Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (232)

Search Parameters:
Keywords = EV battery materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3913 KB  
Article
Diffusion of Alkaline Metals in Two-Dimensional β1-ScSi2N4 and β2-ScSi2N4 Materials: A First-Principles Investigation
by Ying Liu, Han Fu, Wanting Han, Rui Ma, Lihua Yang and Xin Qu
Nanomaterials 2025, 15(16), 1268; https://doi.org/10.3390/nano15161268 - 16 Aug 2025
Viewed by 357
Abstract
The MA2Z4 family represents a class of two-dimensional materials renowned for their outstanding mechanical properties and excellent environmental stability. By means of elemental substitution, we designed two novel phases of ScSi2N4, namely β1 and β [...] Read more.
The MA2Z4 family represents a class of two-dimensional materials renowned for their outstanding mechanical properties and excellent environmental stability. By means of elemental substitution, we designed two novel phases of ScSi2N4, namely β1 and β2. Their dynamical, thermal, and mechanical stabilities were thoroughly verified through phonon dispersion analysis, ab initio molecular dynamics (AIMD) simulations, and calculations of mechanical parameters such as Young’s modulus and Poisson’s ratio. Electronic structure analysis using both PBE and HSE06 methods further revealed that both the β1 and β2 phases exhibit metallic behavior, highlighting their potential for battery-related applications. Based on these outstanding properties, the climbing image nudged elastic band (CI-NEB) method was employed to investigate the diffusion behavior of Li, Na, and K ions on the material surfaces. Both structures demonstrate extremely low diffusion energy barriers (Li: 0.38 eV, Na: 0.22 eV, K: 0.12 eV), indicating rapid ion migration—especially for K—and excellent rate performance. The lowest barrier for K ions (0.12 eV) suggests the fastest diffusion kinetics, making it particularly suitable for high-power potassium-ion batteries. The significantly lower barrier for Na ions (0.22 eV) compared with Li (0.38 eV) implies that both β1 and β2 phases may be more favorable for fast-charging/discharging sodium-ion battery applications. First-principles calculations were applied to determine the open-circuit voltage (OCV) of the battery materials. The β2 phase exhibits a higher OCV in Li/Na systems, while the β1 phase shows more prominent voltage for K. The results demonstrate that both phases possess high theoretical capacities and suitable OCVs. Full article
Show Figures

Figure 1

26 pages, 7562 KB  
Article
Liquid-Phase Synthesis of Monodispersed V5+ Faradic Electrode Toward High-Performance Supercapacitor Application
by Sutharthani Kannan, Chia-Hung Huang, Pradeepa Stephen Sengolammal, Suba Devi Rengapillai, Sivakumar Marimuthu and Wei-Ren Liu
Nanomaterials 2025, 15(16), 1252; https://doi.org/10.3390/nano15161252 - 14 Aug 2025
Viewed by 236
Abstract
Layered intercalating V2O5 (vanadium pentoxide) is a durable battery-type electrode material exploited in supercapacitors. The advancement of V2O5 nanomaterials synthesized from non-aqueous organic solvents holds significant potential for energy storage applications. Liquid-phase synthesis of orthorhombic V2 [...] Read more.
Layered intercalating V2O5 (vanadium pentoxide) is a durable battery-type electrode material exploited in supercapacitors. The advancement of V2O5 nanomaterials synthesized from non-aqueous organic solvents holds significant potential for energy storage applications. Liquid-phase synthesis of orthorhombic V2O5 cathode material corroborated its compatibility with quartet glycols and allowed examination of their explicit roles in faradic charge storage efficacy. V2O5 was found to be an intercalative material in all the quartet glycols. The crystalline, rod-like morphology and monodisperse V2O5 electrode were ascribed to the effects of ethylene, diethylene, triethylene, and tetraethylene glycols. Notable differences were observed in the electrochemical analysis of the prepared V2O5 (EV, DV, TV, and TTV). In a three-electrode cell setup, the DV electrode demonstrated a superior specific capacity of 460.2 C/g at a current density of 1 A/g. From the Trasatti analysis, the DV electrode exhibited 961.53 C/g of total capacitance, comprising a diffusion-controlled contribution of 898.19 C/g and a surface-controlled contribution of 63.34 C/g. The aqueous asymmetric device DV//AC exhibited a maximum energy density of 65.72 Wh/kg at a power density of 1199.97 W/kg. The glycol-derived electrodes were anticipated to bepromising materials for supercapacitors and have the potential to meet electrochemical energy needs. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

21 pages, 1124 KB  
Review
Advances in Graphite Recycling from Spent Lithium-Ion Batteries: Towards Sustainable Resource Utilization
by Maria Joriza Cañete Bondoc, Joel Hao Jorolan, Hyung-Sub Eom, Go-Gi Lee and Richard Diaz Alorro
Minerals 2025, 15(8), 832; https://doi.org/10.3390/min15080832 - 5 Aug 2025
Viewed by 511
Abstract
Graphite has been recognized as a critical material by the United States (US), the European Union (EU), and Australia. Owing to its unique structure and properties, it is utilized in many industries and has played a key role in the clean energy sector, [...] Read more.
Graphite has been recognized as a critical material by the United States (US), the European Union (EU), and Australia. Owing to its unique structure and properties, it is utilized in many industries and has played a key role in the clean energy sector, particularly in the lithium-ion battery (LIB) industries. With the projected increase in global graphite demand, driven by the shift to clean energy and the use of EVs, as well as the geographically concentrated production and reserves of natural graphite, interest in graphite recycling has increased, with a specific focus on using spent LIBs and other waste carbon material. Although most established and developing LIB recycling technologies are focused on cathode materials, some have started recycling graphite, with promising results. Based on the different secondary sources and recycling paths reported, hydrometallurgy-based treatment is usually employed, especially for the purification of graphite; greener alternatives are being explored, replacing HF both in lab-scale research and in industry. This offers a viable solution to resource dependency and mitigates the environmental impact associated with graphite production. These developments signal a trend toward sustainable and circular pathways for graphite recycling. Full article
(This article belongs to the Special Issue Graphite Minerals and Graphene, 2nd Edition)
Show Figures

Graphical abstract

51 pages, 4099 KB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Viewed by 1425
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

21 pages, 3744 KB  
Article
A First-Principles Modeling of the Elastic Properties and Generalized Stacking Fault Energy of Ir-W Solid Solution Alloys
by Pengwei Shi, Jianbo Ma, Fenggang Bian and Guolu Li
Materials 2025, 18(15), 3629; https://doi.org/10.3390/ma18153629 - 1 Aug 2025
Viewed by 386
Abstract
Iridium, with its excellent high-temperature chemical inertness, is a preferred cladding material for radioisotope batteries. However, its inherent room-temperature brittleness severely restricts its application. In this research, pure Ir and six Ir-W solid solutions (Ir31W1 to Ir26W6 [...] Read more.
Iridium, with its excellent high-temperature chemical inertness, is a preferred cladding material for radioisotope batteries. However, its inherent room-temperature brittleness severely restricts its application. In this research, pure Ir and six Ir-W solid solutions (Ir31W1 to Ir26W6) were modeled. The effects of W on the elastic properties, generalized stacking fault energy, and bonding properties of Ir solid solution alloys were investigated by first-principles simulation, aiming to find a way to overcome the intrinsic brittleness of Ir. With the W concentration increasing from 0 to 18.75 at %, the calculated Cauchy pressure (C12C44) increases from −22 to 5 GPa, Pugh’s ratio (B/G) increases from 1.60 to 1.72, the intrinsic stacking fault energy reduces from 337.80 to 21.16 mJ/m2, and the unstable stacking fault energy reduces from 636.90 to 547.39 mJ/m2. According to these results, it is predicted that the addition of W improves the toughness of iridium alloys. The alloying of W weakens the covalency properties of the Ir-Ir bond (the ICOHP value increases from −0.8512 to −0.7923 eV). These phenomena result in a decrease in the energy barrier for grain slip. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

20 pages, 6146 KB  
Article
Adsorption and Decomposition Mechanisms of Li2S on 2D Thgraphene Modulated by Doping and External Electrical Field
by Ruofeng Zhang, Jiyuan Guo, Lanqing Chen and Fengjie Tao
Materials 2025, 18(14), 3269; https://doi.org/10.3390/ma18143269 - 10 Jul 2025
Viewed by 450
Abstract
The modification of materials is considered as one of the productive methods to facilitate the better electrochemical behavior of lithium–sulfur battery cathodes and inhibit the shuttle effect. Adopting first-principles calculations in this work, the application potential of pristine and B-, N-, and P-doped [...] Read more.
The modification of materials is considered as one of the productive methods to facilitate the better electrochemical behavior of lithium–sulfur battery cathodes and inhibit the shuttle effect. Adopting first-principles calculations in this work, the application potential of pristine and B-, N-, and P-doped thgraphene as anchoring materials was investigated. The results reveal that pristine and doped substrates have an excellent structural stability, conductivity, and electrochemical activity. In the absence of an electric field, four substrates exhibit a strong anchoring effect on the Li2S cluster, where the adsorption energies fall within 3.10 to 4.48 eV. Even under the external electric field, all substrates exhibit notable structural stability during Li2S adsorption processes and maintain a high electrical conductivity, with adsorption energies exceeding 2.75 eV. Furthermore, it has been observed that the interfacial diffusion energy barriers for Li on all substrates are below 0.35 eV, which effectively enhances Li migration and facilitates reaction kinetics. Additionally, Li2S demonstrates a low decomposition energy barrier (varying from 0.84 to 1.55 eV) on pristine and doped substrates, enabling the efficient regeneration of the active material during the battery cycling. These findings offer a scientific guideline for the design of pristine and doped thgraphene as an excellent anchoring material for advanced lithium–sulfur batteries. Full article
Show Figures

Figure 1

32 pages, 8765 KB  
Article
Hybrid Efficient Fast Charging Strategy for WPT Systems: Memetic-Optimized Control with Pulsed/Multi-Stage Current Modes and Neural Network SOC Estimation
by Marouane El Ancary, Abdellah Lassioui, Hassan El Fadil, Yassine El Asri, Anwar Hasni, Abdelhafid Yahya and Mohammed Chiheb
World Electr. Veh. J. 2025, 16(7), 379; https://doi.org/10.3390/wevj16070379 - 6 Jul 2025
Viewed by 542
Abstract
This paper presents a hybrid fast charging strategy for static wireless power transfer (WPT) systems that synergistically combines pulsed current and multi-stage current (MCM) modes to enable rapid yet battery-health-conscious electric vehicle (EV) charging, thereby promoting sustainable transportation. The proposed approach employs a [...] Read more.
This paper presents a hybrid fast charging strategy for static wireless power transfer (WPT) systems that synergistically combines pulsed current and multi-stage current (MCM) modes to enable rapid yet battery-health-conscious electric vehicle (EV) charging, thereby promoting sustainable transportation. The proposed approach employs a memetic algorithm (MA) to dynamically optimize the charging parameters, achieving an optimal balance between speed and battery longevity while maintaining 90.78% system efficiency at the SAE J2954-standard 85 kHz operating frequency. A neural-network-based state of charge (SOC) estimator provides accurate real-time monitoring, complemented by MA-tuned PI control for enhanced resonance stability and adaptive pulsed current–MCM profiles for the optimal energy transfer. Simulations and experimental validation demonstrate faster charging compared to that using the conventional constant current–constant voltage (CC-CV) methods while effectively preserving the battery’s state of health (SOH)—a critical advantage that reduces the environmental impact of frequent battery replacements and minimizes the carbon footprint associated with raw material extraction and battery manufacturing. By addressing both the technical challenges of high-power WPT systems and the ecological imperative of battery preservation, this research bridges the gap between fast charging requirements and sustainable EV adoption, offering a practical solution that aligns with global decarbonization goals through optimized resource utilization and an extended battery service life. Full article
Show Figures

Graphical abstract

22 pages, 2478 KB  
Review
Thermal Management Systems for Lithium-Ion Batteries for Electric Vehicles: A Review
by Kenia Yadira Gómez Díaz, Susana Estefany De León Aldaco, Jesus Aguayo Alquicira, Mario Ponce Silva, Samuel Portillo Contreras and Oscar Sánchez Vargas
World Electr. Veh. J. 2025, 16(7), 346; https://doi.org/10.3390/wevj16070346 - 23 Jun 2025
Viewed by 1999
Abstract
Recently, electric vehicles (EVs) have proven to be a practical option for lowering greenhouse gas emissions and reducing reliance on fossil fuels. Lithium-ion batteries, at the core of this innovation, require efficient thermal management to ensure optimal performance, safety, and durability. This article [...] Read more.
Recently, electric vehicles (EVs) have proven to be a practical option for lowering greenhouse gas emissions and reducing reliance on fossil fuels. Lithium-ion batteries, at the core of this innovation, require efficient thermal management to ensure optimal performance, safety, and durability. This article reviews current scientific studies on controlling the temperature of lithium-ion batteries used in electric vehicles. Several cooling strategies are discussed, including air cooling, liquid cooling, the use of phase change materials (PCMs), and hybrids that combine these three types of cooling, with the primary objective of enhancing the thermal performance of the batteries. Additionally, the challenges and proposed solutions in battery pack design and energy management methodologies are explored. As the demand for electric vehicles increases, improving battery thermal management systems (BTMSs) is becoming increasingly important. Implementing and developing better BTMSs will help increase the autonomy and safety of electric vehicles in the long term. Full article
(This article belongs to the Special Issue Electric Vehicle Battery Pack and Electric Motor Sizing Methods)
Show Figures

Figure 1

8 pages, 2364 KB  
Article
Machine Learning-Based Methodology for Fast Assessment of Battery Health Status
by Woongchul Choi
Batteries 2025, 11(7), 236; https://doi.org/10.3390/batteries11070236 - 20 Jun 2025
Viewed by 521
Abstract
Global electric vehicle (EV) markets are rapidly expanding, and the efficient management of batteries has become increasingly important due to supply constraints of rare metals and other raw materials required for lithium-ion batteries. Accordingly, the reuse and recycling of used batteries from early [...] Read more.
Global electric vehicle (EV) markets are rapidly expanding, and the efficient management of batteries has become increasingly important due to supply constraints of rare metals and other raw materials required for lithium-ion batteries. Accordingly, the reuse and recycling of used batteries from early EVs are emerging as key solutions. This study proposes a machine learning-based approach to rapidly and reliably estimate the static capacity of used batteries. While conventional methods require significant measurement time, this study demonstrates that accurate static capacity estimation is possible using only short-term partial discharge data (6 min under 1C-rate CC conditions) by leveraging an RNN (recurrent neural network) architecture specialized for time-series data processing. The proposed model achieves high prediction accuracy, with an average RMSE of 28.439 mAh, average MSE of 808.799 mAh2, average MAE of 13.049 mAh, and average R2 of 0.9993, while significantly reducing the evaluation time compared to conventional methods. This is expected to greatly enhance the efficiency and practicality of battery reuse and recycling processes. Full article
Show Figures

Figure 1

26 pages, 1794 KB  
Article
Can Chinese Electric Vehicles Meet EU Batteries Regulation Targets? A Dynamic Approach to Assess the Potential for Recycled Materials Use in Chinese EV Batteries
by Ping Li, Yaoming Li, Yiyun Qiao, Jing Wang, Dongchang Zhao and Rujie Yu
World Electr. Veh. J. 2025, 16(7), 342; https://doi.org/10.3390/wevj16070342 - 20 Jun 2025
Viewed by 894
Abstract
The European Union (EU) has put forward a new regulatory framework for batteries through the EU Batteries Regulation (2023/1542), which sets a series of minimum thresholds of recycled materials for electric vehicle (EV) batteries sold on the EU market. Since the EU is [...] Read more.
The European Union (EU) has put forward a new regulatory framework for batteries through the EU Batteries Regulation (2023/1542), which sets a series of minimum thresholds of recycled materials for electric vehicle (EV) batteries sold on the EU market. Since the EU is the largest market for China’s EV export, compliance with the EU Batteries Regulation is a prerequisite for China’s EV export. To evaluate the feasibility of meeting these regulatory requirements, a future-oriented Chinese EV recycled materials use potential analysis model has been developed, forecasting the maximum proportion of recycled materials in China’s EV batteries from 2020 to 2035. To find out the risk factors, influencing aspects such as battery lifespan, demand, technology development, collection rate, and battery reshoring have been considered. The findings indicate that compared to other metals, the maximum proportion of recycled lithium is the lowest, forecast to be 21.2% in 2031, and increasing to 28.3% by 2035. Conversely, the maximum proportion of recycled graphite is the highest, at 28.9% in 2031 and reaching 41.3% in 2035. These results suggest that Chinese EV batteries could meet the targets set by the EU Batteries Regulation in most scenarios. Moreover, the analysis indicates that battery lifespan and collection rate constitute significant risk factors potentially influencing the recycled material content in Chinese EV batteries, which in turn impacts Chinese EV export to the EU. Finally, policy recommendations are proposed to enhance EV export and to bolster EV battery recycling industry development. Full article
Show Figures

Figure 1

24 pages, 2073 KB  
Article
Global Supply of Secondary Lithium from Lithium-Ion Battery Recycling
by Carolin Kresse, Britta Bookhagen, Laura Buarque Andrade and Max Frenzel
Recycling 2025, 10(4), 122; https://doi.org/10.3390/recycling10040122 - 20 Jun 2025
Viewed by 1350
Abstract
The recycling of lithium-ion batteries is picking up rather slowly, although recent rapid growth in consumption and increasing prevalence of battery electric vehicles have increased the quantity of recoverable material from past years of production. Yet, the diversity of different product types i.e., [...] Read more.
The recycling of lithium-ion batteries is picking up rather slowly, although recent rapid growth in consumption and increasing prevalence of battery electric vehicles have increased the quantity of recoverable material from past years of production. Yet, the diversity of different product types i.e., chemistries and product life spans complicates the recovery of raw materials. At present, large-scale industrial recycling of lithium-ion batteries employs (1) pyrometallurgy, with downstream hydrometallurgy for recovery of refined metals/salts; and (2) hydrometallurgy, requiring upstream mechanical shredding of cells and/or modules. Regulatory requirements, especially in Europe, and the high industry concentration along the lithium-ion battery value chain drive recycling efforts forward. The present study aims to quantify the potential contribution of 2nd lithium from recycling to battery production on a global and European scale up to 2050. The overall recycling output of lithium in any given year depends on the interactions between several different factors, including past production, battery lifetime distributions, and recovery rates, all of which are uncertain. The simplest way to propagate input uncertainties to the final results is to use Monte Carlo-type simulations. Calculations were done separately for EVs and portable batteries. The overall supply of lithium from recycling is the sum of the contributions from EVs and portable electronics from both the EU and the RoW in each battery production scenario. Results show a total global supply of recycled lithium below 20% in each scenario until 2050. On the EU level, the contribution of recycled lithium may reach up to 50% due to the high collection and recovery rate targets. Full article
(This article belongs to the Special Issue Lithium-Ion and Next-Generation Batteries Recycling)
Show Figures

Figure 1

31 pages, 1734 KB  
Review
Progress, Challenges and Opportunities in Recycling Electric Vehicle Batteries: A Systematic Review Article
by Hamid Safarzadeh and Francesco Di Maria
Batteries 2025, 11(6), 230; https://doi.org/10.3390/batteries11060230 - 13 Jun 2025
Cited by 1 | Viewed by 2651
Abstract
Objective: The rapid growth of electric vehicle (EV) adoption has led to an unprecedented increase in lithium-ion battery (LIB) demand and end-of-life waste, underscoring the urgent need for effective recycling strategies. This review evaluates current progress in EV battery recycling and explores future [...] Read more.
Objective: The rapid growth of electric vehicle (EV) adoption has led to an unprecedented increase in lithium-ion battery (LIB) demand and end-of-life waste, underscoring the urgent need for effective recycling strategies. This review evaluates current progress in EV battery recycling and explores future prospects. Design: Review based on PRISMA 2020. Data sources: Scientific publications indexed in major databases such as Scopus, Web of Science, and ScienceDirect were searched for relevant studies published between 2020 and 15 April 2025. Inclusion criteria: Studies were included if they were published in English between 2020 and 15 April 2025, and focused on the recycling of electric vehicle batteries. Eligible studies specifically addressed (i) recycling methods, technologies, and material recovery processes for EV batteries; (ii) the impact of recycled battery systems on power generation processes and grid stability; and (iii) assessments of materials used in battery manufacturing, including efficiency and recyclability. Review articles and meta-analyses were excluded to ensure the inclusion of only original research data. Data extraction: Data were independently screened and extracted by two researchers and analyzed for recovery rates, environmental impact, and system-level energy contributions. One researcher independently screened all articles and extracted relevant data. A second researcher validated the accuracy of extracted data. The data were then organized and analyzed based on reported quantitative and qualitative indicators related to recycling methods, material recovery rates, environmental impact, and system-level energy benefits. Results: A total of 23 studies were included. Significant progress has been made in hydrometallurgical and direct recycling processes, with recovery rates of critical metals (Li, Co, Ni) improving. Second-life battery applications also show promise for grid stabilization and renewable energy storage. Furthermore, recycled batteries show potential in stabilizing power grids through second-life applications in BESS. Conclusion: EV battery recycling is a vital strategy for addressing raw material scarcity, minimizing environmental harm, and supporting energy resilience. However, challenges persist in policy harmonization, technology scaling, and economic viability. Future progress will depend on integrated efforts across sectors and regions to build a circular battery economy. Full article
Show Figures

Graphical abstract

32 pages, 445 KB  
Article
Manufacturing Competency from Local Clusters: Roots of the Competitive Advantage of the Chinese Electric Vehicle Battery Industry
by Wei Zhao and Boy Luethje
World Electr. Veh. J. 2025, 16(6), 319; https://doi.org/10.3390/wevj16060319 - 9 Jun 2025
Viewed by 1784
Abstract
China’s leading development of a complete battery value chain for electric vehicles (EVs) is restructuring the global automotive sector. In contrast with the normal point of view, which emphasizes the role of industrial policy, this article argues that the competitive advantage of China’s [...] Read more.
China’s leading development of a complete battery value chain for electric vehicles (EVs) is restructuring the global automotive sector. In contrast with the normal point of view, which emphasizes the role of industrial policy, this article argues that the competitive advantage of China’s EV battery industry lies in firms’ core competency and political economic geography. Based on first-hand empirical material and data obtained from years of fieldwork carried out at an EV battery cluster in south China, this paper identifies the Chinese EV battery industry’s core competency and details how it is built up from below. The current core competency of Chinese battery firms is their mass manufacturing capability, which allows them to supply vehicle manufacturers (OEMs) with lithium-ion batteries of stable and consistent quality at competitive prices. This competency is acquired by firms through technological learning at the workshop level while making use of the experiences they have accumulated while mass producing batteries for consumer electronics sectors. Furthermore, the rapid learning and accumulation of knowledge of battery manufacturing on a large scale is also facilitated by the local industrial cluster environment where firms are embedded. Supported and promoted by local government policies, Chinese EV battery clusters are composed of firms from different segments of a complete battery value chain. The findings have significant implications for battery and car makers in global competition as well as for national and local governments which aim to promote EV battery development. Full article
Show Figures

Figure 1

16 pages, 3435 KB  
Article
Ultrahigh Storage Capacity of Alkali Metal Ions in Hexagonal Metal Borides with Orderly Multilayered Growth Mechanism
by Jiaxin Jiang, Hongyan Guo and Ning Lu
Nanomaterials 2025, 15(12), 886; https://doi.org/10.3390/nano15120886 - 8 Jun 2025
Viewed by 499
Abstract
The global energy shortage and the gradual depletion of lithium resources have become increasingly prominent. Improving the energy density of lithium-based secondary batteries and developing other high-performance alkali-metal secondary batteries have become the research focus. In this study, two-dimensional (2D) hexagonal metal borides [...] Read more.
The global energy shortage and the gradual depletion of lithium resources have become increasingly prominent. Improving the energy density of lithium-based secondary batteries and developing other high-performance alkali-metal secondary batteries have become the research focus. In this study, two-dimensional (2D) hexagonal metal borides (h-MBenes) are investigated as ordered alkali metal adsorption substrates for alkali-metal-based battery anode materials using density functional theory (DFT). Twelve thermodynamically stable h-MBenes are screened out from thirty-three structures, and their excellent stability and metallic electronic characteristics are confirmed. The ordered multilayered growth in alkali metal adsorption is found to depend on two factors: low lattice mismatching and dynamic matching of the work function. In particular, Mg/Al/V-based h-MBenes exhibit excellent lithium lattice matching (<3.35% mismatch), enabling layer-by-layer hexagonal (001) Li growth for ≥5 layers. They have ultrahigh lithium capacities (2170–3818 mAh·g−1), low migration barriers (0.01–0.05 eV), and low voltages (0.003–0.714 V). Mg/Y-based h-MBenes enable three Na layers’ adsorption with a capacity of 1717/605 mAh·g−1, and Al2B2 achieves a 472 mAh·g−1 potassium storage capacity, respectively. Due to the orderly multilayered growth mechanism, Mg/Al/V-based h-MBenes show great potential as high-safety and ultrahigh-capacity alkali-metal battery anode materials. Full article
(This article belongs to the Special Issue 2D Materials for Energy Conversion and Storage)
Show Figures

Figure 1

28 pages, 5473 KB  
Review
Advances in the Battery Thermal Management Systems of Electric Vehicles for Thermal Runaway Prevention and Suppression
by Le Duc Tai and Moo-Yeon Lee
Batteries 2025, 11(6), 216; https://doi.org/10.3390/batteries11060216 - 1 Jun 2025
Viewed by 3202
Abstract
In response to the global imperative to reduce greenhouse gas emissions and fossil fuel dependency, electric vehicles (EVs) have emerged as a sustainable transportation alternative, primarily utilizing lithium-ion batteries (LIBs) due to their high energy density and efficiency. However, LIBs are highly sensitive [...] Read more.
In response to the global imperative to reduce greenhouse gas emissions and fossil fuel dependency, electric vehicles (EVs) have emerged as a sustainable transportation alternative, primarily utilizing lithium-ion batteries (LIBs) due to their high energy density and efficiency. However, LIBs are highly sensitive to temperature fluctuations, significantly affecting their performance, lifespan, and safety. One of the most critical threats to the safe operation of LIBs is thermal runaway (TR), an uncontrollable exothermic process that can lead to catastrophic failure under abusive conditions. Moreover, thermal runaway propagation (TRP) can rapidly spread failures across battery cells, intensifying safety threats. To address these challenges, developing advanced battery thermal management systems (BTMS) is essential to ensure optimal temperature control and suppress TR and TRP within LIB modules. This review systematically evaluates advanced cooling strategies, including indirect liquid cooling, water mist cooling, immersion cooling, phase change material (PCM) cooling, and hybrid cooling based on the latest studies published between 2020 and 2025. The review highlights their mechanisms, effectiveness, and practical considerations for preventing TR initiation and suppressing TRP in battery modules. Finally, key findings and future directions for designing next-generation BTMS are proposed, contributing valuable insights for enhancing the safety and reliability of LIB applications. Full article
Show Figures

Figure 1

Back to TopTop