Viewed by 271
Abstract
The electrochemical reduction of carbon monoxide (COER) offers a promising route for generating value-added multi-carbon (C2+) products, such as ethanol, but achieving high catalytic performance remains a significant challenge. Herein, we performed comprehensive density functional theory (DFT) computations to evaluate CO-to-ethanol [...] Read more.
The electrochemical reduction of carbon monoxide (COER) offers a promising route for generating value-added multi-carbon (C2+) products, such as ethanol, but achieving high catalytic performance remains a significant challenge. Herein, we performed comprehensive density functional theory (DFT) computations to evaluate CO-to-ethanol conversion on single metal atoms anchored on graphitic carbon nitride (TM/g–CN). We showed that these metal atoms stably coordinate with edge N sites of g–CN to form active catalytic centers. Screening 20 TM/g–CN candidates, we identified V/g–CN and Zn/g–CN as optimal catalysts: both exhibit low free-energy barriers (<0.50 eV) for the key *CO hydrogenation steps and facilitate C–C coupling via an Eley–Rideal mechanism with a negligible kinetic barrier (~0.10 eV) to yield ethanol at low limiting potentials, which explains their superior COER performance. An analysis of d-band centers, charge transfer, and bonding–antibonding orbital distributions revealed the origin of their activity. This work provides theoretical insights and useful guidelines for designing high-performance single-atom COER catalysts. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

25 pages, 9194 KiB  
Article
Optimization and Estimation of the State of Charge of Lithium-Ion Batteries for Electric Vehicles
by Luc Vivien Assiene Mouodo and Petros J. Axaopoulos
Energies 2025, 18(13), 3436; https://doi.org/10.3390/en18133436 - 30 Jun 2025
Viewed by 252
Abstract
Lithium batteries have become one of the best choices for current consumer electric vehicle batteries due to their good stability and high energy density. To ensure the safety and reliability of electric vehicles (EVs), the battery management system (BMS) must provide accurate and [...] Read more.
Lithium batteries have become one of the best choices for current consumer electric vehicle batteries due to their good stability and high energy density. To ensure the safety and reliability of electric vehicles (EVs), the battery management system (BMS) must provide accurate and real-time information on the usage status of the onboard battery. This article highlights the precise estimation of the state of charge (SOC) applied to four models of lithium-ion batteries (Turnigy, LG, SAMSUNG, and PANASONIC) for electric vehicles in order to ensure optimal use of the battery and extend its lifespan, which is frequently influenced by certain parameters such as temperature, current, number of charge and discharge cycles, and so on. Because of the work’s novelty, the methodological approach combines the extended Kalman filter algorithm (EKF) with the noise matrix, which is updated in this case through an iterative process. This leads to the migration to a new adaptive extended Kalman filter algorithm (AEKF) in the MATLAB Simulink 2022.b environment, which is novel or original in the sense that it has a first-order association. The four models of batteries from various manufacturers were directly subjected to the Venin estimator, which allowed for direct comparison of the models under a variety of temperature scenarios while keeping an eye on performance metrics. The results obtained were mapped charging status (SOC) versus open circuit voltage (OCV), and the high-performance primitives collection (HPPC) tests were carried out at 40 °C, 25 °C, 10 °C, 0 °C and −10 °C. At these temperatures, their corresponding values for the root mean square error (RMSE) of (SOC) for the Turnigy graphene battery model were found to be: 1.944, 9.6237, 1.253, 1.6963, 16.9715, and for (OCV): 1.3154, 4.895, 4.149, 4.1808, and 17.2167, respectively. The tests cover the SOC range, from 100% to 5% with four different charge and discharge currents at rates of 1, 2, 5 and 10 A. After characterization, the battery was subjected to urban dynamometer driving program (UDDS), Energy Saving Test (HWFET) driving cycles, LA92 (Dynamometric Test), US06 (aggressive driving), as well as combinations of these cycles. Driving cycles were sampled every 0.1 s, and other tests were sampled at a slower or variable frequency, thus verifying the reliability and robustness of the estimator to 97%. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

31 pages, 1265 KiB  
Review
Plant-Derived Exosomes: Carriers and Cargo of Natural Bioactive Compounds: Emerging Functions and Applications in Human Health
by Sorur Yazdanpanah, Silvia Romano, Anna Valentino, Umberto Galderisi, Gianfranco Peluso and Anna Calarco
Nanomaterials 2025, 15(13), 1005; https://doi.org/10.3390/nano15131005 - 30 Jun 2025
Viewed by 765
Abstract
Extracellular vesicles (EVs) have gained increasing attention in recent years as a valuable focus of scientific investigation, owing to their potential therapeutic properties and wide-ranging uses in medicine. EVs are a heterogeneous population of membrane-enclosed vesicles with lipid bilayers, released by cells from [...] Read more.
Extracellular vesicles (EVs) have gained increasing attention in recent years as a valuable focus of scientific investigation, owing to their potential therapeutic properties and wide-ranging uses in medicine. EVs are a heterogeneous population of membrane-enclosed vesicles with lipid bilayers, released by cells from both animal and plant origins. These widespread vesicles play a crucial role in cell-to-cell communication and serve as carriers for a variety of biomolecules such as proteins, lipids, and nucleic acids. The most common method of classifying EVs is based on their biogenesis pathway, distinguishing exosomes, microvesicles, and apoptotic bodies as the major types. In recent years, there has been a growing interest in PDEs, as they offer a practical and eco-friendly alternative to exosomes sourced from mammals. Mounting data from both laboratory-based and animal model experiments indicate that PDEs have natural therapeutic properties that modulate biological activities within cells, demonstrating properties such as anti-inflammatory, antioxidant, and anticancer effects that may aid in treating diseases and enhancing human well-being. Moreover, PDEs hold promise as reliable and biologically compatible carriers for drug delivery. Although studies conducted before clinical trials have yielded encouraging results, numerous unresolved issues and gaps in understanding remain, which must be resolved to facilitate the effective advancement of PDEs toward medical use in human patients. A key concern is the absence of unified procedures for processing materials and for obtaining PDEs from different botanical sources. This article provides a comprehensive summary of existing findings on PDEs, critically examining the hurdles they face, and highlighting their substantial promise as a novel class of therapeutic tools for a range of illnesses. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

18 pages, 3380 KiB  
Article
A Simple and Scalable Assay for Multiplexed Flow Cytometric Profiling of Surface Markers on Small Extracellular Vesicles
by Deborah Polignano, Valeria Barreca, Massimo Sanchez, Massimo Sargiacomo and Maria Luisa Fiani
Cells 2025, 14(13), 989; https://doi.org/10.3390/cells14130989 - 28 Jun 2025
Viewed by 394
Abstract
Extracellular vesicles (EVs), including small EVs (sEVs) such as exosomes, play crucial roles in intercellular communication and disease pathology. Their heterogeneous nature, shaped by cellular origin and activation state, requires precise and multiplexed profiling of surface markers for effective characterization. Despite recent advances, [...] Read more.
Extracellular vesicles (EVs), including small EVs (sEVs) such as exosomes, play crucial roles in intercellular communication and disease pathology. Their heterogeneous nature, shaped by cellular origin and activation state, requires precise and multiplexed profiling of surface markers for effective characterization. Despite recent advances, current analytical methods remain complex, costly, or inaccessible for routine laboratory use. Here, we present a simple and cost-effective flow cytometry-based assay for the multiplexed analysis of tetraspanin markers (CD63, CD81, CD9) on fluorescently labeled sEVs. Our method combines metabolic labeling with paraformaldehyde fixation and low-speed centrifugation using a benchtop centrifuge, enabling efficient removal of unbound antibodies and minimizing nonspecific signals while preserving vesicle integrity. Using either metabolically labeled exosomes or bulk sEVs stained with carboxyfluorescein succinimidyl ester (CFSE), we demonstrate robust recovery and accurate, semi-quantitative profiling of tetraspanin expression. The assay reveals substantial variability in tetraspanin distribution across different cell lines and does not require ultracentrifugation or immunocapture. Notably, this versatile and reproducible method supports high sEV recovery and is adaptable to additional protein markers. Its compatibility with standard laboratory equipment makes it a practical and scalable alternative to more complex techniques, expanding access to multiplex sEV analysis for both research and clinical applications. Full article
(This article belongs to the Special Issue Extracellular Vesicles as Biomarkers for Human Disease)
Show Figures

Figure 1

15 pages, 3748 KiB  
Article
Constructing 1 + 1 > 2 Photosensitizers Based on NIR Cyanine–Iridium(III) Complexes for Enhanced Photodynamic Cancer Therapy
by Ziwei Wang, Weijin Wang, Qi Wu and Dongxia Zhu
Molecules 2025, 30(12), 2662; https://doi.org/10.3390/molecules30122662 - 19 Jun 2025
Viewed by 443
Abstract
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic [...] Read more.
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic effects by covalently integrating iridium complexes with cyanine via ether linkages, as well as introducing aldehyde groups to suppress non-radiative decay, named CHO−Ir−Cy. It is demonstrated that CHO−Ir−Cy successfully maintains the NIR absorption and emission originated from cyanine units and high 1O2 generation efficiency from the iridium complex part, which gives full play to their respective advantages while compensating for shortcomings. Density functional theory (DFT) calculations reveal that CHO−Ir−Cy exhibits a stronger spin–orbit coupling constant (ξ (S1, T1) = 9.176 cm−1) and a reduced energy gap (ΔE = −1.97 eV) between triplet excited states (T1) and first singlet excited states (S1) compared to parent Ir−Cy or Cy alone, directly correlating with its enhanced 1O2 production. Remarkably, CHO−Ir−Cy demonstrates superior cellular internalization in 4T1 murine breast cancer cells, generating substantially elevated 1O2 yields compared to individual Ir−Cy/Cy under 808 nm laser irradiation. Such enhanced reactive oxygen species production translates into effective cancer cell ablation while maintaining favorable biocompatibility, significant phototoxicity and negligible dark toxicity. This molecular engineering strategy overcomes the inherent NIR absorption limitation of traditional iridium complexes and ensures their own high 1O2 generation ability through dye–metal synergy, establishing a paradigm for designing metal–organic photosensitizers with tailored photophysical properties for precision oncology. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Figure 1

14 pages, 1167 KiB  
Article
Role of Extracellular Vesicles in Chronic Post-Embolic Pulmonary Hypertension: Data from an Experimental Animal Model and Patients
by Elva Mendoza-Zambrano, Verónica Sánchez-López, Belén Gómez-Rodríguez, Inés García-Lunar, Daniel Pereda-Arnau, Luis Jara-Palomares, Teresa Elías-Hernández, Ana García-Álvarez and Remedios Otero-Candelera
Biomedicines 2025, 13(6), 1499; https://doi.org/10.3390/biomedicines13061499 - 18 Jun 2025
Viewed by 450
Abstract
Background: The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH) involves a multifaceted interplay of factors, including incomplete thrombus resolution, endothelial dysfunction, and vascular remodeling. Recent studies have highlighted the role of extracellular vesicles (EVs) in vascular diseases, suggesting their potential involvement in [...] Read more.
Background: The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH) involves a multifaceted interplay of factors, including incomplete thrombus resolution, endothelial dysfunction, and vascular remodeling. Recent studies have highlighted the role of extracellular vesicles (EVs) in vascular diseases, suggesting their potential involvement in CTEPH progression. This study aims to investigate the role of EVs from various cellular sources in the development of CTEPH. Methods: An experimental study was conducted using 11 male three-month-old Large-White pigs. The EVs of endothelial origin (EEVs; CD146+), leukocyte-derived EVs (LEVs; CD45+, CD44+), and consistent with mesenchymal-origin EVs (CD90+, CD105+) were quantified. Measurements were taken at baseline, after the first embolization, and prior to each subsequent weekly embolization. Embolizations were repeated until chronic pulmonary hypertension (PH) was generated. Based on these findings, a clinical case-control study was performed involving nine patients previously diagnosed with CTEPH and 18 patients with pulmonary embolism who did not develop CTEPH after two years of follow-up. Results: The experimental study, consistent with the mesenchymal-origin EVs, exhibited a progressive decrease below baseline levels; LEVs decreased after PH was established, while EEVs remained elevated throughout the study. Subsequently, in the clinical case-control study, CD45+ LEVs emerged as a significant association of CTEPH, with an odds ratio (OR) of 21.25 (95% CI: 1.91–236.00; p = 0.013). Conclusions: Inflammation involving LEVs and EEVs plays a crucial role in sustaining the vascular alterations leading to pulmonary vasculature remodeling in CTEPH. Full article
(This article belongs to the Special Issue Molecular and Translational Research in Cardiovascular Disease)
Show Figures

Figure 1

22 pages, 991 KiB  
Review
The Role of Epithelial-Derived Extracellular Vesicles in Allergic Sensitisation: A Systematic Review
by William Browne, Georgina Hopkins, Stella Cochrane, Victoria James, David Onion and Lucy C. Fairclough
Int. J. Mol. Sci. 2025, 26(12), 5791; https://doi.org/10.3390/ijms26125791 - 17 Jun 2025
Viewed by 388
Abstract
The aim of this systematic review was to evaluate the current evidence for the involvement of epithelial-derived extracellular vesicles (EVs) in Immunoglobulin E (IgE)-mediated allergic sensitisation. Original clinical and research studies specifically examining the effect of epithelial-derived EVs in IgE-mediated allergic sensitisation were [...] Read more.
The aim of this systematic review was to evaluate the current evidence for the involvement of epithelial-derived extracellular vesicles (EVs) in Immunoglobulin E (IgE)-mediated allergic sensitisation. Original clinical and research studies specifically examining the effect of epithelial-derived EVs in IgE-mediated allergic sensitisation were included. Non-IgE mediated allergies, abstracts and review articles were excluded. A total of 18 publications were identified from three databases (EMBASE, Web of Science and PubMed) that indicate epithelial-derived EVs have the potential to promote tolerance or allergic sensitisation. For example, epithelial-derived EVs have the potential to promote IgE-mediated allergic sensitisation by delivering mRNAs that promote T helper 2 (Th2) polarisation and cytokine secretion, or promote tolerance through the induction of T regulatory (Treg) cells. The results also indicate that the potential role of epithelial-derived EVs in IgE-mediated allergic sensitisation may be dependent on the barrier, with all publications related to intestinal epithelium driving tolerance, but publications on nasal and bronchial/alveolar epithelia gaving mixed effects. No publications were found on cutaneous epithelia. Taken together, the literature suggests that epithelial-derived EVs play a key role in influencing IgE-mediated allergic sensitisation. Further research examining all epithelial barriers, using both robust human in vitro models that give more biologically relevant information, as well as clinical studies, are required to further characterise the role of epithelial-derived EVs in IgE-mediated allergic sensitisation. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Allergy and Asthma: 3rd Edition)
Show Figures

Figure 1

31 pages, 1734 KiB  
Review
Progress, Challenges and Opportunities in Recycling Electric Vehicle Batteries: A Systematic Review Article
by Hamid Safarzadeh and Francesco Di Maria
Batteries 2025, 11(6), 230; https://doi.org/10.3390/batteries11060230 - 13 Jun 2025
Viewed by 1495
Abstract
Objective: The rapid growth of electric vehicle (EV) adoption has led to an unprecedented increase in lithium-ion battery (LIB) demand and end-of-life waste, underscoring the urgent need for effective recycling strategies. This review evaluates current progress in EV battery recycling and explores future [...] Read more.
Objective: The rapid growth of electric vehicle (EV) adoption has led to an unprecedented increase in lithium-ion battery (LIB) demand and end-of-life waste, underscoring the urgent need for effective recycling strategies. This review evaluates current progress in EV battery recycling and explores future prospects. Design: Review based on PRISMA 2020. Data sources: Scientific publications indexed in major databases such as Scopus, Web of Science, and ScienceDirect were searched for relevant studies published between 2020 and 15 April 2025. Inclusion criteria: Studies were included if they were published in English between 2020 and 15 April 2025, and focused on the recycling of electric vehicle batteries. Eligible studies specifically addressed (i) recycling methods, technologies, and material recovery processes for EV batteries; (ii) the impact of recycled battery systems on power generation processes and grid stability; and (iii) assessments of materials used in battery manufacturing, including efficiency and recyclability. Review articles and meta-analyses were excluded to ensure the inclusion of only original research data. Data extraction: Data were independently screened and extracted by two researchers and analyzed for recovery rates, environmental impact, and system-level energy contributions. One researcher independently screened all articles and extracted relevant data. A second researcher validated the accuracy of extracted data. The data were then organized and analyzed based on reported quantitative and qualitative indicators related to recycling methods, material recovery rates, environmental impact, and system-level energy benefits. Results: A total of 23 studies were included. Significant progress has been made in hydrometallurgical and direct recycling processes, with recovery rates of critical metals (Li, Co, Ni) improving. Second-life battery applications also show promise for grid stabilization and renewable energy storage. Furthermore, recycled batteries show potential in stabilizing power grids through second-life applications in BESS. Conclusion: EV battery recycling is a vital strategy for addressing raw material scarcity, minimizing environmental harm, and supporting energy resilience. However, challenges persist in policy harmonization, technology scaling, and economic viability. Future progress will depend on integrated efforts across sectors and regions to build a circular battery economy. Full article
Show Figures

Graphical abstract

20 pages, 5110 KiB  
Article
Effect of Copper Modification on Charge Carrier Transport and Defect Properties in Carbon-Doped TiO2 Nanotubes
by Ekaterina V. Kytina, Elizaveta A. Konstantinova, Mikhail N. Martyshov, Timofey P. Savchuk, Vladimir B. Zaitsev, Alexander I. Kokorin, Alexander S. Ilin and German V. Trusov
Catalysts 2025, 15(6), 572; https://doi.org/10.3390/catal15060572 - 9 Jun 2025
Viewed by 603
Abstract
For the efficient operation of various TiO2-based devices, it is important to understand the patterns of electric charge transport. In the present paper TiO2-C-Cu nanocomposites were synthesized by the electrochemical method. The band gap energy Eg of all systems [...] Read more.
For the efficient operation of various TiO2-based devices, it is important to understand the patterns of electric charge transport. In the present paper TiO2-C-Cu nanocomposites were synthesized by the electrochemical method. The band gap energy Eg of all systems was found to be approximately the same, 3.2 eV. Both copper ions replacing titanium ions and copper ions within the CuO phase were detected. The modification of TiO2-C nanotubes by copper led to a significant increase in conductivity and photocurrent, which may be associated with the formation of new donor states (Ti3+ centers) creating levels in the band gap of TiO2-C-Cu. The characteristics of charge carrier transport (including photocurrent) in TiO2-C-Cu materials were revealed for the first time. The conductivity at DC and at low frequencies of AC is due to the movement of electrons along the conduction zone, whereas at high frequencies there is a hopping mechanism of conduction. The acquired original results testify to the potential usage of TiO2-C-Cu nanocomposites in the field of catalysis and photoelectrochemistry. Full article
(This article belongs to the Special Issue Catalysts and Photocatalysts Based on Mixed Metal Oxides)
Show Figures

Figure 1

14 pages, 228 KiB  
Article
Monogenism Revisited: New Perspectives on a Classical Controversy
by Wojciech Piotr Grygiel and Olaf Lizak
Religions 2025, 16(6), 694; https://doi.org/10.3390/rel16060694 - 28 May 2025
Viewed by 408
Abstract
Recent attempts to reconcile the doctrine of original sin with evolutionary theory have sought scientific validation for the historicity of Adam and Eve, particularly through arguments for a single ancestral pair. This paper critically examines such efforts, arguing that they constitute a disguised [...] Read more.
Recent attempts to reconcile the doctrine of original sin with evolutionary theory have sought scientific validation for the historicity of Adam and Eve, particularly through arguments for a single ancestral pair. This paper critically examines such efforts, arguing that they constitute a disguised form of creation science, selectively engaging with evolution to preserve classical Christian anthropology. Through biblical exegesis, theological hermeneutics, and biological research, this study demonstrates that these approaches rest on uncertain scientific and theological premises. Genesis 1–11 is sapiential rather than historical, and genetic evidence biological evidence points to population-oriented emergence of our species. Theological attempts to preserve a literal Adam and Eve rest on an outdated view of revelation as mere information transfer, leading to conceptual confusion and misinterpretation. The pursuit of a historical Adam and Eve as a scientific reality ultimately distorts both theology and science, reducing theology to ideology and fundamentalism while undermining its engagement with mystery and transcendence. Full article
(This article belongs to the Special Issue Images of the World in the Dialogue between Science and Religion)
21 pages, 1640 KiB  
Article
Analysis of Proteins and Piwi-Interacting RNA Cargo of Extracellular Vesicles (EVs) Isolated from Human Nose Organoids and Nasopharyngeal Secretions of Children with RSV Infections
by Tiziana Corsello, Nicholas Dillman, Yingxin Zhao, Teodora Ivanciuc, Tianshuang Liu, Antonella Casola and Roberto P. Garofalo
Viruses 2025, 17(6), 764; https://doi.org/10.3390/v17060764 - 28 May 2025
Viewed by 711
Abstract
Respiratory syncytial virus (RSV) is the leading cause of respiratory infections in children. Extracellular vesicles (EVs), released by airway epithelial cells, contain proteins and different families of non-coding RNAs (EV cargo) that can modulate the responses of target cells to viral infection. Nasal [...] Read more.
Respiratory syncytial virus (RSV) is the leading cause of respiratory infections in children. Extracellular vesicles (EVs), released by airway epithelial cells, contain proteins and different families of non-coding RNAs (EV cargo) that can modulate the responses of target cells to viral infection. Nasal mucosa is a primary site of viral entry and the source of EVs present in the upper airway secretions. In this study we characterized proteins, including inflammatory mediators and cytokines, and the piwi-interacting RNA (piRNAs) cargo of EVs isolated from pediatric human nose organoids (HNO) and nasopharyngeal secretions (NPS) positive for RSV. Using Proximity Extension Assay (PEA) and Luminex multi-target arrays, we found significant enrichment in several chemokines and other mediators/biomarkers, including CCL2, CCL20, CXCL5, CX3CL1, CXCL6, MMP-1, MMP-10, uPA, Flt3L, ARNT and CD40 in EVs secreted by RSV-infected HNO compared to control mock HNO. Analysis of NPS samples from RSV infected children revealed that CCL3, CCL20, CXCL8, uPA, VEGFA, were concentrated in the NPS-EV fraction. LC-MS/MS and Gene Ontology indicated that RSV positive NPS-EVs originate from different cellular sources, with the most abundant proteins from neutrophils and epithelial cells. A total of 490 piRNAs were detected by NGS sequencing of small RNA libraries obtained from NPS-EVs, which has not been reported prior to this study. Identification of inflammatory mediators and small non-coding RNAs which are compartmentalized in EVs contributes to understanding mechanisms of virus-mediated pathogenesis in RSV infections. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Graphical abstract

13 pages, 440 KiB  
Perspective
The Potential of Extracellular Vesicle-Mediated Spread of Self-Amplifying RNA and a Way to Mitigate It
by Maurizio Federico
Int. J. Mol. Sci. 2025, 26(11), 5118; https://doi.org/10.3390/ijms26115118 - 26 May 2025
Viewed by 10122
Abstract
Self-amplifying RNA-based (saRNA) technology represents the last frontier in using synthetic RNA in vaccinology. Typically, saRNA consists of positive-strand RNA molecules of viral origin (almost exclusively from alphaviruses) where the sequences of structural proteins are replaced with the open reading frame coding the [...] Read more.
Self-amplifying RNA-based (saRNA) technology represents the last frontier in using synthetic RNA in vaccinology. Typically, saRNA consists of positive-strand RNA molecules of viral origin (almost exclusively from alphaviruses) where the sequences of structural proteins are replaced with the open reading frame coding the antigen of interest. For in vivo delivery, they are complexed with lipid nanoparticles (LNPs), just like current COVID-19 vaccines based on synthetic messenger RNA (mRNA). Given their ability to amplify themselves inside the cell, optimal intracellular levels of the immunogenic antigen can be achieved by delivering lower amounts of saRNA molecules compared to mRNA-based vaccines. However, the excessive intracellular accumulation of saRNA may represent a relevant drawback since, as already described in alphavirus-infected cells, the recipient cell may react by incorporating excessive RNA molecules into extracellular vesicles (EVs). These EVs can shed and enter neighboring as well as distant cells, where the EV-associated saRNA can start a new replication cycle. This mechanism could lead to an unwanted and unnecessary spread of saRNA throughout the body, posing relevant safety issues. This perspective article discusses the molecular mechanisms through which saRNAs can be transmitted among different cells/tissues. In addition, a simple way to control the possible excessive saRNA intercellular propagation through the co-expression of an EV-anchored protein inhibiting the saRNA replication is proposed. Based on current knowledge, a safety improvement of saRNA-based vaccines appears to be mandatory for their usage in healthy humans. Full article
(This article belongs to the Special Issue Vaccine Research and Adjuvant Discovery)
Show Figures

Figure 1

18 pages, 2747 KiB  
Article
Plasma Extracellular Vesicles from Preeclamptic Patients Trigger a Detrimental Crosstalk Between Glomerular Endothelial Cells and Podocytes Involving Endothelin-1
by Elena Grossini, Marco Quaglia, Stefania Prenna, Alessandra Stasi, Rossana Franzin, Giuseppe Castellano, Valentino Remorgida, Alessandro Libretti, Sakthipriyan Venkatesan, Carlo Smirne, Guido Merlotti, Carmen Imma Aquino, Stefania Bruno, Giovanni Camussi, Daniela Surico and Vincenzo Cantaluppi
Int. J. Mol. Sci. 2025, 26(11), 4962; https://doi.org/10.3390/ijms26114962 - 22 May 2025
Viewed by 714
Abstract
Extracellular vesicles (EVs) may play a role in preeclampsia (PE)-associated glomerular damage. We herein investigated the role of PE plasma EVs in triggering a detrimental crosstalk between glomerular endothelial cells (GEC) and podocytes (PODO). Clinical and laboratory variables were examined at T0 (diagnosis), [...] Read more.
Extracellular vesicles (EVs) may play a role in preeclampsia (PE)-associated glomerular damage. We herein investigated the role of PE plasma EVs in triggering a detrimental crosstalk between glomerular endothelial cells (GEC) and podocytes (PODO). Clinical and laboratory variables were examined at T0 (diagnosis), T1 (delivery), and T2 (one month after delivery) in 36 PE patients and 17 age-matched controls. NanoSight and MACSPlex evaluated EV concentration, size, and phenotype. GEC and PODO were stimulated with plasma EVs to study viability, reactive oxygen species (ROS) production, permeability to albumin, endothelial-to-mesenchymal transition, and Endothelin-1 release. EV size and concentration were higher in PE than in healthy controls and in severe than in mild forms of disease. At T0, higher EV concentration correlated with proteinuria, blood pressure, uric acid, and liver enzyme levels. PE-EVs originated from leukocytes, endothelial cells, platelets, and the placenta and induced GEC and PODO damage as shown by the reduction of viability, increased ROS release, and albumin permeability. Co-culture experiments demonstrated that PE-EVs mediated a deleterious intraglomerular crosstalk through Endothelin-1 release from GEC able to down-regulate nephrin in PODO. In conclusion, we observed in PE plasma a peculiar pattern of EVs able to affect GEC and PODO functions and to induce proteinuria through Endothelin-1 involvement. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

21 pages, 3602 KiB  
Article
Comparative Examination of Feline Coronavirus and Canine Coronavirus Effects on Extracellular Vesicles Acquired from A-72 Canine Fibrosarcoma Cell Line
by Sandani V. T. Wijerathne, Rachana Pandit, Chioma C. Ezeuko and Qiana L. Matthews
Vet. Sci. 2025, 12(5), 477; https://doi.org/10.3390/vetsci12050477 - 15 May 2025
Viewed by 692
Abstract
Introduction: Coronavirus (CoV) is an extremely contagious, enveloped positive-single-stranded RNA virus, which has become a global pandemic that causes several illnesses in humans and animals. Hence, it is necessary to investigate viral-induced reactions across diverse hosts. Herein, we propose utilizing naturally secreted extracellular [...] Read more.
Introduction: Coronavirus (CoV) is an extremely contagious, enveloped positive-single-stranded RNA virus, which has become a global pandemic that causes several illnesses in humans and animals. Hence, it is necessary to investigate viral-induced reactions across diverse hosts. Herein, we propose utilizing naturally secreted extracellular vesicles (EVs), mainly focusing on exosomes to examine virus–host responses following CoV infection. Exosomes are small membrane-bound vesicles originating from the endosomal pathway, which play a pivotal role in intracellular communication and physiological and pathological processes. We suggested that CoV could impact EV formation, content, and diverse immune responses in vitro. Methods: In this study, we infected A-72, which is a canine fibroblast cell line, with a feline coronavirus (FCoV) and canine coronavirus (CCoV) independently in an exosome-free media at 0.001 multiplicity of infection (MOI), with incubation periods of 48 and 72 h. The cell viability was significantly downregulated with increased incubation time following FCoV and CCoV infection, which was identified by performing the 3-(4,5-dimethylthiazo-1-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. After the infection, EVs were isolated through ultracentrifugation, and the subsequent analysis involved quantifying and characterizing the purified EVs using various techniques. Results: NanoSight particle tracking analysis (NTA) verified that EV dimensions fell between 100 and 200 nm at both incubation periods. At both periods, total protein and RNA levels were significantly upregulated in A-72-derived EVs following FCoV and CCoV infections. However, total DNA levels were gradually upregulated with increased incubation time. Dot blot analysis indicated that the expression levels of ACE2, IL-1β, Flotillin-1, CD63, caspase-8, and Hsp90 were modified in A-72-derived EVs following both CoV infections. Conclusions: Our results indicated that FCoV and CCoV infections could modulate the EV production and content, which could play a role in the development of viral diseases. Investigating diverse animal CoV will provide in-depth insight into host exosome biology during CoV infection. Hence, our findings contribute to the comprehension and characterization of EVs in virus–host interactions during CoV infection. Full article
(This article belongs to the Section Veterinary Biomedical Sciences)
Show Figures

Figure 1

14 pages, 3500 KiB  
Article
Probing Phase Transitions and Interfacial Reorganization in TAPC/CBP/BPhen Organic Light-Emitting Diode Stacks by In Situ Ellipsometry
by Ilze Aulika, Patricija Paulsone, Sven Oras, Jelena Butikova, Margarita Anna Zommere, Elina Laizane and Aivars Vembris
Materials 2025, 18(10), 2261; https://doi.org/10.3390/ma18102261 - 13 May 2025
Viewed by 401
Abstract
The thermal behavior of a three-layer structure—glass/ITO/TAPC/CBP/BPhen—in an OLED system was investigated using in situ spectroscopic ellipsometry during controlled heating from room temperature to 120 °C over 60 min, simulating the ageing process and analyzing degradation kinetics. Variations in Ψ and Δ spectra [...] Read more.
The thermal behavior of a three-layer structure—glass/ITO/TAPC/CBP/BPhen—in an OLED system was investigated using in situ spectroscopic ellipsometry during controlled heating from room temperature to 120 °C over 60 min, simulating the ageing process and analyzing degradation kinetics. Variations in Ψ and Δ spectra were observed across the entire 0.7–5.9 eV spectral range, with five distinct anomalies, particularly in the UV region. An anomaly at approximately 66 °C was attributed to the glass transition temperature Tg of BPhen, while another two at around 82 °C and at around 112 °C corresponded to the first-order phase transition of TAPC and Tg of CBP, respectively. The origins of the remaining anomalies at 91 °C and 112 °C were explored in this study, with a focus on interphase layer formation and morphological changes that emerge during heating. These findings provide insights into the stability of OLEDs under thermal stress. Full article
Show Figures

Figure 1

Back to TopTop