From Spent Black and Green Tea to Potential Health Boosters: Optimization of Polyphenol Extraction and Assessment of Their Antioxidant and Antibacterial Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Chemicals, Reagents, and Media
2.3. Determination of Dry Matter
2.4. Extraction Procedure
2.5. Experimental Design
2.6. Determination of the TPC
2.7. Determination of the Antioxidant Activity
2.8. High-Performance Liquid Chromatography Analysis
2.9. Evaluation of the Antibacterial Activity
2.9.1. Preparation of the Standardized Inoculum
2.9.2. Disk Diffusion Assay
2.10. Statistical Analysis
3. Results and Discussion
3.1. Influence of Extraction Time, Temperature, and Ethanol Percentage on TPC Yield and DPPH Inhibition Percentage
3.2. Optimization of Extraction
3.3. Antibacterial Activity of Spent Tea Extracts
3.4. High-Performance Liquid Chromatography (HPLC) Analysis of SBT and SGT Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, D.; Milacic, V.; Chen, M.S.; Wan, S.B.; Lam, W.H.; Huo, C.; Landis-Piwowar, K.R.; Cui, Q.C.; Wali, A.; Chan, T.H.; et al. Tea Polyphenols, Their Biological Effects and Potential Molecular Targets. Histol. Histopathol. 2008, 23, 487. [Google Scholar] [CrossRef]
- FAO. FAO Publications Catalogue 2022; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Truong, V.L.; Jeong, W.S. Cellular Defensive Mechanisms of Tea Polyphenols: Structure-Activity Relationship. Int. J. Mol. Sci. 2021, 22, 9109. [Google Scholar] [CrossRef]
- Vastrad, J.V.; Badanayak, P.; Goudar, G. Phenolic Compounds in Tea: Phytochemical, Biological, and Therapeutic Applications. In Phenolic Compounds—Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Kchaou, W.; Abbès, F.; Blecker, C.; Attia, H.; Besbes, S. Effects of Extraction Solvents on Phenolic Contents and Antioxidant Activities of Tunisian Date Varieties (Phoenix dactylifera L.). Ind. Crops Prod. 2013, 45, 262–269. [Google Scholar] [CrossRef]
- Orak, H.; Yagar, H.; Isbilir, S.; Demirci, A.; Gumus, T. Antioxidant and Antimicrobial Activities of White, Green and Black Tea Extracts. Acta Aliment. 2013, 42, 379–389. [Google Scholar] [CrossRef]
- Nibir, Y.M.; Sumit, A.F.; Akhand, A.A.; Ahsan, N.; Hossain, M.S. Comparative Assessment of Total Polyphenols, Antioxidant and Antimicrobial Activity of Different Tea Varieties of Bangladesh. Asian Pac. J. Trop. Biomed. 2017, 7, 352–357. [Google Scholar] [CrossRef]
- Ki Won, L.; Hyong Joo, L.; Chang Yong, L. Antioxidant Activity of Black Tea vs. Green Tea. J. Nutr. 2002, 132, 785. [Google Scholar] [CrossRef]
- Imran, A.; Butt, M.S.; Sharif, M.K.; Sultan, J.I. Chemical Profiling of Black Tea Polyphenols. Pak. J. Nutr. 2009, 12, 261–267. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Aires, A. Phenolics in Foods: Extraction, Analysis and Measurements. In Phenolic Compounds—Natural Sources, Importance and Applications; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Raghunath, S.; Budaraju, S.; Gharibzahedi, S.M.T.; Koubaa, M.; Roohinejad, S.; Mallikarjunan, K. Processing Technologies for the Extraction of Value-Added Bioactive Compounds from Tea. Food Eng. Rev. 2023, 15, 276. [Google Scholar] [CrossRef]
- Pronyk, C.; Mazza, G. Design and Scale-up of Pressurized Fluid Extractors for Food and Bioproducts. J. Food Eng. 2009, 95, 215–226. [Google Scholar] [CrossRef]
- Kwon, H.L.; Chung, M.S. Pilot-Scale Subcritical Solvent Extraction of Curcuminoids from Curcuma long L. Food Chem. 2015, 185, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yan, B.; Chen, Z.S.; Wang, L.; Tang, W.; Huang, C. Recent Technologies for the Extraction and Separation of Polyphenols in Different Plants: A Review. J. Renew. Mater. 2022, 10, 1471–1490. [Google Scholar] [CrossRef]
- Chan, C.H.; Yusoff, R.; Ngoh, G.C. An Energy-Based Approach to Scale Up Microwave-Assisted Extraction of Plant Bioactives. In Ingredients Extraction by Physicochemical Methods in Food; Academic Press: Cambridge, MA, USA, 2017; Volume 4, pp. 561–597. [Google Scholar] [CrossRef]
- Dubey, P. Tea Catechins as Potent Antioxidant and Anti-Inflammatory Agents: Possibilities of Drug Development to Promote Healthy Aging. In Plant Bioactives as Natural Panacea Against Age-Induced Diseases: Nutraceuticals and Functional Lead Compounds for Drug Development; Elsevier: Amsterdam, The Netherlands, 2023; pp. 253–269. [Google Scholar] [CrossRef]
- Chatterjee, P.; Chandra, S.; Dey, P.; Bhattacharya, S. Evaluation of Anti-Inflammatory Effects of Green Tea and Black Tea: A Comparative in Vitro Study. J. Adv. Pharm. Technol. Res. 2012, 3, 136. [Google Scholar] [CrossRef]
- Zhou, D.D.; Saimaiti, A.; Luo, M.; Huang, S.Y.; Xiong, R.G.; Shang, A.; Gan, R.Y.; Li, H.B. Fermentation with Tea Residues Enhances Antioxidant Activities and Polyphenol Contents in Kombucha Beverages. Antioxidants 2022, 11, 155. [Google Scholar] [CrossRef]
- Carloni, P.; Albacete, A.; Martínez-Melgarejo, P.A.; Girolametti, F.; Truzzi, C.; Damiani, E. Comparative Analysis of Hot and Cold Brews from Single-Estate Teas (Camellia sinensis) Grown across Europe: An Emerging Specialty Product. Antioxidants 2023, 12, 1306. [Google Scholar] [CrossRef]
- Tang, G.Y.; Zhao, C.N.; Xu, X.Y.; Gan, R.Y.; Cao, S.Y.; Liu, Q.; Shang, A.; Mao, Q.Q.; Li, H.B. Phytochemical Composition and Antioxidant Capacity of 30 Chinese Teas. Antioxidants 2019, 8, 180. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Soh, E.Y.; Tie, P.P.; Law, Y.P. Antioxidant and Antibacterial Properties of Green, Black, and Herbal Teas of Camellia Sinensis. Pharmacogn. Res. 2011, 3, 266. [Google Scholar] [CrossRef] [PubMed]
- Akter, M.; Islam, N.N.; Sumit, A.F.; Ahsan, N.; Hossain, S.; Ahmed, M.; Akhand, A.A. Tea Extract Prevents Arsenic-Mediated DNA Damage and Death of Murine Thymocytes in Vitro. Dhaka Univ. J. Pharm. Sci. 2015, 14, 79–85. [Google Scholar] [CrossRef]
- Yuan, J.M.; Sun, C.; Butler, L.M. Tea and Cancer Prevention: Epidemiological Studies. Pharmacol. Res. 2011, 64, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.L.; Li, Z.H.; Wang, Z.C.; Zhang, H.L. Green Tea Consumption and Risk of Pancreatic Cancer: A Meta-Analysis. Nutrients 2014, 6, 4640–4650. [Google Scholar] [CrossRef] [PubMed]
- Trisha, A.T.; Shakil, M.H.; Talukdar, S.; Rovina, K.; Huda, N.; Zzaman, W. Tea Polyphenols and Their Preventive Measures against Cancer: Current Trends and Directions. Foods 2022, 11, 3349. [Google Scholar] [CrossRef]
- Taylor, P.W.; Hamilton-Miller, J.M.T.; Stapleton, P.D. Antimicrobial Properties of Green Tea Catechins. Food Sci. Technol. Bull. 2005, 2, 71. [Google Scholar] [CrossRef]
- Tiwari, R.P.; Bharti, S.K.; Kaur, H.D.; Dikshit, R.P.; Hoondal, G.S. Synergistic Antimicrobial Activity of Tea & Antibiotics. Indian J. Med. Res. 2005, 122, 80–84. [Google Scholar] [PubMed]
- Almajano, M.P.; Carbó, R.; Jiménez, J.A.L.; Gordon, M.H. Antioxidant and Antimicrobial Activities of Tea Infusions. Food Chem. 2008, 108, 55–63. [Google Scholar] [CrossRef]
- Rajapaksha, S.; Shimizu, N. Pilot-Scale Extraction of Polyphenols from Spent Black Tea by Semi-Continuous Subcritical Solvent Extraction. Food Chem. X 2022, 13, 100200. [Google Scholar] [CrossRef]
- Gheshlagh, N.S.; Paya, H.; Taghizadeh, A.; Mohammadzadeh, H.; Palangi, V.; Mehmannavaz, Y. Comparative Effects of Extracted Polyphenols from Black and Green Tea Wastes on In-Vitro Fermentability of Feed Ingredients. Semin. Cienc. Agrar. 2021, 42, 2005–2022. [Google Scholar] [CrossRef]
- Rajapaksha, D.S.W.; Shimizu, N. Valorization of Spent Black Tea by Recovery of Antioxidant Polyphenolic Compounds: Subcritical Solvent Extraction and Microencapsulation. Food Sci. Nutr. 2020, 8, 4297–4307. [Google Scholar] [CrossRef] [PubMed]
- Nadiah, N.I.; Uthumporn, U. Determination of Phenolic and Antioxidant Properties in Tea and Spent Tea Under Various Extraction Method and Determination of Catechins, Caffeine and Gallic Acid by HPLC. Artic. Int. J. Adv. Sci. Eng. Inf. Technol. 2015, 5, 158–164. [Google Scholar] [CrossRef]
- Ramdani, D.; Chaudhry, A.S.; Seal, C.J. Chemical Composition, Plant Secondary Metabolites, and Minerals of Green and Black Teas and the Effect of Different Tea-to-Water Ratios during Their Extraction on the Composition of Their Spent Leaves as Potential Additives for Ruminants. J. Agric. Food Chem. 2013, 61, 4961–4967. [Google Scholar] [CrossRef]
- Weremfo, A.; Abassah-Oppong, S.; Adulley, F.; Dabie, K.; Seidu-Larry, S. Response Surface Methodology as a Tool to Optimize the Extraction of Bioactive Compounds from Plant Sources. J. Sci. Food Agric. 2023, 103, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Lawag, I.L.; Nolden, E.S.; Schaper, A.A.M.; Lim, L.Y.; Locher, C. A Modified Folin-Ciocalteu Assay for the Determination of Total Phenolics Content in Honey. Appl. Sci. 2023, 13, 2135. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu Assay Revisited: Improvement of Its Specificity for Total Phenolic Content Determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Vizzotto, M.; Cisneros-Zevallos, L.; Byrne, D.H.; Ramming, D.W.; Okie, W.R. Large Variation Found in the Phytochemical and Antioxidant Activity of Peach and Plum Germplasm. J. Am. Soc. Hortic. Sci. 2007, 132, 334–340. [Google Scholar] [CrossRef]
- De Zoysa, M.H.N.; Rathnayake, H.; Hewawasam, R.P.; Wijayaratne, W.M.D.G.B. Determination of in Vitro Antimicrobial Activity of Five Sri Lankan Medicinal Plants against Selected Human Pathogenic Bacteria. Int. J. Microbiol. 2019, 2019, 7431439. [Google Scholar] [CrossRef]
- Abbaszadegan, A.; Dadolahi, S.; Gholami, A.; Moein, M.R.; Hamedani, S.; Ghasemi, Y.; Abbott, P.V. Antimicrobial and Cytotoxic Activity of Cinnamomum Zeylanicum, Calcium Hydroxide, and Triple Antibiotic Paste as Root Canal Dressing Materials. J. Contemp. Dent. Pract. 2016, 17, 105–113. [Google Scholar] [CrossRef]
- Shkeir, B.; El Darra, N.; Azakir, B.; Khazaal, S.; Sokhn, E.S.; Koubaa, M.; Maroun, R.G.; Louka, N.; Debs, E. Optimized Extraction of Polyphenols from Kiwifruit Peels and Their Biological Activities. BioTech 2024, 13, 54. [Google Scholar] [CrossRef]
- Khazaal, S.; Louka, N.; Debs, E.; Khalil, M.; Albiss, B.; Al-Nabulsi, A.; Jammoul, A.; Osaili, T.M.; Darra, N. El Valorization of Sesame (Sesamum indicum L.) Seed Coats: Optimization of Polyphenols’ Extraction Using. Ired-Irrad® and Assessment of Their Biological Activities. J. Agric. Food Res. 2024, 16, 101105. [Google Scholar] [CrossRef]
- El Tannir, H.; Houhou, D.; Debs, E.; Koubaa, M.; Jammoul, A.; Azakir, B.; Khalil, M.I.; El Darra, N.; Louka, N. Optimization of Aqueous Extraction of Polyphenols from Cuminum Cyminum Seeds Using Response Surface Methodology and Assessment of Biological Activity. BioTech 2024, 13, 7. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Bindes, M.M.M.; Cardoso, V.L.; Reis, M.H.M.; Boffito, D.C. Maximisation of the Polyphenols Extraction Yield from Green Tea Leaves and Sequential Clarification. J. Food Eng. 2019, 241, 97–104. [Google Scholar] [CrossRef]
- Che Sulaiman, I.S.; Basri, M.; Fard Masoumi, H.R.; Chee, W.J.; Ashari, S.E.; Ismail, M. Effects of Temperature, Time, and Solvent Ratio on the Extraction of Phenolic Compounds and the Anti-Radical Activity of Clinacanthus Nutans Lindau Leaves by Response Surface Methodology. Chem. Cent. J. 2017, 11, 54. [Google Scholar] [CrossRef]
- Amir Hamzah, N.; Morad, N.; Nordin, M.; Ilia Anisa, A.; Yusof, Y.M.; Azian Morad, N. Effect of Extraction Time and Temperature on the Extraction of Phenolic Compounds from Orthosiphon Stamineus Leaves. Aust. J. Basic. Appl. Sci. 2017, 11, 54100. [Google Scholar]
- Cannas, M.; Conte, P.; Piga, A.; Del Caro, A. Green Recovery Optimization of Phenolic Compounds from “Spinoso Sardo” Globe Artichoke by-Products Using Response Surface Methodology. Front. Sustain. Food Syst. 2023, 7, 1215809. [Google Scholar] [CrossRef]
- Hammoud, M.; Chokr, A.; Rajha, H.N.; Safi, C.; Walsem, M.v.; Broek, L.A.M.v.d.; Debs, E.; Maroun, R.G.; Louka, N.; Rammal, H. Intensification of Polyphenols Extraction from Eryngium Creticum Leaves Using Ired-Irrad® and Evaluation of Antibiofilm and Antibacterial Activities. Plants 2022, 11, 2458. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Liang, Y.; Dong, J.; Lu, J. Tea Extraction Methods in Relation to Control of Epimerization of Tea Catechins. J. Sci. Food Agric. 2007, 87, 1748–1752. [Google Scholar] [CrossRef]
- Peiró, S.; Gordon, M.H.; Blanco, M.; Pérez-Llamas, F.; Segovia, F.; Almajano, M.P. Modelling Extraction of White Tea Polyphenols: The Influence of Temperature and Ethanol Concentration. Antioxidants 2014, 3, 684. [Google Scholar] [CrossRef] [PubMed]
- Güçlü Üstündağ, Ö.; Erşan, S.; Özcan, E.; Özan, G.; Kayra, N.; Ekinci, F.Y. Black Tea Processing Waste as a Source of Antioxidant and Antimicrobial Phenolic Compounds. Eur. Food Res. Technol. 2016, 242, 1523–1532. [Google Scholar] [CrossRef]
- Hayat, K.; Iqbal, H.; Malik, U.; Bilal, U.; Mushtaq, S. Tea and Its Consumption: Benefits and Risks. Crit. Rev. Food Sci. Nutr. 2015, 55, 939–954. [Google Scholar] [CrossRef]
- Helmi, L.; Khatib, A.A.; Rajha, H.N.; Debs, E.; Jammoul, A.; Louka, N.; Darra, N. El Valorization of Potato Peels (Solanum tuberosum) Using Infrared-Assisted Extraction: A Novel Sprouting Suppressant and Antibacterial Agent. Foods 2024, 13, 3445. [Google Scholar] [CrossRef]
- Abi-Khattar, A.M.; Rajha, H.N.; Abdel-Massih, R.M.; Maroun, R.G.; Louka, N.; Debs, E. Intensification of Polyphenol Extraction from Olive Leaves Using Ired-Irrad®, an Environmentally-Friendly Innovative Technology. Antioxidants 2019, 8, 227. [Google Scholar] [CrossRef]
- Rajha, H.N.; Louka, N.; Darra, N.E.; Hobaika, Z.; Boussetta, N.; Vorobiev, E.; Maroun, R.G. Multiple Response Optimization of High Temperature, Low Time Aqueous Extraction Process of Phenolic Compounds from Grape Byproducts. Food Nutr. Sci. 2014, 2014, 351–360. [Google Scholar] [CrossRef]
- Osaili, T.M.; Swaidan, A.; Al-Nabulsi, A.; Olaimat, A.; Neugart, S.; Engelhardt, L.; Esatbeyoglu, T.; Ayyash, M.; Ismail, L.C.; Al-Dabbas, M.M.; et al. Assessment of the Phenolic Profile and Biological Activities of Aqueous Date Seed Extracts: A Comparative Analysis. Appl. Food Res. 2024, 4, 100493. [Google Scholar] [CrossRef]
- Cheaib, D.; El Darra, N.; Rajha, H.N.; El-Ghazzawi, I.; Mouneimne, Y.; Jammoul, A.; Maroun, R.G.; Louka, N. Study of the Selectivity and Bioactivity of Polyphenols Using Infrared Assisted Extraction from Apricot Pomace Compared to Conventional Methods. Antioxidants 2018, 7, 174. [Google Scholar] [CrossRef]
- El Kantar, S.; Rajha, H.N.; Boussetta, N.; Vorobiev, E.; Maroun, R.G.; Louka, N. Green Extraction of Polyphenols from Grapefruit Peels Using High Voltage Electrical Discharges, Deep Eutectic Solvents and Aqueous Glycerol. Food Chem. 2019, 295, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Rajha, H.N.; Abi-Khattar, A.M.; El Kantar, S.; Boussetta, N.; Lebovka, N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Comparison of Aqueous Extraction Efficiency and Biological Activities of Polyphenols from Pomegranate Peels Assisted by Infrared, Ultrasound, Pulsed Electric Fields and High-Voltage Electrical Discharges. Innov. Food Sci. Emerg. Technol. 2019, 58, 102212. [Google Scholar] [CrossRef]
- Zhao, C.N.; Tang, G.Y.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Liu, Q.; Mao, Q.Q.; Shang, A.; Li, H.B. Phenolic Profiles and Antioxidant Activities of 30 Tea Infusions from Green, Black, Oolong, White, Yellow and Dark Teas. Antioxidants 2019, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Muflihah, Y.M.; Gollavelli, G.; Ling, Y.C. Correlation Study of Antioxidant Activity with Phenolic and Flavonoid Compounds in 12 Indonesian Indigenous Herbs. Antioxidants 2021, 10, 1530. [Google Scholar] [CrossRef] [PubMed]
- Najafabad, A.M.; Jamei, R. Free Radical Scavenging Capacity and Antioxidant Activity of Methanolic and Ethanolic Extracts of Plum (Prunus domestica L.) in Both Fresh and Dried Samples. Avicenna J. Phytomed. 2014, 4, 343. [Google Scholar]
- Turkmen, N.; Velioglu, Y.S.; Sari, F.; Polat, G. Effect of Extraction Conditions on Measured Total Polyphenol Contents and Antioxidant and Antibacterial Activities of Black Tea. Molecules 2007, 12, 484–496. [Google Scholar] [CrossRef]
- Abdeltaif, S.A.; Sirelkhatim, K.A.; Hassan, A.B. Estimation of Phenolic and Flavonoid Compounds and Antioxidant Activity of Spent Coffee and Black Tea (Processing) Waste for Potential Recovery and Reuse in Sudan. Recycling 2018, 3, 27. [Google Scholar] [CrossRef]
- Samuel, A.O.; Huang, B.T.; Chen, Y.; Guo, F.X.; Yang, D.D.; Jin, J.Q. Antioxidant and Antibacterial Insights into the Leaves, Leaf Tea and Medicinal Roots from Astragalus membranaceus (Fisch.) Bge. Sci. Rep. 2021, 11, 19625. [Google Scholar] [CrossRef]
- Dahiya, P.; Purkayastha, S. Phytochemical Screening and Antimicrobial Activity of Some Medicinal Plants Against Multi-Drug Resistant Bacteria from Clinical Isolates. Indian J. Pharm. Sci. 2012, 74, 443. [Google Scholar] [CrossRef]
- Hemeg, H.A.; Moussa, I.M.; Ibrahim, S.; Dawoud, T.M.; Alhaji, J.H.; Mubarak, A.S.; Kabli, S.A.; Alsubki, R.A.; Tawfik, A.M.; Marouf, S.A. Antimicrobial Effect of Different Herbal Plant Extracts against Different Microbial Population. Saudi J. Biol. Sci. 2020, 27, 3221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Meredith, T.C.; Kahne, D. On the Essentiality of Lipopolysaccharide to Gram-Negative Bacteria. Curr. Opin. Microbiol. 2013, 16, 779. [Google Scholar] [CrossRef] [PubMed]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Renard, T.; Rollan, S.; Taillandier, P. Impact of Fermentation Conditions on the Production of Bioactive Compounds with Anticancer, Anti-Inflammatory and Antioxidant Properties in Kombucha Tea Extracts. Process Biochem. 2019, 83, 44–54. [Google Scholar] [CrossRef]
- Espinosa-Pardo, F.A.; Nakajima, V.M.; Macedo, G.A.; Macedo, J.A.; Martínez, J. Extraction of Phenolic Compounds from Dry and Fermented Orange Pomace Using Supercritical CO2 and Cosolvents. Food Bioprod. Process. 2017, 101, 1–10. [Google Scholar] [CrossRef]
- Petkovsek, M.M.; Slatnar, A.; Stampar, F.; Veberic, R. The Influence of Organic/Integrated Production on the Content of Phenolic Compounds in Apple Leaves and Fruits in Four Different Varieties over a 2-Year Period. J. Sci. Food Agric. 2010, 90, 2366–2378. [Google Scholar] [CrossRef] [PubMed]
Run | Variables [Coded Values] | Responses | |||||
---|---|---|---|---|---|---|---|
Temperature (°C) | Time (min) | E/W Ratio (%) | SBT | SGT | |||
TPC (mg GAE/g DM) | DPPH (%) | TPC (mg GAE/g DM) | DPPH (%) | ||||
1 | 40 [−1] | 30 [−1] | 30 [−1] | 160 | 17.4 | 120 | 29.1 |
2 | 80 [+1] | 30 [−1] | 30 [−1] | 274 | 14.5 | 164 | 41 |
3 | 40 [−1] | 100 [+1] | 30 [−1] | 151 | 8.7 | 149 | 35.9 |
4 | 80 [+1] | 100 [+1] | 30 [−1] | 238 | 30.8 | 266 | 47.9 |
5 | 40 [−1] | 30 [−1] | 70 [+1] | 173 | 20.4 | 163 | 36.2 |
6 | 80 [+1] | 30 [−1] | 70 [+1] | 281 | 24.8 | 219 | 50 |
7 | 40 [−1] | 100 [+1] | 70 [+1] | 199 | 29.8 | 113 | 34.1 |
8 | 80 [+1] | 100 [+1] | 70 [+1] | 363 | 50.4 | 283 | 54.8 |
9 | 26.3 [−α] | 65 [0] | 50 [0] | 153 | 14.9 | 176 | 42.1 |
10 | 93.6 [+α] | 65 [0] | 50 [0] | 405 | 48.9 | 435 | 77.2 |
11 | 60 [0] | 6.1 [−α] | 50 [0] | 155 | 17.2 | 113 | 32.9 |
12 | 60 [0] | 123.9 [+α] | 50 [0] | 296 | 38.9 | 282 | 60.7 |
13 | 60 [0] | 65 [0] | 16.3 [−α] | 295 | 12.7 | 237 | 59.9 |
14 | 60 [0] | 65 [0] | 83.6 [+α] | 227 | 22.1 | 281 | 43.7 |
15 | 60 [0] | 65 [0] | 50 [0] | 368 | 38.6 | 346 | 54 |
16 | 60 [0] | 65 [0] | 50 [0] | 380 | 39.3 | 284 | 60.5 |
17 | 60 [0] | 65 [0] | 50 [0] | 390 | 42.1 | 300 | 52.3 |
18 | 60 [0] | 65 [0] | 50 [0] | 319 | 44 | 288 | 59.5 |
19 | 60 [0] | 65 [0] | 50 [0] | 346 | 37.8 | 310 | 54.4 |
20 | 60 [0] | 65 [0] | 50 [0] | 340 | 38.9 | 293 | 60.9 |
Extract | Equations |
---|---|
SBT | TPC = −272 + 8 × T + 3.6 × t + 4.8 × E/W − 0.05 × T2 + 0.005 × T × t + 0.022 × T × E/W − 0.035 × t2 + 0.027 × t × E/W − 0.077 × E/W2 |
DPPH = −48 + 0.69 × T − 0.06 × t + 1.85 × E/W − 0.007 × T2 + 0.007 × T × t + 0.002 × T × E/W − 0.004 × t2 + 0.005 × t × E/W − 0.02 × E/W2 | |
SGT | TPC = −491 + 4.46 × T + 7.3 × t + 12.6 × E/W − 0.033 × T2 + 0.033 × T × t + 0.02 × T × E/W − 0.057 × t2 − 0.021 × t × E/W − 0.12 × E/W2 |
DPPH = −19.3 + 0.075 × T + 0.85 × t + 1.1 × E/W + 0.0017 × T2 + 0.001 × T × t + 0.003 × T × E/W − 0.005 × t2 − 0.002 × t × E/W − 0.012 × E/W2 |
Parameters | Optimum Conditions | |||
---|---|---|---|---|
SBT | SGT | |||
TPC | DPPH | TPC | DPPH | |
Temperature (°C) | 93.6 | 93.6 | 93.6 | 93.6 |
Time (min) | 79.9 | 123.9 | 82.1 | 80.8 |
E/W ratio (%) | 59.4 | 65 | 53.8 | 52.6 |
TPC predicted (mg GAE/g DM) | 404 | - | 452 | - |
DPPH predicted (%) | - | 60.8 | - | 78.3 |
Model’s R-squared | 86.4 | 94.9 | 84.4 | 70.2 |
Parameters | Multiple Optimization | |||
SBT | SGT | |||
Temperature (°C) | 93.6 | 93.6 | ||
Time (min) | 79.9 | 81.7 | ||
E/W ratio (%) | 59.4 | 53.2 | ||
TPC predicted (mg GAE/g DM) | 404 | 452 | ||
TPC observed (mg GAE/g DM) | 383 | 423 | ||
DPPH predicted (%) | 51.5 | 78.3 | ||
DPPH observed (%) | 50.2 | 76.4 |
Bacterial Strain | Zone of Inhibition (mm, Mean ± SD) | |
---|---|---|
SBT | SGT | |
Staphylococcus aureus | 10 ± 0.2 mm | 17 ± 0.1 mm |
Bacillus subtilis | 13 ± 0.4 mm | 14 ± 0.1 mm |
Phenolic Compound | Concentration (mg/L) | |
---|---|---|
SBT | SGT | |
Rutin | - | 42.73 ± 0.00 |
Caffeic acid | 13.02 ± 0.00 | 6.14 ± 0.00 |
Hydroxybenzoic acid | 360.7 ± 0.00 | - |
Ellagic acid | - | 7.80 ± 0.00 |
Chlorogenic acid | 2.79 ± 0.23 | - |
p-coumaric acid | 0.15 ± 0.01 | - |
Quercetin | 8.62 ± 0.10 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harfoush, A.; Swaidan, A.; Khazaal, S.; Salem Sokhn, E.; Grimi, N.; Debs, E.; Louka, N.; El Darra, N. From Spent Black and Green Tea to Potential Health Boosters: Optimization of Polyphenol Extraction and Assessment of Their Antioxidant and Antibacterial Activities. Antioxidants 2024, 13, 1588. https://doi.org/10.3390/antiox13121588
Harfoush A, Swaidan A, Khazaal S, Salem Sokhn E, Grimi N, Debs E, Louka N, El Darra N. From Spent Black and Green Tea to Potential Health Boosters: Optimization of Polyphenol Extraction and Assessment of Their Antioxidant and Antibacterial Activities. Antioxidants. 2024; 13(12):1588. https://doi.org/10.3390/antiox13121588
Chicago/Turabian StyleHarfoush, Ahlam, Aseel Swaidan, Salma Khazaal, Elie Salem Sokhn, Nabil Grimi, Espérance Debs, Nicolas Louka, and Nada El Darra. 2024. "From Spent Black and Green Tea to Potential Health Boosters: Optimization of Polyphenol Extraction and Assessment of Their Antioxidant and Antibacterial Activities" Antioxidants 13, no. 12: 1588. https://doi.org/10.3390/antiox13121588
APA StyleHarfoush, A., Swaidan, A., Khazaal, S., Salem Sokhn, E., Grimi, N., Debs, E., Louka, N., & El Darra, N. (2024). From Spent Black and Green Tea to Potential Health Boosters: Optimization of Polyphenol Extraction and Assessment of Their Antioxidant and Antibacterial Activities. Antioxidants, 13(12), 1588. https://doi.org/10.3390/antiox13121588