Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,355)

Search Parameters:
Keywords = E-field measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7499 KiB  
Article
Transformer Winding Fault Locating Using Frequency Domain Reflectometry (FDR) Technology
by Hao Yun, Yizhou Zhang, Yufei Sun, Liang Wang, Lulin Xu, Daning Zhang and Jialu Cheng
Electronics 2025, 14(15), 3117; https://doi.org/10.3390/electronics14153117 - 5 Aug 2025
Abstract
Detecting power transformer winding degradations at an early stage is very important for the safe operation of nuclear power plants. Most transformer failures are caused by insulation breakdown; the winding turn-to-turn short circuit fault is frequently encountered. Experience has shown that routine testing [...] Read more.
Detecting power transformer winding degradations at an early stage is very important for the safe operation of nuclear power plants. Most transformer failures are caused by insulation breakdown; the winding turn-to-turn short circuit fault is frequently encountered. Experience has shown that routine testing techniques, e.g., winding resistance, leakage inductance, and sweep frequency response analysis (SFRA), are not sensitive enough to identify minor turn-to-turn short defects. The SFRA technique is effective only if the fault is in such a condition that the flux distribution in the core is prominently distorted. This paper proposes the frequency domain reflectometry (FDR) technique for detecting and locating transformer winding defects. FDR measures the wave impedance and its change along the measured windings. The wire over a plane model is selected as the transmission line model for the transformer winding. The effectiveness is verified through lab experiments on a twist pair cable simulating the transformer winding and field testing on a real transformer. The FDR technique successfully identified and located the turn-to-turn short fault that was not detected by other testing techniques. Using FDR as a complementary tool for winding condition assessment will be beneficial. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

23 pages, 5970 KiB  
Review
Practical Review on Aetio-Pathogenesis and Symptoms in Pigs Affected by Clinical and Subclinical Oedema Disease and the Use of Commercial Vaccines Under Field Conditions
by Juan Hernandez-Garcia, Isaac Ballarà Rodriguez, Ramon Jordà Casadevall, Sergi Bruguera, David Llopart and Emili Barba-Vidal
Animals 2025, 15(15), 2275; https://doi.org/10.3390/ani15152275 - 4 Aug 2025
Abstract
The impact of Oedema Disease produced by Shiga toxigenic Escherichia coli (STEC) in swine is increasing in some production countries due to increasing limitations on treatment with antimicrobials and zinc oxide, either because of the increased prevalence of multi-resistant strains or because of [...] Read more.
The impact of Oedema Disease produced by Shiga toxigenic Escherichia coli (STEC) in swine is increasing in some production countries due to increasing limitations on treatment with antimicrobials and zinc oxide, either because of the increased prevalence of multi-resistant strains or because of legal restrictions. The main pathological effect of Shiga toxin 2e is represented by damage to the endothelial cells of the blood vessel walls, leading to liquid extravasation and oedema formation in multiple tissues. These oedemas are generally easily identifiable in acute clinical cases. However, disease caused by Shiga toxin can occur without any externally visible oedema in the pigs, as observed in the subclinical presentation of Oedema Disease. It also causes productive losses, so it is important to identify and/or diagnose cases to set up control measures in order to optimize production and health. This article includes a comprehensive review of lesions and signs caused by Shiga toxin toxicosis in pigs, as well as other insights about the aetiology and epidemiology of STEC in pigs, and the effect of Shiga toxin recombinant toxoid vaccines in reducing these clinical and subclinical signs under field conditions. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

13 pages, 1794 KiB  
Article
A New Constitutive Relation for Homogeneous Isotropic Materials by FEM Model of the Brazilian Splitting Test
by Salvatore Benfratello, Antonino Cirello and Luigi Palizzolo
Sci 2025, 7(3), 110; https://doi.org/10.3390/sci7030110 - 3 Aug 2025
Viewed by 47
Abstract
The paper studies the behavior of homogeneous isotropic materials by performing appropriate numerical analyses and utilizing suitable FEMs to reproduce the Brazilian splitting test. Starting with a theoretical approach and adopting suitable numerical simulations, a new formula that is able to characterize the [...] Read more.
The paper studies the behavior of homogeneous isotropic materials by performing appropriate numerical analyses and utilizing suitable FEMs to reproduce the Brazilian splitting test. Starting with a theoretical approach and adopting suitable numerical simulations, a new formula that is able to characterize the Young’s modulus is presented. To this end, in addition to the analysis of the specimen’s response in terms of stresses and strains, the real displacement field resulting from the real kinematical constraints on the specimen is determined. Therefore, the Brazilian test is taken as a reference test and the specimen’s behavior is derived by taking advantage of both the theoretical approach and numerical simulations developed in the ANSYS 2021 R1 environment. The latter allows us to define a new mathematical relation representing the missing part of the kinematical field. Furthermore, a new formula which explicitly relates the Young’s modulus of the material to the geometrical characteristics of the specimen, to the acting force, and to a measured selected displacement is proposed. Future developments will include adopting the proposed formulas for the identification of other mechanical parameters of the material, e.g., by adopting a full-field contactless approach to displacement measurement and studying the behavior of specimens with different geometrical characteristics. Full article
Show Figures

Figure 1

32 pages, 4014 KiB  
Article
Spatial Heterogeneity in Carbon Pools of Young Betula sp. Stands on Former Arable Lands in the South of the Moscow Region
by Gulfina G. Frolova, Pavel V. Frolov, Vladimir N. Shanin and Irina V. Priputina
Plants 2025, 14(15), 2401; https://doi.org/10.3390/plants14152401 - 3 Aug 2025
Viewed by 53
Abstract
This study investigates the spatial heterogeneity of carbon pools in young Betula sp. stands on former arable lands in the southern Moscow region, Russia. The findings could be useful for the current estimates and predictions of the carbon balance in such forest ecosystems. [...] Read more.
This study investigates the spatial heterogeneity of carbon pools in young Betula sp. stands on former arable lands in the southern Moscow region, Russia. The findings could be useful for the current estimates and predictions of the carbon balance in such forest ecosystems. The research focuses on understanding the interactions between plant cover and the environment, i.e., how environmental factors such as stand density, tree diameter and height, light conditions, and soil properties affect ecosystem carbon pools. We also studied how heterogeneity in edaphic conditions affects the formation of plant cover, particularly tree regeneration and the development of ground layer vegetation. Field measurements were conducted on a permanent 50 × 50 m sampling plot divided into 5 × 5 m subplots, in order to capture variability in vegetation and soil characteristics. Key findings reveal significant differences in carbon stocks across subplots with varying stand densities and light conditions. This highlights the role of the spatial heterogeneity of soil properties and vegetation cover in carbon sequestration. The study demonstrates the feasibility of indirect estimation of carbon stocks using stand parameters (density, height, and diameter), with results that closely match direct measurements. The total ecosystem carbon stock was estimated at 80.47 t ha−1, with the soil contribution exceeding that of living biomass and dead organic matter. This research emphasizes the importance of accounting for spatial heterogeneity in carbon assessments of post-agricultural ecosystems, providing a methodological framework for future studies. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

17 pages, 1647 KiB  
Article
Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries
by Lara K. Ribeiro, Matheus G. Guardiano, Lucia H. Mascaro, Monica Calatayud and Amanda F. Gouveia
Appl. Sci. 2025, 15(15), 8594; https://doi.org/10.3390/app15158594 (registering DOI) - 2 Aug 2025
Viewed by 131
Abstract
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides [...] Read more.
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides were synthesized via a co-precipitation method in an aqueous medium, followed by microwave-assisted hydrothermal treatment. Structural and morphological characterizations were performed using X-ray diffraction, field-emission scanning electron microscopy, Raman spectroscopy, ultraviolet–visible (UV–vis), and photoluminescence (PL) spectroscopies. The effluent was characterized by means of ionic chromatography, total organic carbon (TOC) analysis, physicochemical parameters (pH and conductivity), and UV–vis spectroscopy. Both materials exhibited well-crystallized structures with distinct morphologies: Fe2(MoO4)3 presented well-defined exposed (001) and (110) surfaces, while FeWO4 showed a highly porous, fluffy texture with irregularly shaped particles. In addition to morphology, both materials exhibited narrow bandgaps—2.11 eV for Fe2(MoO4)3 and 2.03 eV for FeWO4. PL analysis revealed deep defects in Fe2(MoO4)3 and shallow defects in FeWO4, which can influence the generation and lifetime of reactive oxygen species. These combined structural, electronic, and morphological features significantly affected their photocatalytic performance. TOC measurements revealed degradation efficiencies of 32.2% for Fe2(MoO4)3 and 45.3% for FeWO4 after 120 min of irradiation. The results highlight the critical role of morphology, optical properties, and defect structures in governing photocatalytic activity and reinforce the potential of these simple iron-based oxides for real wastewater treatment applications. Full article
(This article belongs to the Special Issue Application of Nanomaterials in the Field of Photocatalysis)
Show Figures

Figure 1

12 pages, 736 KiB  
Article
Visual Search Test for Residents Chronically Exposed to Methylmercury in the Minamata Area
by Shigeru Takaoka and Kenta Matsunaga
Toxics 2025, 13(8), 657; https://doi.org/10.3390/toxics13080657 - 31 Jul 2025
Viewed by 246
Abstract
In individuals exposed to relatively mild methylmercury, even if they appeared to be independent in activities of daily living (ADL), slower judgment and motor responses in daily activities were observed, suggesting potential cognitive impairment. To quantitatively assess this impairment, we measured reaction time [...] Read more.
In individuals exposed to relatively mild methylmercury, even if they appeared to be independent in activities of daily living (ADL), slower judgment and motor responses in daily activities were observed, suggesting potential cognitive impairment. To quantitatively assess this impairment, we measured reaction time (RT) in a visual search test, as a visual cognitive ability test. The study participants included 24 residents from contaminated areas with sensory impairments in the limbs but no visual field defects (E group), as well as 12 individuals from non-contaminated areas (Group C). The 24 participants from contaminated areas were further divided into two groups: 12 without hand motor coordination disorders (Group E-HA) and 12 with such disorders (Group E+HA). Participants were instructed to search for the target letter “Z” on a computer screen, and the visual stimuli consisted of two, six, or ten alphabet letters. An equal number of trials contained “Z” and did not contain “Z,” for a total of thirty trials, which were conducted twice. RT was significantly longer in Group E+HA, followed by Group E-HA, and then Group C. However, in the second test, RT decreased in all cases, with a greater reduction in the exposed groups compared to the control group. These results suggest that methylmercury exposure may cause cognitive impairment, yet it also possesses plasticity. Full article
(This article belongs to the Special Issue Health Effects of Exposure to Environmental Pollutants—2nd Edition)
Show Figures

Graphical abstract

13 pages, 1132 KiB  
Review
M-Edge Spectroscopy of Transition Metals: Principles, Advances, and Applications
by Rishu Khurana and Cong Liu
Catalysts 2025, 15(8), 722; https://doi.org/10.3390/catal15080722 - 30 Jul 2025
Viewed by 316
Abstract
M-edge X-ray absorption spectroscopy (XAS), which probes 3p→3d transitions in first-row transition metals, provides detailed insights into oxidation states, spin-states, and local electronic structure with high element and orbital specificity. Operating in the extreme ultraviolet (XUV) region, this technique provides [...] Read more.
M-edge X-ray absorption spectroscopy (XAS), which probes 3p→3d transitions in first-row transition metals, provides detailed insights into oxidation states, spin-states, and local electronic structure with high element and orbital specificity. Operating in the extreme ultraviolet (XUV) region, this technique provides sharp multiplet-resolved features with high sensitivity to ligand field and covalency effects. Compared to K- and L-edge XAS, M-edge spectra exhibit significantly narrower full widths at half maximum (typically 0.3–0.5 eV versus >1 eV at the L-edge and >1.5–2 eV at the K-edge), owing to longer 3p core-hole lifetimes. M-edge measurements are also more surface-sensitive due to the lower photon energy range, making them particularly well-suited for probing thin films, interfaces, and surface-bound species. The advent of tabletop high-harmonic generation (HHG) sources has enabled femtosecond time-resolved M-edge measurements, allowing direct observation of ultrafast photoinduced processes such as charge transfer and spin crossover dynamics. This review presents an overview of the fundamental principles, experimental advances, and current theoretical approaches for interpreting M-edge spectra. We further discuss a range of applications in catalysis, materials science, and coordination chemistry, highlighting the technique’s growing impact and potential for future studies. Full article
(This article belongs to the Special Issue Spectroscopy in Modern Materials Science and Catalysis)
Show Figures

Graphical abstract

18 pages, 2661 KiB  
Article
Resonator Width Optimization for Enhanced Performance and Bonding Reliability in Wideband RF MEMS Filter
by Gwanil Jeon, Minho Jeong, Shungmoon Lee, Youngjun Jo and Nam-Seog Kim
Micromachines 2025, 16(8), 878; https://doi.org/10.3390/mi16080878 - 29 Jul 2025
Viewed by 188
Abstract
This research investigates resonator width optimization for simultaneously enhancing electrical performance and mechanical reliability in wideband RF MEMS filters through systematic evaluation of three configurations: 0% (L1), 60% (L2), and 100% (L3) matching ratios between cap and bottom wafers using Au-Au thermocompression bonding. [...] Read more.
This research investigates resonator width optimization for simultaneously enhancing electrical performance and mechanical reliability in wideband RF MEMS filters through systematic evaluation of three configurations: 0% (L1), 60% (L2), and 100% (L3) matching ratios between cap and bottom wafers using Au-Au thermocompression bonding. The study demonstrates that resonator width alignment significantly influences both electromagnetic field coupling and bonding interface integrity. The L3 configuration with complete width matching achieved optimal RF performance, demonstrating 3.34 dB insertion loss across 4.5 GHz bandwidth (25% fractional bandwidth), outperforming L2 (3.56 dB) and L1 (3.10 dB), while providing enhanced electromagnetic wave coupling and minimized contact resistance. Mechanical reliability testing revealed superior bonding strength for the L3 configuration, withstanding up to 7.14 Kgf in shear pull tests, significantly exceeding L1 (4.22 Kgf) and L2 (2.24 Kgf). SEM analysis confirmed uniform bonding interfaces with minimal void formation (~180 nm), while Q-factor measurements showed L3 achieved optimal loaded Q-factor (QL = 3.31) suitable for wideband operation. Comprehensive environmental testing, including thermal cycling (−50 °C to +145 °C) and humidity exposure per MIL-STD-810E standards, validated long-term stability across all configurations. This investigation establishes that complete resonator width matching between cap and bottom wafers optimizes both electromagnetic performance and mechanical bonding reliability, providing a validated framework for developing high-performance, reliable RF MEMS devices for next-generation communication, radar, and sensing applications. Full article
(This article belongs to the Special Issue CMOS-MEMS Fabrication Technologies and Devices, 2nd Edition)
Show Figures

Figure 1

15 pages, 4060 KiB  
Article
Attenuation Effect of Withania somnifera Extract on Restraint Stress-Induced Anxiety-like Behavior and Hippocampal Alterations in Mice
by Kippuem Lee, Daehyeop Lee, Joo Yun Kim, Jae Jung Shim, Jae Woo Bae and Jae Hwan Lee
Int. J. Mol. Sci. 2025, 26(15), 7317; https://doi.org/10.3390/ijms26157317 - 29 Jul 2025
Viewed by 244
Abstract
Stress is a major factor that threatens the body’s homeostasis or well-being. Excessive stress causes psychological anxiety and tension, which disrupts the balance of the autonomic nervous system that maintains the body’s balance, resulting in hormonal imbalance and brain changes. In this study, [...] Read more.
Stress is a major factor that threatens the body’s homeostasis or well-being. Excessive stress causes psychological anxiety and tension, which disrupts the balance of the autonomic nervous system that maintains the body’s balance, resulting in hormonal imbalance and brain changes. In this study, we investigated the effects of Withania somnifera (Ashwagandha) extract on depression, neurobehavior, and hippocampal changes in model mice exposed to stress. Using an excessive restraint stress-induced depression model, we measured the behavioral changes and the levels of brain-derived neurotrophic factor (BDNF) and antioxidant genes in five groups: control, stress, low-dose W. somniferous extract (20 mg/kg/day), high-dose W. somniferous extract (40 mg/kg/day), and L-theanine (50 mg/kg/day, positive control). Stressed mice showed poorer performance in the open field and elevated plus maze tests compared with the control group. The impaired performance was restored following W. somniferous extract administration. In addition, W. somniferous extract restored the decreased expression of BDNF in the hippocampus caused by restraint stress, improved the balance of stress hormones (i.e., cortisol, dopamine, and norepinephrine), and also regulated BDNF, inflammatory genes, and antioxidant genes in brain tissue. Therefore, W. somniferous extract can induce antidepressant and anti-stress effects by maintaining brain BDNF expression and preventing hippocampal tissue alterations caused by restraint stress. Full article
Show Figures

Figure 1

25 pages, 2287 KiB  
Article
Quantitative Measurement of Hakka Phonetic Distances
by I-Ping Wan
Languages 2025, 10(8), 185; https://doi.org/10.3390/languages10080185 - 29 Jul 2025
Viewed by 186
Abstract
This study proposes a novel approach to measuring phonetic distances among six Hailu Hakka vowels ([i, e, ɨ, a, u, o]) by applying Euclidean distance-based calculations from both articulatory and acoustic perspectives. By analyzing articulatory feature values and acoustic formant structures, vowel distances [...] Read more.
This study proposes a novel approach to measuring phonetic distances among six Hailu Hakka vowels ([i, e, ɨ, a, u, o]) by applying Euclidean distance-based calculations from both articulatory and acoustic perspectives. By analyzing articulatory feature values and acoustic formant structures, vowel distances are systematically represented through linear vector arrangements. These measurements address ongoing debates regarding the central positioning of [ɨ], specifically whether it aligns more closely with front or back vowels and whether [a] or [ɑ] more accurately represents vowel articulation. This study also reassesses the validity of prior acoustic findings on Hailu Hakka vowels and evaluates the correspondence between articulatory normalization and acoustic formant-based models. Through the integration of articulatory and acoustic data, this research advances a replicable and theoretically grounded method for quantitative vowel analysis. The results not only refine phonetic classification within a Euclidean framework but also help resolve transcription inconsistencies in phonetic distance matrices. This study contributes to the growing field of quantitative phonetics by offering a systematic, multidimensional model applicable to both theoretical and experimental investigations of Taiwan Hailu Hakka. Full article
Show Figures

Figure 1

12 pages, 244 KiB  
Article
Towards Relational Foundations for Spacetime Quantum Physics
by Pietro Dall’Olio and José A. Zapata
Universe 2025, 11(8), 250; https://doi.org/10.3390/universe11080250 - 29 Jul 2025
Viewed by 168
Abstract
Rovelli’s relational interpretation of quantum mechanics tells us that the description of a system in the formalism of quantum mechanics is not an absolute but is relative to the observer itself. The interpretation goes further and proposes a set of axioms. In standard [...] Read more.
Rovelli’s relational interpretation of quantum mechanics tells us that the description of a system in the formalism of quantum mechanics is not an absolute but is relative to the observer itself. The interpretation goes further and proposes a set of axioms. In standard non-relational language, one of them states that an observer can only retrieve a finite amount information from a system by means of measurement. Our contribution starts with the observation that quantum mechanics, i.e., quantum field theory (QFT) in dimension 1, radically differs from QFT in higher dimensions. In higher dimensions, boundary data (or initial data) cannot be characterized by finitely many measurements. This calls for a notion of measuring scale, which we provide. At a given measuring scale, the observer has partial information about the system. Our notion of measuring scale generalizes the one implicitly used in Wilsonian QFT. At each measuring scale, there are effective theories, which may be corrected, and if the theory turns out to be renormalizable, the mentioned corrections converge to determine a completely corrected (or renormalized) theory at the given measuring scale. The notion of a measuring scale is the cornerstone of Wilsonian QFT; this notion tells us that we are not describing a system from an absolute perspective. An effective theory at that scale describes the system with respect to the observer, which may retrieve information from the system by means of measurement in a specific way determined by our notion of measuring scale. We claim that a relational interpretation of quantum physics for spacetimes of dimensions greater than 1 is Wilsonian. Full article
(This article belongs to the Section Foundations of Quantum Mechanics and Quantum Gravity)
17 pages, 1111 KiB  
Article
Evaluation of the Influence of Intervention Tools Used in Nutrition Education Programs: A Mixed Approach
by Luca Muzzioli, Costanza Gimbo, Maria Pintavalle, Silvia Migliaccio and Lorenzo M. Donini
Nutrients 2025, 17(15), 2460; https://doi.org/10.3390/nu17152460 - 28 Jul 2025
Viewed by 189
Abstract
Background: In a global panorama marked by a progressive rise in obesity, metabolic syndrome, and chronic non-communicable disease prevalence, nutrition education (NE) might play a pivotal role in restoring adoption and strengthening adherence to dietary patterns that protect human health. Therefore, the [...] Read more.
Background: In a global panorama marked by a progressive rise in obesity, metabolic syndrome, and chronic non-communicable disease prevalence, nutrition education (NE) might play a pivotal role in restoring adoption and strengthening adherence to dietary patterns that protect human health. Therefore, the primary purpose of this work is to review the existing scientific literature studying NE programs aimed at schoolchildren in the decade 2014–2024 and evaluate the effectiveness of intervention tools. Methods: During the first phase of this research, a qualitative analysis was conducted to track similarity in intervention tools and strategies used in nutrition education programs. In the second phase, a quantitative analysis was carried out, extracting common parameters among studies and assessing their potential influence in improving adherence to the Mediterranean diet (MD). Results: A high degree of heterogeneity was observed in educational program designs and intervention tools, which were usually not properly described and justified. All studies that measured adherence to the MD registered an improvement after the intervention, in some cases even higher than 10%. However, this study found no relationship between common parameters (i.e., number of formal tools, number of non-formal tools, lesson duration, and program length) used in NE and the improvement in students’ adherence to MD. Conclusions: This research has contributed to outlining a general framework of NE and to promoting a systematic approach in this research field. Full article
(This article belongs to the Special Issue Nutrition 3.0: Between Tradition and Innovation)
Show Figures

Figure 1

25 pages, 3167 KiB  
Article
A Sustainability-Oriented Assessment of Noise Impacts on University Dormitories: Field Measurements, Student Survey, and Modeling Analysis
by Xiaoying Wen, Shikang Zhou, Kainan Zhang, Jianmin Wang and Dongye Zhao
Sustainability 2025, 17(15), 6845; https://doi.org/10.3390/su17156845 - 28 Jul 2025
Viewed by 311
Abstract
Ensuring a sustainable and healthy human environment in university dormitories is essential for students’ learning, living, and overall health and well-being. To address this need, we carried out a series of systematic field measurements of the noise levels at 30 dormitories in three [...] Read more.
Ensuring a sustainable and healthy human environment in university dormitories is essential for students’ learning, living, and overall health and well-being. To address this need, we carried out a series of systematic field measurements of the noise levels at 30 dormitories in three representative major urban universities in a major provincial capital city in China and designed and implemented a comprehensive questionnaire and surveyed 1005 students about their perceptions of their acoustic environment. We proposed and applied a sustainability–health-oriented, multidimensional assessment framework to assess the acoustic environment of the dormitories and student responses to natural sound, technological sounds, and human-made sounds. Using the Structural Equation Modeling (SEM) approach combined with the field measurements and student surveys, we identified three categories and six factors on student health and well-being for assessing the acoustic environment of university dormitories. The field data indicated that noise levels at most of the measurement points exceeded the recommended or regulatory thresholds. Higher noise impacts were observed in early mornings and evenings, primarily due to traffic noise and indoor activities. Natural sounds (e.g., wind, birdsong, water flow) were highly valued by students for their positive effect on the students’ pleasantness and satisfaction. Conversely, human and technological sounds (traffic noise, construction noise, and indoor noise from student activities) were deemed highly disturbing. Gender differences were evident in the assessment of the acoustic environment, with male students generally reporting higher levels of the pleasantness and preference for natural sounds compared to female students. Educational backgrounds showed no significant influence on sound perceptions. The findings highlight the need for providing actionable guidelines for dormitory ecological design, such as integrating vertical greening in dormitory design, water features, and biodiversity planting to introduce natural soundscapes, in parallel with developing campus activity standards and lifestyle during noise-sensitive periods. The multidimensional assessment framework will drive a sustainable human–ecology–sound symbiosis in university dormitories, and the category and factor scales to be employed and actions to improve the level of student health and well-being, thus, providing a reference for both research and practice for sustainable cities and communities. Full article
Show Figures

Figure 1

22 pages, 7937 KiB  
Article
Insights into Biological and Ecological Features of Four Rare and Endemic Plants from the Northern Tian Shan (Kazakhstan)
by Gulbanu Sadyrova, Aisha Taskuzhina, Alexandr Pozharskiy, Kuralai Orazbekova, Kirill Yanin, Nazym Kerimbek, Saule Zhamilova, Gulzhanat Kamiyeva, Ainur Tanybaeva and Dilyara Gritsenko
Plants 2025, 14(15), 2305; https://doi.org/10.3390/plants14152305 - 26 Jul 2025
Viewed by 380
Abstract
This study presents an integrative investigation of four rare and threatened plant species—Taraxacum kok-saghyz L.E. Rodin, Astragalus rubtzovii Boriss., Schmalhausenia nidulans (Regel) Petr., and Rheum wittrockii Lundstr.—native to the Ile Alatau and Ketmen ridges of the Northern Tian Shan in Kazakhstan. Combining [...] Read more.
This study presents an integrative investigation of four rare and threatened plant species—Taraxacum kok-saghyz L.E. Rodin, Astragalus rubtzovii Boriss., Schmalhausenia nidulans (Regel) Petr., and Rheum wittrockii Lundstr.—native to the Ile Alatau and Ketmen ridges of the Northern Tian Shan in Kazakhstan. Combining chloroplast genome sequencing, geobotanical surveys, and anatomical and population structure analyses, we aimed to assess the ecological adaptation, genetic distinctiveness, and conservation status of these species. Field surveys revealed that population structures varied across species, with T. kok-saghyz and S. nidulans dominated by mature vegetative and generative individuals, while A. rubtzovii and R. wittrockii exhibited stable age spectra marked by reproductive maturity and ongoing recruitment. Chloroplast genome assemblies revealed characteristic patterns of plastid evolution, including structural conservation in S. nidulans and R. wittrockii, and a reduced inverted repeat region in A. rubtzovii, consistent with its placement in the IR-lacking clade of Fabaceae. Morphological and anatomical traits reflected habitat-specific adaptations such as tomentose surfaces, thickened epidermis, and efficient vascular systems. Despite these adaptations, anthropogenic pressures including overgrazing and habitat degradation pose significant risks to population viability. Our findings underscore the need for targeted conservation measures, continuous monitoring, and habitat management to ensure the long-term survival of these ecologically and genetically valuable endemic species. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

23 pages, 684 KiB  
Article
An Analysis of the Relationship Between ESG Activities and the Financial Performance of Japanese Companies Toward Sustainable Development
by Takafumi Ikuta and Hidemichi Fujii
Sustainability 2025, 17(15), 6790; https://doi.org/10.3390/su17156790 - 25 Jul 2025
Viewed by 277
Abstract
Demands for companies to comply with environmental, social, and governance (ESG) requirements are growing, and companies are also expected to play a role in promoting sustainable development. For companies to achieve sustainable growth while addressing ESG, it must be understood whether ESG activities [...] Read more.
Demands for companies to comply with environmental, social, and governance (ESG) requirements are growing, and companies are also expected to play a role in promoting sustainable development. For companies to achieve sustainable growth while addressing ESG, it must be understood whether ESG activities promote improved corporate financial performance. We conducted a five-year panel data analysis of 635 Japanese firms from FY 2019 to FY 2023, using the PBR, PER, and ROE financial indicators as the dependent variables and CSR ratings in the human resource utilization (HR), environment (E), governance (G), and social (S) categories as the independent variables. The results revealed that, depending on the combination of ESG field and financial indicators, companies with advanced ESG initiatives had greater financial performance, with some cases showing a nonlinear relationship; differences in the results between manufacturing and nonmanufacturing industries were also observed. For companies to effectively advance ESG activities, it is important to clarify the objectives and results for each ESG category. For policymakers to consider measures to encourage companies’ ESG activities, it is also important to design finely tuned regulations and incentives according to the ESG category and industry characteristics. Full article
Show Figures

Figure 1

Back to TopTop