Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (131)

Search Parameters:
Keywords = E-Booster

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 498 KiB  
Review
The XEC Variant: Genomic Evolution, Immune Evasion, and Public Health Implications
by Alaa A. A. Aljabali, Kenneth Lundstrom, Altijana Hromić-Jahjefendić, Nawal Abd El-Baky, Debaleena Nawn, Sk. Sarif Hassan, Alberto Rubio-Casillas, Elrashdy M. Redwan and Vladimir N. Uversky
Viruses 2025, 17(7), 985; https://doi.org/10.3390/v17070985 - 15 Jul 2025
Viewed by 805
Abstract
Narrative review synthesizes the most current literature on the SARS-CoV-2 XEC variant, focusing on its genomic evolution, immune evasion characteristics, epidemiological dynamics, and public health implications. To achieve this, we conducted a structured search of the literature of peer-reviewed articles, preprints, and official [...] Read more.
Narrative review synthesizes the most current literature on the SARS-CoV-2 XEC variant, focusing on its genomic evolution, immune evasion characteristics, epidemiological dynamics, and public health implications. To achieve this, we conducted a structured search of the literature of peer-reviewed articles, preprints, and official surveillance data from 2023 to early 2025, prioritizing virological, clinical, and immunological reports related to XEC and its parent lineages. Defined by the distinctive spike protein mutations, T22N and Q493E, XEC exhibits modest reductions in neutralization in vitro, although current evidence suggests that mRNA booster vaccines, including those targeting JN.1 and KP.2, retain cross-protective efficacy against symptomatic and severe disease. The XEC strain of SARS-CoV-2 has drawn particular attention due to its increasing prevalence in multiple regions and its potential to displace other Omicron subvariants, although direct evidence of enhanced replicative fitness is currently lacking. Preliminary analyses also indicated that glycosylation changes at the N-terminal domain enhance infectivity and immunological evasion, which is expected to underpin the increasing prevalence of XEC. The XEC variant, while still emerging, is marked by a unique recombination pattern and a set of spike protein mutations (T22N and Q493E) that collectively demonstrate increased immune evasion potential and epidemiological expansion across Europe and North America. Current evidence does not conclusively associate XEC with greater disease severity, although additional research is required to determine its clinical relevance. Key knowledge gaps include the precise role of recombination events in XEC evolution and the duration of cross-protective T-cell responses. New research priorities include genomic surveillance in undersampled regions, updated vaccine formulations against novel spike epitopes, and long-term longitudinal studies to monitor post-acute sequelae. These efforts can be augmented by computational modeling and the One Health approach, which combines human and veterinary sciences. Recent computational findings (GISAID, 2024) point to the potential of XEC for further mutations in under-surveilled reservoirs, enhancing containment challenges and risks. Addressing the potential risks associated with the XEC variant is expected to benefit from interdisciplinary coordination, particularly in regions where genomic surveillance indicates a measurable increase in prevalence. Full article
(This article belongs to the Special Issue Translational Research in Virology)
Show Figures

Figure 1

39 pages, 1706 KiB  
Systematic Review
Improving Vaccine Coverage Among Older Adults and High-Risk Patients: A Systematic Review and Meta-Analysis of Hospital-Based Strategies
by Flavia Pennisi, Stefania Borlini, Rita Cuciniello, Anna Carole D’Amelio, Rosaria Calabretta, Antonio Pinto and Carlo Signorelli
Healthcare 2025, 13(14), 1667; https://doi.org/10.3390/healthcare13141667 - 10 Jul 2025
Viewed by 575
Abstract
Background/Objectives: Adult vaccination remains suboptimal, particularly among older adults and individuals with chronic conditions. Hospitals represent a strategic setting for improving vaccination coverage among these high-risk populations. This systematic review and meta-analysis evaluated hospital-based interventions aimed at enhancing vaccine uptake in adults aged [...] Read more.
Background/Objectives: Adult vaccination remains suboptimal, particularly among older adults and individuals with chronic conditions. Hospitals represent a strategic setting for improving vaccination coverage among these high-risk populations. This systematic review and meta-analysis evaluated hospital-based interventions aimed at enhancing vaccine uptake in adults aged ≥60 years or 18–64 years with at-risk medical conditions. Methods: We conducted a systematic review and meta-analysis following PRISMA and MOOSE guidelines. Searches in PubMed, EMBASE, and Scopus identified studies published in the last 10 years evaluating hospital-based interventions reporting vaccination uptake. The risk of bias was assessed using validated tools (NOS, RoB 2, ROBINS-I, QI-MQCS). A meta-analysis was conducted for categories with ≥3 eligible studies reporting pre- and post-intervention vaccination coverage in the same population. Results: We included 44 studies. Multi-component strategies (n = 21) showed the most consistent results (e.g., pneumococcal uptake from 2.2% to 43.4%, p < 0.001). Reminder-based interventions (n = 4) achieved influenza coverage increases from 31.0% to 68.0% and a COVID-19 booster uptake boost of +38% after SMS reminders. Educational strategies (n = 11) varied in effectiveness, with one study reporting influenza coverage rising from 1.6% to 12.2% (+662.5%, OR 8.86, p < 0.01). Standing order protocols increased pneumococcal vaccination from 10% to 60% in high-risk adults. Hospital-based catch-up programs improved DTaP-IPV uptake from 56.2% to 80.8% (p < 0.001). For patient education, the pooled OR was 2.11 (95% CI: 1.96–2.27; p < 0.001, I2 = 97.2%) under a fixed-effects model, and 2.47 (95% CI: 1.53–3.98; p < 0.001) under a random-effects model. For multi-component strategies, the OR was 2.39 (95% CI: 2.33–2.44; p < 0.001, I2 = 98.0%) with fixed effects, and 3.12 (95% CI: 2.49–3.92; p < 0.001) with random effects. No publication bias was detected. Conclusions: Hospital-based interventions, particularly those using multi-component approaches, effectively improve vaccine coverage in older and high-risk adults. Embedding vaccination into routine hospital care offers a scalable opportunity to reduce disparities and enhance population-level protection. Future policies should prioritize the institutional integration of such strategies to support healthy aging and vaccine equity. Full article
Show Figures

Figure 1

18 pages, 4409 KiB  
Article
Immunogenicity of Matrix Protein 2 Ectodomain (M2e) Displayed on Nodavirus-like Particles as Avian Influenza Vaccine for Poultry
by Anis Suraya Mohamad Abir, Wen Siang Tan, Abdul Rahman Omar, Kok Lian Ho, Munir Iqbal and Abdul Razak Mariatulqabtiah
Vaccines 2025, 13(7), 701; https://doi.org/10.3390/vaccines13070701 - 27 Jun 2025
Viewed by 513
Abstract
Avian influenza is an economically significant disease affecting poultry worldwide and is caused by influenza A viruses that can range from low to highly pathogenic strains. These viruses primarily target the respiratory, digestive, and nervous systems of birds, leading to severe outbreaks that [...] Read more.
Avian influenza is an economically significant disease affecting poultry worldwide and is caused by influenza A viruses that can range from low to highly pathogenic strains. These viruses primarily target the respiratory, digestive, and nervous systems of birds, leading to severe outbreaks that threaten poultry production and pose zoonotic risks. The ectodomain of the avian influenza virus (AIV) matrix protein 2 (M2e), known for its high conservation across influenza strains, has emerged as a promising candidate for developing a universal influenza vaccine in a mouse model. However, the efficacy of such expression against poultry AIVs remains limited. The objective of this study was to evaluate the immunogenicity of nodavirus-like particles displaying the M2e proteins. In this study, three synthetic heterologous M2e genes originated from AIV strains H5N1, H9N2 and H5N2 were fused with the nodavirus capsid protein (NVC) of the giant freshwater prawn Macrobrachium rosenbergii (NVC-3xAvM2e) prior to immunogenicity characterisations in chickens. The expression vector pTRcHis-TARNA2 carrying the NVC-3xAvM2e gene cassette was introduced into E. coli TOP-10 cells. The recombinant proteins were purified, inoculated into one-week-old specific pathogen-free chickens subcutaneously and analysed. The recombinant protein NVC-3xAvM2e formed virus-like particles (VLPs) of approximately 25 nm in diameter when observed under a transmission electron microscope. Dynamic light scattering (DLS) analysis revealed that the VLPs have a polydispersity index (PDI) of 0.198. A direct ELISA upon animal experiments showed that M2e-specific antibodies were significantly increased in vaccinated chickens after the booster, with H5N1 M2e peptides having the highest mean absorbance value when compared with those of H9N2 and H5N2. A challenge study using low pathogenic AIV (LPAI) strain A/chicken/Malaysia/UPM994/2018 (H9N2) at 106.5 EID50 showed significant viral load in the lung and cloaca, but not in the oropharyngeal of vaccinated animals when compared with the unvaccinated control group. Collectively, this study suggests that nodavirus-like particles displaying three heterologous M2e have the potential to provide protection against LPAI H9N2 in chickens, though the vaccine’s efficacy and cross-protection across different haemagglutinin (HA) subtypes should be further evaluated. Full article
(This article belongs to the Special Issue Veterinary Vaccines and Host Immune Responses)
Show Figures

Figure 1

18 pages, 2938 KiB  
Article
Foot-and-Mouth Disease Virus-like Particles Produced in E. coli as Potential Antigens for a Novel Vaccine
by Sang-Cheol Yu, In-Kyu Lee, Hyun-Seok Kong, Sung-Ho Shin, Sung-Yoon Hwang, Yu-Jin Ahn, Jong-Hyeon Park, Bong-Yoon Kim and Young-Cheon Song
Vet. Sci. 2025, 12(6), 539; https://doi.org/10.3390/vetsci12060539 - 2 Jun 2025
Viewed by 662
Abstract
Foot-and-mouth disease virus (FMDV) continues to pose a significant threat to livestock health and the global agricultural economy, particularly in endemic regions of Asia, Africa, and the Middle East. Current vaccines based on chemically inactivated FMDV present several challenges, including biosafety risks, high [...] Read more.
Foot-and-mouth disease virus (FMDV) continues to pose a significant threat to livestock health and the global agricultural economy, particularly in endemic regions of Asia, Africa, and the Middle East. Current vaccines based on chemically inactivated FMDV present several challenges, including biosafety risks, high production costs, and limited effectiveness against emerging viral variants. To overcome these limitations, we developed virus-like particle (VLP) vaccines targeting FMDV serotypes O, A, and Asia1 using a recombinant Escherichia coli expression system. The resulting VLPs self-assembled into 25–30 nm particles with native-like morphology and antigenic properties, as confirmed by transmission electron microscopy, SDS-PAGE, and Western blot analysis. Immunogenicity was evaluated in mice and pigs using ELISA and virus neutralization tests (VNT), and protective efficacy was assessed through viral challenge studies. All VLPs induced strong serotype-specific antibody responses, with ELISA PI values exceeding 50% and significantly increased VNT titers after booster immunization. In mice, PD50 values were 73.5 (A-type), 32.0 (O-type), and 55.7 (Asia1-type); in pigs, PD50 values reached 10.6 (O-type) and 22.6 (Asia1-type). Notably, the vaccines induced robust immune responses even at lower antigen doses, suggesting the feasibility of dose-sparing formulations. These findings demonstrate that FMDV VLPs produced in E. coli are highly immunogenic and capable of eliciting protective immunity, highlighting their promise as safe, scalable, and cost-effective alternatives to conventional inactivated FMD vaccines. Full article
Show Figures

Figure 1

19 pages, 827 KiB  
Review
Omicron Variant Could Be an Antigenic Shift of SARS-CoV-2
by Anju Kaushal
COVID 2025, 5(5), 73; https://doi.org/10.3390/covid5050073 - 14 May 2025
Viewed by 1023
Abstract
In the past 5 years, the COVID-19 pandemic has experienced frequently changing variants contextualizing immune evasion. The emergence of Omicron with >30–50 mutations on the spike gene has shown a sharp divergence from its relative VOCs, such as WT, Alpha, Beta, Gamma, and [...] Read more.
In the past 5 years, the COVID-19 pandemic has experienced frequently changing variants contextualizing immune evasion. The emergence of Omicron with >30–50 mutations on the spike gene has shown a sharp divergence from its relative VOCs, such as WT, Alpha, Beta, Gamma, and Delta. The requisition of prime boosting was essential within 3–6 months to improve the Nab response that had been not lasted for longer. Omicron subvariant BA.1.1 was less transmissible, but with an extra nine mutations in next variant BA.2 made it more transmissible. This remarkable heterogeneity was reported in ORF1ab or TRS sites, ORF7a, and 10 regions in the genomic sequences of Omicron BA.2 and its evolving subvariants BA.4.6, BF.7, BQ.2, BF. 7, BA.2.75.2, and BA.5 (BQ.1 and BQ.1.1). The mutational stability of subvariants XBB, XBB 1, XBB 1.5, and XBB 1.6 conferred a similar affinity towards ACE-2. This phenomenon has been reported in breakthrough infections and after booster vaccinations producing hybrid immunity. The reduced pathogenic nature of Omicron has implicated its adaptation either through immunocompromised individuals or other animal hosts. The binding capacity of RBD and ACE-2, including the proteolytic priming via TMPRSS2, reveals its (in-vitro) transmissibility behavior. RBD mutations signify transmissibility, S1/S2 enhances virulence, while S2 infers the effective immunogenic response. Initial mutations D614G, E484A, N501Y, Q493K, K417N, S477N, Y505H, and G496S were found to increase the Ab escape. Some mutations such as, R346K, L452R, and F486Vwere seen delivering immune pressure. HR2 region (S2) displayed mutations R436S, K444T, F486S, and D1199N with altered spike positions. Later on, the booster dose or breakthrough infections contributed to elevating the immune profile. Several other mutations in BA.1.1-N460K, R346T, K444T, and BA.2.75.2-F486S have also conferred the neutralization resistance. The least studied T-cell response in SARS-CoV-2 affects HLA- TCR interactions, thus, it plays a role in limiting the virus clearance. Antigenic cartographic analysis has also shown Omicron’s drift from its predecessor variants. The rapidly evolving SARS-CoV-2 variants and subvariants have driven the population-based immunity escape in fully immunized individuals within short period. This could be an indication that Omicron is heading towards endemicity and may evolve in future with subvariants could lead to outbreaks, which requires regular surveillance. Full article
(This article belongs to the Section Human or Animal Coronaviruses)
Show Figures

Figure 1

16 pages, 14359 KiB  
Article
eBoosterTM: The First Electrochemical Disinfection System to Reduce Microbial Contamination in Drinking Water Networks Without Maintenance
by Sergio Ferro, Daniel Vallelonga, Daniel Romeo, Basil Mondello, Gusius Gus, Paul Caruso and Tony Amorico
Water 2025, 17(9), 1361; https://doi.org/10.3390/w17091361 - 30 Apr 2025
Viewed by 594
Abstract
Ensuring microbial safety in drinking water distribution networks is a critical challenge, particularly in healthcare facilities where waterborne infections pose significant risks. This study presents the implementation of the eBoosterTM electrochemical disinfection system, developed by Ecas4 Australia, as a maintenance-free solution for [...] Read more.
Ensuring microbial safety in drinking water distribution networks is a critical challenge, particularly in healthcare facilities where waterborne infections pose significant risks. This study presents the implementation of the eBoosterTM electrochemical disinfection system, developed by Ecas4 Australia, as a maintenance-free solution for microbial control in hospital water supplies. Unlike previous electrochemical disinfection technologies, which suffered from scale buildup and required frequent maintenance, the eBoosterTM system utilizes periodic polarity reversal to prevent electrode fouling, enabling continuous operation without external intervention. The technology has been adopted by several regional hospitals in Queensland, Australia, and this paper focuses on Dalby Hospital, where two eBoosterTM systems were installed at water meters to provide residual disinfection in an in-line configuration. Performance data collected over nearly 2 years demonstrated consistent chlorine generation for microbial control with minimal energy consumption (less than 2 kWh/day). The system’s ability to adapt to fluctuating flow rates while maintaining consistent disinfectant levels highlights its reliability in real-world applications. This work emphasizes the potential of electrochemical disinfection as a sustainable alternative to chemical dosing in drinking water systems, offering a maintenance-free, cost-effective, and environmentally friendly solution for long-term microbial safety in healthcare and other critical settings. Full article
(This article belongs to the Special Issue Water Pollutants and Human Health: Challenges and Perspectives)
Show Figures

Figure 1

16 pages, 4603 KiB  
Article
M2e/NP Dual Epitope-Displaying Nanoparticles Enhance Cross-Protection of Recombinant HA Influenza Vaccine: A Universal Boosting Strategy
by Rui Liu, Lejun Yang, Jin Feng, Songchen Zhang, Liping Wu, Yingying Du, Dexin Kong, Yuhua Xu and Tao Peng
Vaccines 2025, 13(4), 412; https://doi.org/10.3390/vaccines13040412 - 15 Apr 2025
Viewed by 815
Abstract
Background/Objectives: Vaccination remains the most effective means of preventing influenza virus infections. However, the continuous antigenic drift and shift of influenza viruses lead to a reduced efficacy of the existing vaccines, necessitating vaccines capable of broad protection. Methods: To address this, [...] Read more.
Background/Objectives: Vaccination remains the most effective means of preventing influenza virus infections. However, the continuous antigenic drift and shift of influenza viruses lead to a reduced efficacy of the existing vaccines, necessitating vaccines capable of broad protection. Methods: To address this, we developed a modular vaccine strategy pairing a clinical-stage adjuvanted recombinant hemagglutinin (HA) vaccine (SCVC101) with OMN, a heptameric nanoparticle displaying conserved influenza A virus T-cell epitopes from nucleoprotein (NP) and matrix 2 ectodomain (M2e). Results: OMN induced cross-reactive M2e-specific antibodies, binding to diverse influenza A subtypes. Critically, the co-administration of OMN with SCVC101 enhanced cellular immunity and cross-protection without diminishing HA-induced humoral responses. Conclusions: This dual-antigen delivery system enables annual HA component updates, aligned with WHO recommendations, while the conserved OMN nanoparticle acts as a universal booster, leveraging existing production infrastructure. This approach offers a promising strategy for improving the influenza vaccine’s efficacy against emerging viral variants. Full article
(This article belongs to the Special Issue Recombinant Vaccine for Human and Animal Diseases)
Show Figures

Figure 1

13 pages, 2356 KiB  
Article
Effect of Inhibin Immunization on Reproductive Hormones and Testicular Morphology of Dezhou Donkeys During the Non-Breeding Season
by Muhammad Faheem Akhtar, Muhammad Umar, Wenqiong Chai, Liangliang Li, Ejaz Ahmad and Changfa Wang
Animals 2025, 15(6), 813; https://doi.org/10.3390/ani15060813 - 13 Mar 2025
Cited by 1 | Viewed by 835
Abstract
The present study was designed to investigate the potential role of inhibin immunization on plasma hormone concentration and testicular histoarchitecture of Dezhou donkeys in the nonbreeding season (November–February). For this purpose, adult Dezhou donkeys (n = 30) were equally divided into groups [...] Read more.
The present study was designed to investigate the potential role of inhibin immunization on plasma hormone concentration and testicular histoarchitecture of Dezhou donkeys in the nonbreeding season (November–February). For this purpose, adult Dezhou donkeys (n = 30) were equally divided into groups A, B, and C. Group A was actively immunized with 3 mg inhibin, group B with (1.5 mg), and group C was immunized with Bovine serum albumin (BSA) and served as a control. All animals in groups A and B were given a primary dose of inhibin (INH) antigen, i.e., 3 mg and 1.5 mg on day 1, followed by a booster dose on the 23rd day of the experiment. Blood samples were collected on the 21st, 28th, 34th, and 40th days of the experiment. Primary and booster INH immunization (3 mg and 1.5 mg) slightly elevated the plasma hormone concentrations of FSH, LH, AMH, and Activin A. The number of spermatogonia was significantly higher in group A as compared to group C on the 28th day of the experiment. Inhibin immunization also caused apoptosis in testicular histoarchitecture. In conclusion, Inhibin immunization can potentially improve the reproductive efficiency of Dezhou donkeys in a nonbreeding season by elevating plasma hormone concentrations of FSH, LH, AMH, and Activin A. Full article
(This article belongs to the Special Issue Current Research on Donkeys and Mules)
Show Figures

Figure 1

8 pages, 8051 KiB  
Article
Performance of the ICARUS Trigger System at the Booster and NuMI Neutrino Beams
by Riccardo Triozzi
Particles 2025, 8(1), 22; https://doi.org/10.3390/particles8010022 - 3 Mar 2025
Viewed by 576
Abstract
The ICARUS-T600 liquid argon time projection chamber detector takes data at a shallow depth as the far detector of the Short Baseline Neutrino program at Fermilab, searching for sterile neutrinos with the Booster and Main Injector neutrino beams. The ICARUS trigger system exploits [...] Read more.
The ICARUS-T600 liquid argon time projection chamber detector takes data at a shallow depth as the far detector of the Short Baseline Neutrino program at Fermilab, searching for sterile neutrinos with the Booster and Main Injector neutrino beams. The ICARUS trigger system exploits the temporal coincidence of the beams with scintillation light signals detected by 360 photo-multiplier tubes in limited TPC regions. The trigger efficiency measurement leverages cosmic rays collected without any scintillation light requirement, with timing from an external cosmic ray tagger system. The efficiency measured with stopping muons roughly saturates at Eμ∼300 MeV, covering most of the expected energy range of charged-current neutrino interactions. For the latest ICARUS physics runs, special “adder” boards performing the analog sum of light signals were introduced as a complementary trigger to possibly recover low-energy neutrino interactions. Full article
Show Figures

Figure 1

16 pages, 18175 KiB  
Article
Ultrasonic Resonance Fatigue Testing of 6082 Aluminum Alloy
by Diyan M. Dimitrov, Stoyan D. Slavov, Desislava Y. Mincheva and Adélio M. S. Cavadas
Metals 2025, 15(2), 127; https://doi.org/10.3390/met15020127 - 27 Jan 2025
Viewed by 1271
Abstract
This study explores the fatigue properties of EN AW-6082-T6 aluminum alloy in the gigacycle range (106–109 cycles), using ultrasonic resonance fatigue testing at 20 kHz in a push–pull mode with a symmetric load cycle (R = −1). A custom-built ultrasonic [...] Read more.
This study explores the fatigue properties of EN AW-6082-T6 aluminum alloy in the gigacycle range (106–109 cycles), using ultrasonic resonance fatigue testing at 20 kHz in a push–pull mode with a symmetric load cycle (R = −1). A custom-built ultrasonic fatigue machine, developed at TU-Varna, comprising a generator, ultrasonic train (including a high-power transducer, booster, custom-made sonotrode, and specimen), monitoring, data logging systems, and an air-cooling capability, was used for the experiments conducted. A Bezier curve sonotrode, with an amplification ratio of 1:6, was designed and produced for the test. Hourglass-shaped specimens were designed on the base of the dynamic Young’s modulus E = 71.3 GPa, determined through the impulse resonance method (ASTM E1876-01), and validated with FEM analysis for resonance length and stress amplitude. The fatigue testing revealed a fatigue strength reduction of approximately 60 MPa between 106 and 109 cycles. The percentile of failure curves based on a Cactillo–Canteli model fits well with the experimental data and gives a fatigue limit at 109 cycles σl = 104 MPa and “endurance strength” σw = 84 MPa. Surface crack initiation was consistently observed with predominately cleavage transgranular fractures in the fatigue zone. The present research highlights the utility of ultrasonic testing for examining fatigue behavior in the gigacycle regime. Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

21 pages, 4090 KiB  
Article
Influence of High Eimeria tenella Immunization Dosages on Total Oocyst Output and Specific Antibodies Recognition Response in Hybrid Pullets (Gallus gallus)—A Pilot Study
by Marco A. Juarez-Estrada, Guillermo Tellez-Isaias, Víctor M. Petrone-Garcia, Amanda Gayosso-Vazquez, Xochitl Hernandez-Velasco and Rogelio A. Alonso-Morales
Antibodies 2025, 14(1), 9; https://doi.org/10.3390/antib14010009 - 26 Jan 2025
Viewed by 991
Abstract
Background: Two high primary-immunization doses of a wild-type E. tenella strain were assessed in healthy pullets (5K versus 10K sporulated oocysts/bird) to understand the effects of coccidia infection. Methods: Acquired immunity was evaluated following primary immunization and two booster doses with the homologous [...] Read more.
Background: Two high primary-immunization doses of a wild-type E. tenella strain were assessed in healthy pullets (5K versus 10K sporulated oocysts/bird) to understand the effects of coccidia infection. Methods: Acquired immunity was evaluated following primary immunization and two booster doses with the homologous strain. Total oocyst shedding, clinical signs, and viability of every bird/group after each immunization/booster were recorded. Indirect ELISA measured the time course of humoral responses from each immunization group against sporozoite and second-generation merozoite of E. tenella. Antigen pattern recognition on these two asexual zoite stages of E. tenella was analyzed using Western blotting with antibodies from each immunization program. Afterwards, antigen recognition of specific life-cycle stages was performed using individual pullet serums from the best immunization program. Results: A primary-immunization dose of 1 × 104 oocysts/bird reduced the oocyst output; however, all pullets exhibited severe clinical signs and low specific antibodies titers, with decreased polypeptide recognition on both E. tenella asexual zoite stages. In contrast, immunization with 5 × 103 oocysts/bird yielded the best outcomes regarding increased oocyst collection and early development of sterilizing immunity. After the first booster dosage, this group’s antisera revealed a strong pattern of specific antigen recognition on the two assayed E. tenella life-cycle stages. Conclusions: The E. tenella-specific antibodies from the 5 × 103 oocysts/bird immunization program can aid in passive immunization trials and further research to identify B-cell immunoprotective antigens, which could help in the development of a genetically modified anticoccidial vaccine. Full article
Show Figures

Figure 1

19 pages, 4117 KiB  
Article
Multiple Gene Deletion Mutants of Equine Herpesvirus 1 Exhibit Strong Protective Efficacy Against Wild Virus Challenge in a Murine Model
by Stephanie S. Pradhan, Vekataramireddy Balena, Bidhan Chandra Bera, Taruna Anand, Rhushikesh Khetmalis, Aashwina Madhwal, Supriya Kandasamy, Selvaraj Pavulraj, Manju Bernela, Priya Mor, Bhupendra Nath Tripathi and Nitin Virmani
Vaccines 2025, 13(1), 45; https://doi.org/10.3390/vaccines13010045 - 8 Jan 2025
Cited by 1 | Viewed by 1198
Abstract
Background: Equine herpesvirus type 1 (EHV1) is a ubiquitous viral pathogen infecting the equine population worldwide. EHV1 infection causes respiratory illness, abortion, neonatal foal mortality, and myeloencephalopathy. The currently available modified live EHV1 vaccines have safety and efficacy limitations. The two mutant EHV1 [...] Read more.
Background: Equine herpesvirus type 1 (EHV1) is a ubiquitous viral pathogen infecting the equine population worldwide. EHV1 infection causes respiratory illness, abortion, neonatal foal mortality, and myeloencephalopathy. The currently available modified live EHV1 vaccines have safety and efficacy limitations. The two mutant EHV1 viruses (vToH-DMV (∆IR6/gE) and vToH-QMV (∆IR6/UL43/gE/UL56)), generated by the deletion of genes responsible for virulence (gE and IR6) and immunosuppression (uL43 and uL56), have been previously characterized by our group and found to generate good immune responses. The present study aimed to determine the safety and protective efficacy of the above mutants against a virulent EHV1 challenge in a murine model. Methods: BALB/c mice were intranasally immunized with a live vToH-QMV or vToH-DMV vaccine. Intranasal booster immunization was given at 14 days post-vaccination (dpv). Both mutants induced an optimal level of EHV1-specific humoral and cell-mediated immune responses, as determined by virus neutralization assay, ELISA, and immunophenotyping. At 35 dpv, the mice were intranasally challenged with wild-type EHV1 (vRaj strain). Results: Amongst the two mutants, vToH-QMV induced a better immune response than the vToH-DMV vaccine. Furthermore, vToH-QMV provided good protection in mice against the virulent challenge. It specifically exhibited less severe clinical disease in terms of clinical signs, body weight reduction, and gross and histopathological lung lesions accompanied by early virus clearance. Conclusions: These studies are suggestive of vToH-QMV EHV1 being a potential vaccine candidate against EHV1 infection, which needs to be finally tested in the main host, i.e., horses. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

18 pages, 3715 KiB  
Article
From Spent Black and Green Tea to Potential Health Boosters: Optimization of Polyphenol Extraction and Assessment of Their Antioxidant and Antibacterial Activities
by Ahlam Harfoush, Aseel Swaidan, Salma Khazaal, Elie Salem Sokhn, Nabil Grimi, Espérance Debs, Nicolas Louka and Nada El Darra
Antioxidants 2024, 13(12), 1588; https://doi.org/10.3390/antiox13121588 - 23 Dec 2024
Cited by 1 | Viewed by 2039
Abstract
Tea, one of the most popular beverages worldwide, generates a substantial amount of spent leaves, often directly discarded although they may still contain valuable compounds. This study aims to optimize the extraction of polyphenols from spent black tea (SBT) and spent green tea [...] Read more.
Tea, one of the most popular beverages worldwide, generates a substantial amount of spent leaves, often directly discarded although they may still contain valuable compounds. This study aims to optimize the extraction of polyphenols from spent black tea (SBT) and spent green tea (SGT) leaves while also exploring their antioxidant and antibacterial properties. Response surface methodology was utilized to determine the optimal experimental conditions for extracting polyphenols from SBT and SGT. The total phenolic content (TPC) was quantified using the Folin–Ciocalteu method, while antioxidant activity was evaluated through the DPPH assay. Antibacterial activity was assessed using the disk diffusion method. Additionally, high-performance liquid chromatography (HPLC) was employed to analyze the phytochemical profiles of the SBT and SGT extracts. Optimal extraction for SBT achieved 404 mg GAE/g DM TPC and 51.5% DPPH inhibition at 93.64 °C, 79.9 min, and 59.4% ethanol–water. For SGT, conditions of 93.63 °C, 81.7 min, and 53.2% ethanol–water yielded 452 mg GAE/g DM TPC and 78.3% DPPH inhibition. Both tea extracts exhibited antibacterial activity against Gram-positive bacteria, with SGT showing greater efficacy against S. aureus and slightly better inhibition of B. subtilis compared to SBT. No activity was observed against the Gram-negative bacteria E. coli and S. typhimurium. HPLC analysis revealed hydroxybenzoic acid as the main phenolic compound in SBT (360.7 mg/L), while rutin was predominant in SGT (42.73 mg/L). The optimized phenolic-rich extracts of SBT and SGT demonstrated promising antioxidant and antibacterial potential, making them strong candidates for use as natural health boosters in food products. Full article
Show Figures

Figure 1

15 pages, 1438 KiB  
Article
Effects of Porcine Zona Pellucida Immunocontraception on Mare Body Condition and Foaling Season Length in Two Western Wild Horse Populations
by Allen T. Rutberg and Kayla A. Grams
Animals 2024, 14(23), 3550; https://doi.org/10.3390/ani14233550 - 9 Dec 2024
Viewed by 1227
Abstract
Wildlife managers and the public have expressed considerable interest in the use of contraception to help manage the populations of wild horses and burros (Equus caballus and E. asinus). Field testing has shown that two preparations of the porcine zona pellucida [...] Read more.
Wildlife managers and the public have expressed considerable interest in the use of contraception to help manage the populations of wild horses and burros (Equus caballus and E. asinus). Field testing has shown that two preparations of the porcine zona pellucida (PZP) vaccine, a simple emulsion (ZonaStat-H) and PZP-22 (which supplements ZonaStat-H with a controlled-release component) effectively prevent pregnancy in individual mares and can substantially reduce population foaling rates. To determine whether some PZP preparations might have secondary effects that harm treated mares or their foals, we examined the effects of PZP-22 vaccinations and the follow-up boosters of either PZP-22 or ZonaStat-H on adult female body condition, foaling season, and foal mortality in two wild horse herds in the western USA, Cedar Mountains Herd Management Area, Utah (CM; 2008–2015), and Sand Wash Basin Herd Management Area, Colorado (SWB; 2008–2014). At both sites in every study year, summer body condition scores improved faster in mares without foals than mares with foals (p < 0.001; CM, n = 234; SWB, n = 172), but PZP treatments did not affect mare body condition apart from their contraceptive effects. Births to mares treated with PZP within the previous three years were delayed and spread out over the foaling season, but foal mortality rates through the first and second year were low, unrelated to date of birth, and virtually identical for the foals of PZP-treated and untreated mothers (all comparisons n.s.; CM, n = 775, SWB, n = 640). Thus, in these two populations, we found no evidence that changes in reproductive timing associated with PZP treatments were harmful to either mares or foals. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

7 pages, 857 KiB  
Brief Report
Antibody Response After a Fifth Dose (Third Booster) of BNT162b2 mRNA COVID-19 Vaccine in Healthcare Workers
by Esther Saiag, Ronni Gamzu, Hagit Padova, Yael Paran, Ilana Goldiner, Neta Cohen and David Bomze
J. Clin. Med. 2024, 13(21), 6538; https://doi.org/10.3390/jcm13216538 - 31 Oct 2024
Cited by 2 | Viewed by 1194
Abstract
Although a fourth dose of SARS-CoV-2 vaccine was shown to be effective, the immunogenicity of a fifth dose in immunocompetent individuals had not been well described. This was a prospective observational cohort study of previously vaccinated healthcare workers at a single tertiary hospital [...] Read more.
Although a fourth dose of SARS-CoV-2 vaccine was shown to be effective, the immunogenicity of a fifth dose in immunocompetent individuals had not been well described. This was a prospective observational cohort study of previously vaccinated healthcare workers at a single tertiary hospital in Israel. Individuals were administered up to three booster doses of the BNT162b2 mRNA vaccine (i.e., up to five overall doses), during the period between July 2021 and January 2023. Immunogenicity was assessed using the SARS-CoV-2 IgG (sCOVG) semi-quantitative assay, performed at several time points. The cohort consisted of 162 individuals (median age 69 years, 62% female). Of these, 104 (64%) received four doses and 58 (36%) received five doses. Anti-SARS-CoV-2 antibody levels increased in all cases, regardless of the baseline levels. The fold-change increase in the mean sCOVG index was 29.2 (SD 2.6) after the third vaccine, 3.8 (SD 2.4) after the fourth vaccine, and 3.6 (SD 3.0) after the fifth vaccine. A waning effect over time was seen in 78% and 43% of participants for the third and fourth doses, respectively. Adverse events following the fifth dose were limited and mild. Similar to previous booster vaccines, a fifth dose of BNT162b2 is immunogenic and safe in healthy individuals, although the clinical implications remain unclear. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

Back to TopTop