M-Edge Spectroscopy of Transition Metals: Principles, Advances, and Applications
Abstract
1. Introduction
2. Fundamental Principles
3. Experimental Techniques
4. Theoretical Modeling
5. Applications in Transition Metal Chemistry
5.1. Steady-State Applications of M-Edge Spectroscopy
5.2. Ultrafast Time-Resolved M-Edge Spectroscopy
5.3. Complementary Techniques
6. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
Abbreviations
XUV | extreme ultraviolet |
HHG | high-harmonic generation |
XAS | X-ray absorption spectroscopy |
XANES | X-ray absorption near-edge structure |
EXAFS | extended X-ray absorption fine structure |
OPCPA | optical parametric chirped-pulse amplifiers |
CTM | charge transfer multiplet |
TDDFT | time-dependent density functional theory |
RIXS | Resonant Inelastic X-ray Scattering |
EELS | Electron Energy Loss Spectroscopy |
4c-DR-TDDFT | four-component damped response time-dependent DFT |
SO | spin–orbit |
amfX2C | atomic mean-field exact two-component Hamiltonian framework |
eamfX2C | extended atomic mean-field exact two-component Hamiltonian framework |
ROCIS | restricted open-shell configuration interaction singles |
BSE | Bethe–Salpeter equation |
LMCT | ligand-to-metal charge transfer |
XRS | X-ray Raman scattering |
TEM | Transmission electron microscopy |
FEL | Free electron lasers |
References
- Blumberg, W. X-ray absorption spectrometry as a tool for the study of molecular structure. Inorg. Chim. Acta 1983, 79, 31. [Google Scholar] [CrossRef]
- van Bokhoven, J.A. Recent developments in X-ray absorption spectroscopy. Phys. Chem. Chem. Phys. 2010, 12, 5502. [Google Scholar] [CrossRef]
- Newton, M.A.; Zimmermann, P.; van Bokhoven, J.A. X-Ray Absorption Spectroscopy (XAS): XANES and EXAFS. In Springer Handbook of Advanced Catalyst Characterization; Springer: Cham, Switzerland, 2023; pp. 565–600. [Google Scholar]
- Solomon, E.I.; Szilagyi, R.K.; DeBeer George, S.; Basumallick, L. Electronic structures of metal sites in proteins and models: Contributions to function in blue copper proteins. Chem. Rev. 2004, 104, 419–458. [Google Scholar] [CrossRef]
- Bordiga, S.; Groppo, E.; Agostini, G.; van Bokhoven, J.A.; Lamberti, C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem. Rev. 2013, 113, 1736–1850. [Google Scholar] [CrossRef] [PubMed]
- Khurana, R.; Liu, C. Unveiling the Redox Noninnocence of Metallocorroles: Exploring K-Edge X-ray Absorption Near-Edge Spectroscopy with a Multiconfigurational Wave Function Approach. J. Phys. Chem. Lett. 2024, 15, 10985–10995. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Kim, Y.L.; Khurana, R.; Havenridge, S.; Patel, P.; Liu, C. Recent advances in X-ray absorption near edge structure (XANES) simulations for catalysis: Theories and applications. Ann. Rep. Comput. Chem. 2024, 20, 157–187. [Google Scholar]
- De Groot, F.; Kotani, A. Core Level Spectroscopy of Solids; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Penner-Hahn, J.E. X-ray absorption spectroscopy. eLS. 2001. [CrossRef]
- Vura-Weis, J. Femtosecond Extreme Ultraviolet Absorption Spectroscopy of Transition Metal Complexes. Annu. Rev. Phys. Chem. 2025, 76, 455–470. [Google Scholar] [CrossRef]
- Zhang, K.; Lin, M.F.; Ryland, E.S.; Verkamp, M.A.; Benke, K.; De Groot, F.M.; Girolami, G.S.; Vura-Weis, J. Shrinking the synchrotron: Tabletop extreme ultraviolet absorption of transition-metal complexes. J. Phys. Chem. Lett. 2016, 7, 3383–3387. [Google Scholar] [CrossRef]
- Van Aken, P.; Styrsa, V.; Liebscher, B.; Woodland, A.; Redhammer, G. Microanalysis of Fe3+/ΣFe in oxide and silicate minerals by investigation of electron energy-loss near-edge structures (ELNES) at the Fe M2,3 edge. Phys. Chem. Miner. 1999, 26, 584–590. [Google Scholar] [CrossRef]
- Vura-Weis, J.; Jiang, C.M.; Liu, C.; Gao, H.; Lucas, J.M.; De Groot, F.M.; Yang, P.; Alivisatos, A.P.; Leone, S.R. Femtosecond M2,3-edge spectroscopy of transition-metal oxides: Photoinduced oxidation state change in α-Fe2O3. J. Phys. Chem. Lett. 2013, 4, 3667–3671. [Google Scholar] [CrossRef]
- Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 1961, 124, 1866. [Google Scholar] [CrossRef]
- La-O-Vorakiat, C.; Siemens, M.; Murnane, M.M.; Kapteyn, H.C.; Mathias, S.; Aeschlimann, M.; Grychtol, P.; Adam, R.; Schneider, C.M.; Shaw, J.M.; et al. Ultrafast Demagnetization Dynamics at the M Edges of Magnetic Elements Observed Using a Tabletop High-Harmonic Soft X-Ray Source. Phys. Rev. Lett. 2009, 103, 257402. [Google Scholar] [CrossRef]
- Ash, R.; Zhang, K.; Vura-Weis, J. Photoinduced valence tautomerism of a cobalt-dioxolene complex revealed with femtosecond M-edge XANES. J. Chem. Phys. 2019, 151, 104201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Ash, R.; Girolami, G.S.; Vura-Weis, J. Tracking the metal-centered triplet in photoinduced spin crossover of Fe(phen)32+ with tabletop femtosecond M-edge X-ray absorption near-edge structure spectroscopy. J. Am. Chem. Soc. 2019, 141, 17180–17188. [Google Scholar] [CrossRef] [PubMed]
- Ryland, E.S.; Zhang, K.; Vura-Weis, J. Sub-100 fs intersystem crossing to a metal-centered triplet in Ni(II)OEP observed with M-edge XANES. J. Phys. Chem. A 2019, 123, 5214–5222. [Google Scholar] [CrossRef] [PubMed]
- Richter, J.; Jana, S.; Behrends, R.; Davies, C.S.; Engel, D.W.; Hennecke, M.; Schick, D.; Schmising, C.v.K.; Eisebitt, S. Spectroscopic probe of ultrafast magnetization dynamics in the extreme ultraviolet spectral range. Phys. Rev. B 2025, 111, 214423. [Google Scholar] [CrossRef]
- Stavitski, E.; De Groot, F.M. The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 2010, 41, 687–694. [Google Scholar] [CrossRef]
- Konecny, L.; Vicha, J.; Komorovsky, S.; Ruud, K.; Repisky, M. Accurate x-ray absorption spectra near L-and M-edges from relativistic four-component damped response time-dependent density functional theory. Inorg. Chem. 2021, 61, 830–846. [Google Scholar] [CrossRef]
- Konecny, L.; Komorovsky, S.; Vicha, J.; Ruud, K.; Repisky, M. Exact two-component TDDFT with simple two-electron picture-change corrections: X-ray absorption spectra near L-and M-edges of four-component quality at two-component cost. J. Phys. Chem. A 2023, 127, 1360–1376. [Google Scholar] [CrossRef]
- Kubas, A.; Verkamp, M.; Vura-Weis, J.; Neese, F.; Maganas, D. Restricted open-shell configuration interaction singles study on M-and L-edge X-ray absorption spectroscopy of solid chemical systems. J. Chem. Theory Comput. 2018, 14, 4320–4334. [Google Scholar] [CrossRef]
- Klein, I.M.; Krotz, A.; Lee, W.; Michelsen, J.M.; Cushing, S.K. Ab Initio calculations of XUV ground and excited states for first-row transition metal oxides. J. Phys. Chem. C 2023, 127, 1077–1086. [Google Scholar] [CrossRef]
- Schülke, W. Electron Dynamics by Inelastic X-Ray Scattering; OUP Oxford: Oxford, UK, 2007; Volume 7. [Google Scholar]
- Lee, S.K.; Eng, P.J.; Mao, H.k. Probing of pressure-induced bonding transitions in crystalline and amorphous earth materials: Insights from X-ray Raman scattering at high pressure. Rev. Mineral. Geochem. 2014, 78, 139–174. [Google Scholar] [CrossRef]
- Chiuzbăian, S.; Ghiringhelli, G.; Dallera, C.; Grioni, M.; Amann, P.; Wang, X.; Braicovich, L.; Patthey, L. Localized Electronic Excitations in NiO Studied with Resonant Inelastic X-Ray Scattering at the Ni M Threshold: Evidence of Spin Flip. Phys. Rev. Lett. 2005, 95, 197402. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.H.; Luo, Y.; Augustsson, A.; Kashtanov, S.; Rubensson, J.E.; Shuh, D.K.; Ågren, H.; Nordgren, J. Molecular structure of alcohol-water mixtures. Phys. Rev. Lett. 2003, 91, 157401. [Google Scholar] [CrossRef]
- Steiner, P.; Zimmermann, R.; Reinert, F.; Engel, T.; Hüfner, S. 3s-and 3p-core level excitations in 3d-transition metal oxides from electron-energy-loss spectroscopy. Z. Phys. B Condens. Matter 1995, 99, 479–490. [Google Scholar] [CrossRef]
- Hrisafov, S.; Pupeikis, J.; Chevreuil, P.A.; Brunner, F.; Phillips, C.R.; Gallmann, L.; Keller, U. High-power few-cycle near-infrared OPCPA for soft X-ray generation at 100 kHz. Opt. Express 2020, 28, 40145–40154. [Google Scholar] [CrossRef]
- Turgut, E.; La-o Vorakiat, C.; Shaw, J.M.; Grychtol, P.; Nembach, H.T.; Rudolf, D.; Adam, R.; Aeschlimann, M.; Schneider, C.M.; Silva, T.J.; et al. Controlling the Competition between Optically Induced Ultrafast Spin-Flip Scattering and Spin Transport in Magnetic Multilayers. Phys. Rev. Lett. 2013, 110, 197201. [Google Scholar] [CrossRef]
- Goulielmakis, E.; Loh, Z.H.; Wirth, A.; Santra, R.; Rohringer, N.; Yakovlev, V.S.; Zherebtsov, S.; Pfeifer, T.; Azzeer, A.M.; Kling, M.F.; et al. Real-time observation of valence electron motion. Nature 2010, 466, 739–743. [Google Scholar] [CrossRef]
- Ross, A.D. Ultrafast Dynamics Studied by Few-Femtosecond Soft X-Ray Transient Absorption Spectroscopy. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2022. [Google Scholar]
- Jiang, C.M.; Baker, L.R.; Lucas, J.M.; Vura-Weis, J.; Alivisatos, A.P.; Leone, S.R. Characterization of photo-induced charge transfer and hot carrier relaxation pathways in spinel cobalt oxide (Co3O4). J. Phys. Chem. C 2014, 118, 22774–22784. [Google Scholar] [CrossRef]
- Baker, L.R.; Jiang, C.M.; Kelly, S.T.; Lucas, J.M.; Vura-Weis, J.; Gilles, M.K.; Alivisatos, A.P.; Leone, S.R. Charge carrier dynamics of photoexcited Co3O4 in methanol: Extending high harmonic transient absorption spectroscopy to liquid environments. Nano Lett. 2014, 14, 5883–5890. [Google Scholar] [CrossRef]
- Jarecki, J.; Hennecke, M.; Sidiropoulos, T.; Schnuerer, M.; Eisebitt, S.; Schick, D. Ultrafast energy-dispersive soft-x-ray diffraction in the water window with a laser-driven source. Struct. Dyn. 2024, 11, 054303. [Google Scholar] [CrossRef]
- Weisshaupt, J.; Juvé, V.; Holtz, M.; Ku, S.; Woerner, M.; Elsaesser, T.; Ališauskas, S.; Pugžlys, A.; Baltuška, A. High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses. Nat. Photonics 2014, 8, 927–930. [Google Scholar] [CrossRef]
- Popmintchev, T.; Chen, M.C.; Popmintchev, D.; Arpin, P.; Brown, S.; Ališauskas, S.; Andriukaitis, G.; Balčiunas, T.; Mücke, O.D.; Pugzlys, A.; et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 2012, 336, 1287–1291. [Google Scholar] [CrossRef] [PubMed]
- McNeil, B.W.; Thompson, N.R. X-ray free-electron lasers. Nat. Photonics 2010, 4, 814–821. [Google Scholar] [CrossRef]
- Sahle, C.J.; Mirone, A.; Niskanen, J.; Inkinen, J.; Krisch, M.; Huotari, S. Planning, performing and analyzing X-ray Raman scattering experiments. Synchrotron Radiat. 2015, 22, 400–409. [Google Scholar] [CrossRef]
- de Groot, F.M.; Haverkort, M.W.; Elnaggar, H.; Juhin, A.; Zhou, K.J.; Glatzel, P. Resonant inelastic X-ray scattering. Nat. Rev. Methods Prim. 2024, 4, 45. [Google Scholar] [CrossRef]
- Egerton, R.F. Electron Energy-Loss Spectroscopy in the Electron Microscope; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- De Groot, F. Multiplet effects in X-ray spectroscopy. Coord. Chem. Rev. 2005, 249, 31–63. [Google Scholar] [CrossRef]
- Cowan, R.D. The Theory of Atomic Structure and Spectra; Univ of California Press: Oakland, CA, USA, 2023; Volume 3. [Google Scholar]
- Zhang, K.; Girolami, G.S.; Vura-Weis, J. Improved charge transfer multiplet method to simulate M-and L-edge X-ray absorption spectra of metal-centered excited states. Synchrotron Radiat. 2018, 25, 1600–1608. [Google Scholar] [CrossRef]
- Wang, H.; Young, A.T.; Guo, J.; Cramer, S.P.; Friedrich, S.; Braun, A.; Gu, W. Soft X-ray absorption spectroscopy and resonant inelastic X-ray scattering spectroscopy below 100 eV: Probing first-row transition-metal M-edges in chemical complexes. Synchrotron Radiat. 2013, 20, 614–619. [Google Scholar] [CrossRef]
- Ryland, E.S.; Lin, M.F.; Verkamp, M.A.; Zhang, K.; Benke, K.; Carlson, M.; Vura-Weis, J. Tabletop femtosecond M-edge X-ray absorption near-edge structure of FeTPPCl: Metalloporphyrin photophysics from the perspective of the metal. J. Am. Chem. Soc. 2018, 140, 4691–4696. [Google Scholar] [CrossRef]
- Shari’Ati, Y.; Vura-Weis, J. Ballistic Δ S= 2 intersystem crossing in a cobalt cubane following ligand-field excitation probed by extreme ultraviolet spectroscopy. Phys. Chem. Chem. Phys. 2021, 23, 26990–26996. [Google Scholar] [CrossRef] [PubMed]
- Sye, K.M.; Leahy, C.A.; Vura-Weis, J. Low quantum efficiency of μ-oxo iron bisporphyrin photocatalysts explained with femtosecond M-edge XANES. Catal. Sci. Technol. 2022, 12, 6092–6097. [Google Scholar] [CrossRef]
- Nyrow, A.; Tse, J.S.; Hiraoka, N.; Desgreniers, S.; Büning, T.; Mende, K.; Tolan, M.; Wilke, M.; Sternemann, C. Pressure induced spin transition revealed by iron M2,3-edge spectroscopy. Appl. Phys. Lett. 2014, 104, 262408. [Google Scholar] [CrossRef]
- Jenkins, A.J.; Hu, H.; Lu, L.; Frisch, M.J.; Li, X. Two-component multireference restricted active space configuration interaction for the computation of l-edge x-ray absorption spectra. J. Chem. Theory Comput. 2021, 18, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Sergentu, D.C.; Duignan, T.J.; Autschbach, J. Ab initio study of covalency in the ground versus core-excited states and X-ray absorption spectra of actinide complexes. J. Phys. Chem. Lett. 2018, 9, 5583–5591. [Google Scholar] [CrossRef]
- Sharma, P.; Jenkins, A.J.; Scalmani, G.; Frisch, M.J.; Truhlar, D.G.; Gagliardi, L.; Li, X. Exact-two-component multiconfiguration pair-density functional theory. J. Chem. Theory Comput. 2022, 18, 2947–2954. [Google Scholar] [CrossRef]
- Guda, A.A.; Guda, S.A.; Martini, A.; Kravtsova, A.; Algasov, A.; Bugaev, A.; Kubrin, S.P.; Guda, L.; Šot, P.; van Bokhoven, J.A.; et al. Understanding X-ray absorption spectra by means of descriptors and machine learning algorithms. NPJ Comput. Mater. 2021, 7, 203. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khurana, R.; Liu, C. M-Edge Spectroscopy of Transition Metals: Principles, Advances, and Applications. Catalysts 2025, 15, 722. https://doi.org/10.3390/catal15080722
Khurana R, Liu C. M-Edge Spectroscopy of Transition Metals: Principles, Advances, and Applications. Catalysts. 2025; 15(8):722. https://doi.org/10.3390/catal15080722
Chicago/Turabian StyleKhurana, Rishu, and Cong Liu. 2025. "M-Edge Spectroscopy of Transition Metals: Principles, Advances, and Applications" Catalysts 15, no. 8: 722. https://doi.org/10.3390/catal15080722
APA StyleKhurana, R., & Liu, C. (2025). M-Edge Spectroscopy of Transition Metals: Principles, Advances, and Applications. Catalysts, 15(8), 722. https://doi.org/10.3390/catal15080722