Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (307)

Search Parameters:
Keywords = EV chargers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 2014 KiB  
Article
Innovative Business Models Towards Sustainable Energy Development: Assessing Benefits, Risks, and Optimal Approaches of Blockchain Exploitation in the Energy Transition
by Aikaterini Papapostolou, Ioanna Andreoulaki, Filippos Anagnostopoulos, Sokratis Divolis, Harris Niavis, Sokratis Vavilis and Vangelis Marinakis
Energies 2025, 18(15), 4191; https://doi.org/10.3390/en18154191 (registering DOI) - 7 Aug 2025
Abstract
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy [...] Read more.
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy production, and demand flexibility is of vital importance. Blockchain has the potential to change energy services towards this direction. To optimally exploit blockchain, innovative business models need to be designed, identifying the opportunities emerging from unmet needs, while also considering potential risks so as to take action to overcome them. In this context, the scope of this paper is to examine the opportunities and the risks that emerge from the adoption of blockchain in four innovative business models, while also identifying mitigation strategies to support and accelerate the energy transition, thus proposing optimal approaches of exploitation of blockchain in energy services. The business models concern Energy Performance Contracting with P4P guarantees, improved self-consumption in energy cooperatives, energy efficiency and flexibility services for natural gas boilers, and smart energy management for EV chargers and HVAC appliances. Firstly, the value proposition of the business models is analysed and results in a comprehensive SWOT analysis. Based on the findings of the analysis and consultations with relevant market actors, in combination with the examination of the relevant literature, risks are identified and evaluated through a qualitative assessment approach. Subsequently, specific mitigation strategies are proposed to address the detected risks. This research demonstrates that blockchain integration into these business models can significantly improve energy efficiency, reduce operational costs, enhance security, and support a more decentralised energy system, providing actionable insights for stakeholders to implement blockchain solutions effectively. Furthermore, according to the results, technological and legal risks are the most significant, followed by political, economic, and social risks, while environmental risks of blockchain integration are not as important. Strategies to address risks relevant to blockchain exploitation include ensuring policy alignment, emphasising economic feasibility, facilitating social inclusion, prioritising security and interoperability, consulting with legal experts, and using consensus algorithms with low energy consumption. The findings offer clear guidance for energy service providers, policymakers, and technology developers, assisting in the design, deployment, and risk mitigation of blockchain-enabled business models to accelerate sustainable energy development. Full article
Show Figures

Figure 1

26 pages, 4789 KiB  
Article
Analytical Modelling of Arc Flash Consequences in High-Power Systems with Energy Storage for Electric Vehicle Charging
by Juan R. Cabello, David Bullejos and Alvaro Rodríguez-Prieto
World Electr. Veh. J. 2025, 16(8), 425; https://doi.org/10.3390/wevj16080425 - 29 Jul 2025
Viewed by 281
Abstract
The improvement of environmental conditions has become a priority for governments and legislators. New electrified mobility systems are increasingly present in our environment, as they enable the reduction of polluting emissions. Electric vehicles (EVs) are one of the fastest-growing alternatives to date, with [...] Read more.
The improvement of environmental conditions has become a priority for governments and legislators. New electrified mobility systems are increasingly present in our environment, as they enable the reduction of polluting emissions. Electric vehicles (EVs) are one of the fastest-growing alternatives to date, with exponential growth expected over the next few years. In this article, the various charging modes for EVs are explored, and the risks associated with charging technologies are analysed, particularly for charging systems in high-power DC with Lithium battery energy storage, given their long market deployment and characteristic behaviour. In particular, the Arc Flash (AF) risk present in high-power DC chargers will be studied, involving numerous simulations of the charging process. Subsequently, the Incident Energy (IE) analysis is carried out at different specific points of a commercial high-power ‘Mode 4’ charger. For this purpose, different analysis methods of recognised prestige, such as Doan, Paukert, or Stokes and Oppenlander, are applied, using the latest version of the ETAP® simulation tool version 22.5.0. This study focuses on quantifying the potential severity (consequences) of an AF event, assuming its occurrence, rather than performing a probabilistic risk assessment according to standard methodologies. The primary objective of this research is to comprehensively quantify the potential consequences for workers involved in the operation, maintenance, repair, and execution of tasks related to EV charging systems. This analysis makes it possible to provide safe working conditions and to choose the appropriate and necessary personal protective equipment (PPE) for each type of operation. It is essential to develop this novel process to quantify the consequences of AF and to protect the end users of EV charging systems. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

25 pages, 9888 KiB  
Article
An Optimal Multi-Zone Fast-Charging System Architecture for MW-Scale EV Charging Sites
by Sai Bhargava Althurthi and Kaushik Rajashekara
World Electr. Veh. J. 2025, 16(7), 389; https://doi.org/10.3390/wevj16070389 - 10 Jul 2025
Viewed by 276
Abstract
In this paper, a detailed review of electric vehicle (EV) charging station architectures is first presented, and then an optimal architecture suitable for a large MW-scale EV fast-charging station (EVFS) with multiple fast chargers is proposed and evaluated. The study examines various EVFS [...] Read more.
In this paper, a detailed review of electric vehicle (EV) charging station architectures is first presented, and then an optimal architecture suitable for a large MW-scale EV fast-charging station (EVFS) with multiple fast chargers is proposed and evaluated. The study examines various EVFS architectures, including those currently deployed in commercial sites. Most EVFS implementations use either a common AC-bus or a common DC-bus configuration, with DC-bus architectures being slightly more predominant. The paper analyzes the EV charging and battery energy storage system (BESS) requirements for future large-scale EVFSs and identifies key implementation challenges associated with the full adoption of the common DC-bus approach. To overcome these limitations, a novel multi-zone EVFS architecture is proposed that employs an optimal combination of isolated and non-isolated DC-DC converter topologies while maintaining galvanic isolation for EVs. The system efficiency and total power converter capacity requirements of the proposed architecture are evaluated and compared with those of other EVFS models. A major feature of the proposed design is its multi-zone division and zonal isolation capabilities, which are not present in conventional EVFS architectures. These advantages are demonstrated through a scaled-up model consisting of 156 EV fast chargers. The analysis highlights the superior performance of the proposed multi-zone EVFS architecture in terms of efficiency, total power converter requirements, fault tolerance, and reduced grid impacts, making it the best solution for reliable and scalable MW-scale commercial EVFS systems of the future. Full article
Show Figures

Figure 1

15 pages, 1572 KiB  
Article
AI-Driven Optimization Framework for Smart EV Charging Systems Integrated with Solar PV and BESS in High-Density Residential Environments
by Md Tanjil Sarker, Marran Al Qwaid, Siow Jat Shern and Gobbi Ramasamy
World Electr. Veh. J. 2025, 16(7), 385; https://doi.org/10.3390/wevj16070385 - 9 Jul 2025
Viewed by 646
Abstract
The rapid growth of electric vehicle (EV) adoption necessitates advanced energy management strategies to ensure sustainable, reliable, and efficient operation of charging infrastructure. This study proposes a hybrid AI-based framework for optimizing residential EV charging systems through the integration of Reinforcement Learning (RL), [...] Read more.
The rapid growth of electric vehicle (EV) adoption necessitates advanced energy management strategies to ensure sustainable, reliable, and efficient operation of charging infrastructure. This study proposes a hybrid AI-based framework for optimizing residential EV charging systems through the integration of Reinforcement Learning (RL), Linear Programming (LP), and real-time grid-aware scheduling. The system architecture includes smart wall-mounted chargers, a 120 kWp rooftop solar photovoltaic (PV) array, and a 60 kWh lithium-ion battery energy storage system (BESS), simulated under realistic load conditions for 800 residential units and 50 charging points rated at 7.4 kW each. Simulation results, validated through SCADA-based performance monitoring using MATLAB/Simulink and OpenDSS, reveal substantial technical improvements: a 31.5% reduction in peak transformer load, voltage deviation minimized from ±5.8% to ±2.3%, and solar utilization increased from 48% to 66%. The AI framework dynamically predicts user demand using a non-homogeneous Poisson process and optimizes charging schedules based on a cost-voltage-user satisfaction reward function. The study underscores the critical role of intelligent optimization in improving grid reliability, minimizing operational costs, and enhancing renewable energy self-consumption. The proposed system demonstrates scalability, resilience, and cost-effectiveness, offering a practical solution for next-generation urban EV charging networks. Full article
Show Figures

Figure 1

25 pages, 7712 KiB  
Article
Empirical EV Load Model for Distribution Network Analysis
by Quang Bach Phan, Obaidur Rahman and Sean Elphick
Energies 2025, 18(13), 3494; https://doi.org/10.3390/en18133494 - 2 Jul 2025
Viewed by 314
Abstract
Electric vehicles (EVs) have introduced new operational challenges for distribution network service providers (DNSPs), particularly for voltage regulation due to unpredictable charging behaviour and the intermittent nature of distributed energy resources (DERs). This study focuses on formulating an empirical EV load model that [...] Read more.
Electric vehicles (EVs) have introduced new operational challenges for distribution network service providers (DNSPs), particularly for voltage regulation due to unpredictable charging behaviour and the intermittent nature of distributed energy resources (DERs). This study focuses on formulating an empirical EV load model that characterises charging behaviour over a broad spectrum of supply voltage magnitudes to enable more accurate representation of EV demand under varying grid conditions. The empirical model is informed by laboratory evaluation of one Level 1 and two Level 2 chargers, along with five EV models. The testing revealed that all the chargers operated in a constant current (CC) mode across the applied voltage range, except for certain Level 2 chargers, which transitioned to constant power (CP) operation at voltages above 230 V. A model of a typical low voltage network has been developed using the OpenDSS software package (version 10.2.0.1) to evaluate the performance of the proposed empirical load model against traditional CP load modelling. In addition, a 24 h case study is presented to provide insights into the practical implications of increasing EV charging load. The results demonstrate that the CP model consistently overestimated network demand and voltage drops and failed to capture the voltage-dependent behaviour of EV charging in response to source voltage change. In contrast, the empirical model provided a more realistic reflection of network response, offering DNSPs improved accuracy for system planning. Full article
Show Figures

Graphical abstract

34 pages, 4495 KiB  
Article
Charging Ahead: Perceptions and Adoption of Electric Vehicles Among Full- and Part-Time Ridehailing Drivers in California
by Mengying Ju, Elliot Martin and Susan Shaheen
World Electr. Veh. J. 2025, 16(7), 368; https://doi.org/10.3390/wevj16070368 - 2 Jul 2025
Viewed by 752
Abstract
California’s SB 1014 (Clean Miles Standard) mandates ridehailing fleet electrification to reduce emissions from vehicle miles traveled, posing financial and infrastructure challenges for drivers. This study employs a mixed-methods approach, including expert interviews (n = 10), group discussions (n = 8), [...] Read more.
California’s SB 1014 (Clean Miles Standard) mandates ridehailing fleet electrification to reduce emissions from vehicle miles traveled, posing financial and infrastructure challenges for drivers. This study employs a mixed-methods approach, including expert interviews (n = 10), group discussions (n = 8), and a survey of full- and part-time drivers (n = 436), to examine electric vehicle (EV) adoption attitudes and policy preferences. Access to home charging and prior EV experience emerged as the most statistically significant predictors of EV acquisition. Socio-demographic variables, particularly income and age, could also influence the EV choice and sensitivity to policy design. Full-time drivers, though confident in the EV range, were concerned about income loss from the charging downtime and access to urban fast chargers. They showed a greater interest in EVs than part-time drivers and favored an income-based instant rebate at the point of sale. In contrast, part-time drivers showed greater hesitancy and were more responsive to vehicle purchase discounts (price reductions or instant rebates at the point of sale available to all customers) and charging credits (monetary incentive or prepaid allowance to offset the cost of EV charging equipment). Policymakers might target low-income full-time drivers with greater price reductions and offer charging credits (USD 500 to USD 1500) to part-time drivers needing operational and infrastructure support. Full article
Show Figures

Figure 1

31 pages, 11216 KiB  
Article
An Optimal Integral Fast Terminal Synergetic Control Scheme for a Grid-to-Vehicle and Vehicle-to-Grid Battery Electric Vehicle Charger Based on the Black-Winged Kite Algorithm
by Ishak Aris, Yanis Sadou and Abdelbaset Laib
Energies 2025, 18(13), 3397; https://doi.org/10.3390/en18133397 - 27 Jun 2025
Viewed by 448
Abstract
The utilization of electric vehicles (EVs) has grown significantly and continuously in recent years, encouraging the creation of new implementation opportunities. The battery electric vehicle (BEV) charging system can be effectively used during peak load periods, for voltage regulation, and for the improvement [...] Read more.
The utilization of electric vehicles (EVs) has grown significantly and continuously in recent years, encouraging the creation of new implementation opportunities. The battery electric vehicle (BEV) charging system can be effectively used during peak load periods, for voltage regulation, and for the improvement of power system stability within the smart grid. It provides an efficient bidirectional interface for charging the battery from the grid and discharging the battery into the grid. These two operation modes are referred to as grid-to-vehicle (G2V) and vehicle-to-grid (V2G), respectively. The management of power flow in both directions is highly complex and sensitive, which requires employing a robust control scheme. In this paper, an Integral Fast Terminal Synergetic Control Scheme (IFTSC) is designed to control the BEV charger system through accurately tracking the required current and voltage in both G2V and V2G system modes. Moreover, the Black-Winged Kite Algorithm is introduced to select the optimal gains of the proposed IFTS control scheme. The system stability is checked using the Lyapunov stability method. Comprehensive simulations using MATLAB/Simulink are conducted to assess the safety and efficacy of the suggested optimal IFTSC in comparison with IFTSC, optimal integral synergetic, and conventional PID controllers. Furthermore, processor-in-the-loop (PIL) co-simulation is carried out for the studied system using the C2000 launchxl-f28379d digital signal processing (DSP) board to confirm the practicability and effectiveness of the proposed OIFTS. The analysis of the obtained quantitative comparison proves that the proposed optimal IFTSC provides higher control performance under several critical testing scenarios. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

25 pages, 5804 KiB  
Article
Influencing Factors of Solar-Powered Electric Vehicle Charging Stations in Hail City, Saudi Arabia
by Abdulmohsen A. Al-fouzan and Radwan A. Almasri
Appl. Sci. 2025, 15(13), 7108; https://doi.org/10.3390/app15137108 - 24 Jun 2025
Viewed by 466
Abstract
As part of the global endeavor to encourage sustainable urban growth and lower carbon emissions, Hail City is leading the way in implementing cutting-edge technologies with which to improve its urban infrastructure. Initiatives for energy resilience and the environment heavily rely on shifting [...] Read more.
As part of the global endeavor to encourage sustainable urban growth and lower carbon emissions, Hail City is leading the way in implementing cutting-edge technologies with which to improve its urban infrastructure. Initiatives for energy resilience and the environment heavily rely on shifting to electric vehicles (EVs). This work describes the strategic planning required to implement a network of solar charging stations and analyzes the parameters that affect this, supporting cleaner transport options. In addition to meeting the growing demand from an increased number of EVs, constructing a network of solar charging stations positions the city as a leader in integrating renewable energy sources into urban areas. A solar electric vehicle charging station (EVCS) will also be designed. This study highlights a competitive attitude in establishing international standards for sustainable practices and critically examines the technical factors affecting the required charging stations. Regarding the latter, the following results were obtained. The ideal number of station slots is 200. Less efficient vehicles with higher consumption rates require a more comprehensive charging infrastructure, and increasing the charging power leads to an apparent decrease in the number of stations. The influence of battery capacity on the required NSs is limited, especially at charger power values above 30 kWh. By taking proactive measures to address these factors, Hail City hopes to improve its infrastructure effectively and sustainably, keeping it competitive in a world where cities are increasingly judged on their ability to adopt new technology and green projects. A solar station was designed to supply the EVCS with a capacity of 700.56 kWp. Full article
Show Figures

Figure 1

16 pages, 4413 KiB  
Article
Autonomous Control of Electric Vehicles Using Voltage Droop
by Hanchi Zhang, Rakesh Sinha, Hessam Golmohamadi, Sanjay K. Chaudhary and Birgitte Bak-Jensen
Energies 2025, 18(11), 2824; https://doi.org/10.3390/en18112824 - 29 May 2025
Viewed by 384
Abstract
The surge in electric vehicles (EVs) in Denmark challenges the country’s residential low-voltage (LV) distribution system. In particular, it increases the demand for home EV charging significantly and possibly overloads the LV grid. This study analyzes the impact of EV charging integration on [...] Read more.
The surge in electric vehicles (EVs) in Denmark challenges the country’s residential low-voltage (LV) distribution system. In particular, it increases the demand for home EV charging significantly and possibly overloads the LV grid. This study analyzes the impact of EV charging integration on Denmark’s residential distribution networks. A residential grid comprising 67 households powered by a 630 kVA transformer is studied using DiGSILENT PowerFactory. With the assumption of simultaneous charging of all EVs, the transformer can be heavily loaded up to 147.2%. Thus, a voltage-droop based autonomous control approach is adopted, where the EV charging power is dynamically adjusted based on the point-of-connection voltage of each charger instead of the fixed rated power. This strategy eliminates overloading of the transformers and cables, ensuring they operate within a pre-set limit of 80%. Voltage drops are mitigated within the acceptable safety range of ±10% from normal voltage. These results highlight the effectiveness of the droop control strategy in managing EV charging power. Finally, it exemplifies the benefits of intelligent EV charging systems in Horizon 2020 EU Projects like SERENE and SUSTENANCE. The findings underscore the necessity to integrate smart control mechanisms, consider reinforcing grids, and promote active consumer participation to meet the rising demand for a low-carbon future. Full article
Show Figures

Figure 1

31 pages, 6374 KiB  
Article
An Electric Vehicle Charging Simulation to Investigate the Potential of Intelligent Charging Strategies
by Max Faßbender, Nicolas Rößler, Markus Eisenbarth and Jakob Andert
Energies 2025, 18(11), 2778; https://doi.org/10.3390/en18112778 - 27 May 2025
Cited by 1 | Viewed by 552
Abstract
As electric vehicle (EV) adoption grows, efficient and accessible charging infrastructure is essential. This paper introduces a modular simulation environment to evaluate charging point configurations and operational strategies. The simulation incorporates detailed models of electrical consumers and user behaviour, leveraging real-world data to [...] Read more.
As electric vehicle (EV) adoption grows, efficient and accessible charging infrastructure is essential. This paper introduces a modular simulation environment to evaluate charging point configurations and operational strategies. The simulation incorporates detailed models of electrical consumers and user behaviour, leveraging real-world data to simulate charging scenarios. A rule-based control strategy is applied to assess six configurations for a supermarket parking lot charging point. Key findings include the highest profit being achieved with two fast chargers. In scenarios with a 50 kW grid connection limit, combining fast chargers with stationary battery storage proves effective. Conversely, mobile charging robots generate lower revenue, though grid peak limitations have minimal impact. The study highlights the potential of the simulation environment to optimise charging layouts, refine operational strategies, and develop energy management algorithms. This work demonstrates the utility of the simulation framework for analyzing diverse charging solutions, offering insights into cost efficiency and user satisfaction. The results emphasise the importance of tailored strategies to balance grid constraints, profitability, and user needs, paving the way for intelligent EV charging infrastructure development. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Graphical abstract

17 pages, 4065 KiB  
Article
Evaluating Effects of Electric Vehicle Chargers on Residential Power Infrastructure
by Pathomthat Chiradeja, Orawan Chuadmee, Santipont Ananwattanaporn, Chayanut Sottiyaphai and Atthapol Ngaopitakkul
Appl. Sci. 2025, 15(11), 5997; https://doi.org/10.3390/app15115997 - 26 May 2025
Viewed by 572
Abstract
This study investigated the impact of electric vehicle (EV) chargers on residential electrical systems through a real-world case study in a condominium located in Bangkok, Thailand. A two-week field measurement was conducted to analyze load profiles, current and voltage behavior, phase symmetry, and [...] Read more.
This study investigated the impact of electric vehicle (EV) chargers on residential electrical systems through a real-world case study in a condominium located in Bangkok, Thailand. A two-week field measurement was conducted to analyze load profiles, current and voltage behavior, phase symmetry, and harmonic distortion during EV charger operation. The results show that single-phase charging dominated usage patterns, leading to phase imbalance and significant neutral current flow. Voltage unbalance was quantified using the maximum deviation method, with an average value of 0.535 percent and a peak of 2.18 percent observed during charging activity. A harmonic distortion analysis revealed a substantial increase in current total harmonic distortion (THD) during active charging, with values rising to between 15 and 20 percent. These findings highlight nonlinear loading effects that may reduce power quality and pose risks to electrical equipment and system stability. In retrofitted electrical infrastructures, these effects are often exacerbated by design limitations and the absence of coordinated load management. This study’s findings offer practical insights for engineers, facility managers, and policymakers in designing EV-ready residential systems that are both efficient and resilient. Full article
Show Figures

Figure 1

21 pages, 2161 KiB  
Article
Planning and Optimizing Charging Infrastructure and Scheduling in Smart Grids with PyPSA-LOPF: A Case Study at Cadi Ayyad University
by Meriem Belaid, Said El Beid, Said Doubabi and Anas Hatim
World Electr. Veh. J. 2025, 16(5), 278; https://doi.org/10.3390/wevj16050278 - 17 May 2025
Viewed by 512
Abstract
This paper presents an optimization model for the charging infrastructure of electric vehicles (EV) designed to minimize installation costs, maximize the utilization of photovoltaic energy, reduce dependency on the electrical grid, and optimize charging times. The model utilizes methodologies such as Linear Optimal [...] Read more.
This paper presents an optimization model for the charging infrastructure of electric vehicles (EV) designed to minimize installation costs, maximize the utilization of photovoltaic energy, reduce dependency on the electrical grid, and optimize charging times. The model utilizes methodologies such as Linear Optimal Power Flow (LOPF) to align EV charging schedules with the availability of renewable energy sources. Key inputs for the model include Photovoltaic (PV) production profiles, EV charging demands, specifications of the chargers, and the availability of grid energy. The framework integrates installation costs, grid energy consumption, and charging duration into a weighted objective function, ensuring energy balance and operational efficiency while adhering to budgetary constraints. Five distinct optimization scenarios are analyzed to evaluate the trade-offs between cost, charging duration, and reliance on various energy sources. The simulation results obtained from Cadi Ayyad University validate the model’s effectiveness in balancing costs, enhancing charging performance, and increasing dependence on solar energy. This approach provides a comprehensive solution for the development of sustainable and cost-effective EV charging infrastructure. Full article
Show Figures

Figure 1

27 pages, 22320 KiB  
Article
A Real-World Case Study Towards Net Zero: EV Charger and Heat Pump Integration in End-User Residential Distribution Networks
by Thet Paing Tun, Oguzhan Ceylan and Ioana Pisica
Energies 2025, 18(10), 2510; https://doi.org/10.3390/en18102510 - 13 May 2025
Viewed by 460
Abstract
The electrification of energy systems is essential for carbon reduction and sustainable energy goals. However, current network asset ratings and the poor thermal efficiency of older buildings pose significant challenges. This study evaluates the impact of heat pump and electric vehicle (EV) penetration [...] Read more.
The electrification of energy systems is essential for carbon reduction and sustainable energy goals. However, current network asset ratings and the poor thermal efficiency of older buildings pose significant challenges. This study evaluates the impact of heat pump and electric vehicle (EV) penetration on a UK residential distribution network, considering the highest coincident electricity demand and worst weather conditions recorded over the past decade. The power flow calculation, based on Python, is performed using the pandapower library, leveraging the actual distribution network structure of the Hillingdon area by incorporating recent smart meter data from a distribution system operator alongside historical weather data from the past decade. Based on the outcome of power flow calculation, the transformer loadings and voltage levels were assessed for existing and projected heat pump and EV adoption rates, in line with national policy targets. Findings highlight that varied consumer density and diverse usage patterns significantly influence upgrade requirements. Full article
(This article belongs to the Special Issue The Networked Control and Optimization of the Smart Grid)
Show Figures

Figure 1

20 pages, 1348 KiB  
Article
Impacts of Electric Vehicle Penetration on the Frequency Stability of Curaçao’s Power Network
by Daniela Vásquez-Cardona, Sergio D. Saldarriaga-Zuluaga, Santiago Bustamante-Mesa, Jesús M. López-Lezama and Nicolás Muñoz-Galeano
World Electr. Veh. J. 2025, 16(5), 264; https://doi.org/10.3390/wevj16050264 - 10 May 2025
Viewed by 709
Abstract
Assessing the impact of electric vehicle (EV) integration on power systems is crucial, particularly regarding frequency stability, which often remains largely unaddressed, especially in developing countries. This paper examines the effects of EV penetration on the frequency stability of Curaçao’s power network, an [...] Read more.
Assessing the impact of electric vehicle (EV) integration on power systems is crucial, particularly regarding frequency stability, which often remains largely unaddressed, especially in developing countries. This paper examines the effects of EV penetration on the frequency stability of Curaçao’s power network, an aspect not previously studied for the island. As a key contribution, we present a representative model of Curaçao’s power network, adjusting the dynamic models of the speed governors of synchronous machines, using data available to the academic community. Additionally, we analyze the impacts of EVs on the grid’s frequency stability under different EV participation scenarios. To achieve this, simulations were conducted considering various EV participation scenarios and different types of chargers to assess their impact on grid stability. The study evaluates key frequency stability metrics, including the rate of change of frequency (RoCoF) as well as the highest and lowest frequency values during the transient period. The results indicated that higher EV penetration can significantly impact frequency stability. The observed increase in the RoCoF and frequency zenith values suggests a weakening of the grid’s ability to withstand frequency disturbances, particularly in high-EV-penetration scenarios. Full article
Show Figures

Figure 1

17 pages, 383 KiB  
Article
Does Public Environmental Affect Influence the World’s Largest Electric Vehicle Market? A Big Data Analytics Study of China
by Jianling Wang, Chenying Wang, Lu Chen and Xiangyuan Li
Sustainability 2025, 17(9), 4048; https://doi.org/10.3390/su17094048 - 30 Apr 2025
Cited by 1 | Viewed by 617
Abstract
The transition from combustion vehicles to electric vehicles (EVs) is critical for mitigating climate change. As the global leader in the EV market, China has been propelled by government policies, market dynamics, and public awareness. As sentiment is fundamental to human communication, however, [...] Read more.
The transition from combustion vehicles to electric vehicles (EVs) is critical for mitigating climate change. As the global leader in the EV market, China has been propelled by government policies, market dynamics, and public awareness. As sentiment is fundamental to human communication, however, existing research lacks a systematic examination of the extent to which public environmental affect influences EV adoption at the macro level, particularly in the presence of government interventions and market strategies. To address this gap, we construct a novel affect index using a CNN deep learning model to extract environmental affect (positive, negative, and neutral) from Weibo posts between 2014 and 2023. Employing monthly EV market share as the dependent variable, we incorporate affect indices as key independent variables, alongside control variables such as government subsidy reductions, price levels, and other marketing strategies. A time-series cointegration model is applied to assess the long-term impact of environmental affect on EV sales. Empirical results reveal that only positive environmental affect has a significant and positive impact on EV adoption, whereas key industry factors, including subsidies, charger availability, patent activity, and price disparities, also play crucial roles. These findings highlight the growing influence of public awareness in shaping the EV market transition from government-driven to market-driven growth. Our study reconciles conflicting findings in prior research and provides actionable insights for policymakers and marketers seeking to foster sustainable EV adoption. Full article
Show Figures

Figure 1

Back to TopTop