Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (568)

Search Parameters:
Keywords = Dynamic Mechanical Analysis (DMA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3705 KiB  
Article
Mechanical Properties and Modification Mechanism of Thermosetting Polyurethane-Modified Asphalt
by Wei Zhuang, Tingting Ding, Chuanqin Pang, Xuwang Jiao, Litao Geng and Min Sun
Coatings 2025, 15(8), 912; https://doi.org/10.3390/coatings15080912 (registering DOI) - 4 Aug 2025
Viewed by 11
Abstract
To study the mechanical properties and modification mechanism of thermosetting polyurethane (PU)-modified asphalt, the effects of polyurethane dosage on the workability of polyurethane-modified asphalt were analyzed by means of rotational viscosity tests. The mechanical properties of polyurethane-modified asphalt with different polyurethane dosages were [...] Read more.
To study the mechanical properties and modification mechanism of thermosetting polyurethane (PU)-modified asphalt, the effects of polyurethane dosage on the workability of polyurethane-modified asphalt were analyzed by means of rotational viscosity tests. The mechanical properties of polyurethane-modified asphalt with different polyurethane dosages were explored using tensile tests and dynamic mechanical analysis (DMA). In addition, the thermodynamic behavior and micromorphology of polyurethane-modified asphalt were also thoroughly investigated using the test results of differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The results showed that PU obtained the optimum workability when the polyurethane dose was 50%: at 120 min, its rotational viscosity was 1005 cp, which was lower than 2800 cp (40% PU) and 760 cp (60% PU). Additionally, the results of fracture elongation and fracture strength indicated that the PU-modified asphalt had good flexibility and strength. Compared with base asphalt, the tensile strength of 50% PU-modified asphalt increased by 509%, which was significantly higher than 157% (40% PU) and more balanced than 897% (60% PU) in terms of strength and flexibility. Added PU can significantly improve the elasticity of asphalt at high temperatures, while increasing the proportion of asphalt adhesive components, enhancing the deformation ability and temperature stability of asphalt. As the dose of PU increases, the interface between asphalt and PU blended more fully, and the surface became smoother. When the dose of PU was 50% or more, the interface between asphalt and PU was well integrated with a smooth and flat surface, forming a more uniform and stable cross-linked network structure. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

16 pages, 4320 KiB  
Article
Effect of Thermo-Oxidative, Ultraviolet and Ozone Aging on Mechanical Property Degradation of Carbon Black-Filled Rubber Materials
by Bo Zhou, Wensong Liu, Youjian Huang, Jun Luo and Boyuan Yin
Buildings 2025, 15(15), 2705; https://doi.org/10.3390/buildings15152705 - 31 Jul 2025
Viewed by 156
Abstract
Carbon black (CB)-filled rubber materials are extensively used in civil engineering seismic isolation. However, CB-filled rubber materials often experience mechanical property degradation because of exposure to environmental factors. To better understand the influences of thermo-oxidative, ultraviolet and ozone aging on mechanical property degradation, [...] Read more.
Carbon black (CB)-filled rubber materials are extensively used in civil engineering seismic isolation. However, CB-filled rubber materials often experience mechanical property degradation because of exposure to environmental factors. To better understand the influences of thermo-oxidative, ultraviolet and ozone aging on mechanical property degradation, uniaxial tension and dynamic mechanical analysis (DMA) tests were carried out. In the uniaxial tension tests, the stress strength and elongation decreased with an increase in aging time. In the DMA tests, the effective temperature ranges decreased by 3.4–14%. And the neo-Hookean model was applied to simulate the hyperelasticity of CB-filled rubber materials. The relationship between the elastic modulus (a constant of the neo-Hookean model) and aging time was established, which provided a qualitative relationship between crosslink density and aging time. In addition, the dispersion of the CB aggregate was investigated using an atomic force microscope (AFM). The results indicated that the mechanical property degradation might be closely related to the aggregate diameter. This paper establishes a bridge between the microstructure and mechanical properties of CB-filled rubber materials, which can improve the understanding of the mechanical property degradation mechanisms of rubber materials and the fabrication of rubber components. Full article
(This article belongs to the Special Issue Studies on the Durability of Building Composite Materials)
Show Figures

Figure 1

20 pages, 5297 KiB  
Article
The Validation and Discussion of a Comparative Method Based on Experiment to Determine the Effective Thickness of Composite Glass
by Dake Cao, Xiaogen Liu, Zhe Yang, Jiawei Huang, Ming Xu and Detian Wan
Buildings 2025, 15(14), 2542; https://doi.org/10.3390/buildings15142542 - 19 Jul 2025
Viewed by 240
Abstract
This study introduces and validates a comparative experiment-based method for determining the effective thickness of composite glass, including polymeric laminated glass (with polyvinyl butyral (PVB) and SentryGlas® (SGP) interlayers) and vacuum glazing. This method employs comparative four-point bending tests, defining effective thickness [...] Read more.
This study introduces and validates a comparative experiment-based method for determining the effective thickness of composite glass, including polymeric laminated glass (with polyvinyl butyral (PVB) and SentryGlas® (SGP) interlayers) and vacuum glazing. This method employs comparative four-point bending tests, defining effective thickness by equating the bending stress of a composite specimen to that of a reference monolithic glass specimen under identical loading and boundary conditions. Specimens with varying configurations (glass thicknesses of 5 mm, 6 mm and 8 mm) were tested using non-destructive four-point bending tests under a multi-stage loading protocol (100 N–1000 N). Strain rosettes measured maximum strains at each loading stage to calculate bending stress. Analysis of the bending stress state revealed that vacuum glazing and SGP laminated glass exhibit superior load-bearing capacity compared to PVB laminated glass. The proposed method successfully determined the effective thickness for both laminated glass and vacuum glazing. Furthermore, results demonstrate that employing a 12 mm monolithic reference glass provides the highest accuracy for effective thickness determination. Theoretical bending stress calculations using the effective thickness derived from the 12 mm reference glass showed less than 10% deviation from experimental values. Conversely, compared to established standards and empirical formulas, the proposed method offers superior accuracy, particularly for vacuum glazing. Additionally, the mechanical properties of the viscoelastic interlayers (PVB and SGP) were investigated through static tensile tests and dynamic thermomechanical analysis (DMA). Distinct tensile behaviors and differing time-dependent shear transfer capacities between the two interlayer materials are found out. Key factors influencing the reliability of the method are also discussed and analyzed. This study provides a universally practical and applicable solution for accurate and effective thickness estimation in composite glass design. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 2841 KiB  
Article
Next-Generation Sustainable Composites with Flax Fibre and Biobased Vitrimer Epoxy Polymer Matrix
by Hoang Thanh Tuyen Tran, Johannes Baur, Racim Radjef, Mostafa Nikzad, Robert Bjekovic, Stefan Carosella, Peter Middendorf and Bronwyn Fox
Polymers 2025, 17(14), 1891; https://doi.org/10.3390/polym17141891 - 8 Jul 2025
Viewed by 509
Abstract
This work presents the development of two vanillin-based vitrimer epoxy flax fibre-reinforced composites, with both the VER1-1-FFRC (a vitrimer-to-epoxy ratio of 1:1) and VER1-2-FFRC (a vitrimer-to-epoxy ratio of 1:2), via a vacuum-assisted resin infusion. The thermal and mechanical properties of the resulting vitrimer [...] Read more.
This work presents the development of two vanillin-based vitrimer epoxy flax fibre-reinforced composites, with both the VER1-1-FFRC (a vitrimer-to-epoxy ratio of 1:1) and VER1-2-FFRC (a vitrimer-to-epoxy ratio of 1:2), via a vacuum-assisted resin infusion. The thermal and mechanical properties of the resulting vitrimer epoxy flax composites were characterised using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and mechanical four-point bending tests, alongside studies of solvent resistance and chemical recyclability. Both the VER1-1-FFRC (degradation temperature Tdeg of 377.0 °C) and VER1-2-FFRC (Tdeg of 395.9 °C) exhibited relatively high thermal stability, which is comparable to the reference ER-FFRC (Tdeg of 396.7 °C). The VER1-1-FFRC, VER1-2-FFRC, and ER-FFRC demonstrated glass transition temperatures Tg of 54.1 °C, 68.8 °C, and 83.4 °C, respectively. The low Tg of the vitrimer composite is due to the low crosslink density in the vitrimer epoxy resin. Particularly, the crosslinked density of the VER1-1-FFRC was measured to be 319.5 mol·m−3, which is lower than that obtained from the VER1-2-FFRC (434.7 mol·m−3) and ER-FFRC (442.9 mol·m−3). Furthermore, the mechanical properties of these composites are also affected by the low crosslink density. Indeed, the flexural strength of the VER1-1-FFRC was found to be 76.7 MPa, which was significantly lower than the VER1-2-FFRC (116.2 MPa) and the ER-FFRC (138.3 MPa). Despite their lower thermal and mechanical performance, these vitrimer composites offer promising recyclability and contribute to advancing sustainable composite materials. Full article
Show Figures

Graphical abstract

22 pages, 3243 KiB  
Article
Development of a Continuous Extrusion Process for Alginate Biopolymer Films for Sustainable Applications
by Zahra Eslami, Saïd Elkoun, Miraidin Mirzapour and Mathieu Robert
Polymers 2025, 17(13), 1818; https://doi.org/10.3390/polym17131818 - 29 Jun 2025
Viewed by 707
Abstract
This study presents a novel method for producing extrudable alginate-based films using continuous thermo-mechanical mixing, providing a scalable alternative to conventional solvent-casting techniques. The effects of glycerol concentration (30–50 wt%) and processing temperature (110–120 °C) on the films’ thermal, mechanical, and structural properties [...] Read more.
This study presents a novel method for producing extrudable alginate-based films using continuous thermo-mechanical mixing, providing a scalable alternative to conventional solvent-casting techniques. The effects of glycerol concentration (30–50 wt%) and processing temperature (110–120 °C) on the films’ thermal, mechanical, and structural properties were systematically investigated. Structural characterization was performed using 1H NMR and FT-IR, and thermal transitions were analyzed via DSC (Differential Scanning Calorimetry) and DMA (Dynamic Mechanical Analysis). The glass transition temperature (Tg) of the alginate/glycerol/water system was modeled using the Gordon–Taylor equation. Glycerol incorporation significantly reduced Tg—by up to 76 °C with 40 wt% glycerol—and enhanced ductility and toughness, reaching 3.26 MJ/m3 at the optimal level. The influence of processing temperature was found to depend on plasticizer content: at lower glycerol levels, elevated temperatures decreased Tg and elongation at break, likely due to thermal degradation. However, films with higher glycerol content retained stable mechanical and thermal behavior across both temperature profiles. This work is among the first to explore how processing temperature affects extruded, plasticized pure alginate films. The findings provide key insights into the formulation and scalable production of bio-based packaging materials, highlighting the importance of optimizing both plasticizer concentration and processing parameters. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Polymer Nanocomposites)
Show Figures

Graphical abstract

22 pages, 4058 KiB  
Article
Thermal, Mechanical, Morphological, and Piezoresistive Properties of Poly(ethylene-co-methacrylic acid) (EMAA) with Carbon Nanotubes and Expanded Graphite
by Francesca Aliberti, Luigi Vertuccio, Raffaele Longo, Andrea Sorrentino, Roberto Pantani, Liberata Guadagno and Marialuigia Raimondo
Nanomaterials 2025, 15(13), 994; https://doi.org/10.3390/nano15130994 - 26 Jun 2025
Viewed by 373
Abstract
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) [...] Read more.
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) were added to the EMAA thermoplastic matrix, and the relative electrical percolation thresholds (EPTs) were determined. The effect of filler concentration on thermo-oxidative degradation and the EMAA crystallinity was investigated via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. Dynamic mechanical analysis (DMA) demonstrated that both fillers enhance the Young’s and storage moduli, as well as the glass transition temperature, with a greater improvement for the bidimensional nanofiller, most likely due to the cumulative effect of more extensive EG-matrix interactions. In tensile tests, a very relevant difference was detected in the Gauge Factor (G.F.) and the elongation at break of the two typologies of nanocomposites. The G.F. of EMAA 10% CNT and EMAA 15% EG were found to be 0.5 ± 0.08 and 165 ± 14, respectively, while elongation at break was about 68% for EMAA 10% CNT and 8% for EMAA 15% EG. Emission Scanning Electron Microscopy (FESEM) and Tunneling Atomic Force Microscopy (TUNA) have contributed to explaining the differences between EG- and CNT-based nanocomposites from a morphological point of view, underlying the pivotal role of the filler aspect ratio and its structural features in determining different mechanical and piezoresistive performance. The comprehensive analysis of EMAA-EG and EMAA-CNT nanocomposites provides a guide for selecting the best self-sensing system for the specific application. More specifically, EMAA-CNT nanocomposites with high elongation at break and lower sensitivity to small strains are suitable for movement sensors in the soft robotic field, where high deformation has to be detected. On the other hand, the high sensitivity at a low strain of EMAA-EG systems makes them suitable for integrated sensors in more rigid composite structures, such as aeronautical and automotive components or wind turbines. Full article
(This article belongs to the Special Issue Functional and Structural Properties of Polymeric Nanocomposites)
Show Figures

Graphical abstract

20 pages, 1903 KiB  
Article
Controlled Release of Hydrophilic Active Agent from Textile Using Crosslinked Polyvinyl Alcohol Coatings
by Limor Mizrahi, Rotem Kelman, Efrat Shtriker, David Meridor, Dror Cohen, Meital Portugal-Cohen and Elizabeth Amir
J. Funct. Biomater. 2025, 16(6), 216; https://doi.org/10.3390/jfb16060216 - 10 Jun 2025
Viewed by 865
Abstract
Functional fabrics embedded with active materials that can be released in a controlled manner upon external triggering have been explored for biomedical and cosmetic applications. This study introduces a method for the fabrication of nonwoven fabrics coated with crosslinked polyvinyl alcohol (PVA) for [...] Read more.
Functional fabrics embedded with active materials that can be released in a controlled manner upon external triggering have been explored for biomedical and cosmetic applications. This study introduces a method for the fabrication of nonwoven fabrics coated with crosslinked polyvinyl alcohol (PVA) for in situ encapsulation and controlled release of hydrophilic active agent, allantoin. Two types of crosslinked coatings were examined using citric acid (CA) or polyacrylic acid (PAA) as crosslinkers. Based on gel content, differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) analyses PVA:CA coatings exhibited a higher crosslinking density compared to PVA:PAA systems. Swelling behavior was measured at 62% after 30 min for PVA:PAA 7:3 films and 36% after 60 min for PVA:CA 7:3 crosslinked films. The release of allantoin from the coated fabrics was influenced by the coating thickness (250–330 µm), the formulation viscosity (8–250 cP), allantoin content (1.2–4.2 mg) and the molecular weight between crosslinks (MC) 1,000,000–494 g/mol. PVA:CA 7:3 coating allowed the controlled release of 97% allantoin over 8 h, whereas PVA:PAA 7:3 coating exhibited a more prolonged release profile, with 96% of allantoin released over 20 h. Kinetic analyses of the release profiles revealed a good agreement with zero-order release. Full article
(This article belongs to the Special Issue Spotlight on Biomedical Coating Materials)
Show Figures

Graphical abstract

17 pages, 5707 KiB  
Article
Investigation of Thermomechanical Properties of Hollow Glass Microballoon-Filled Composite Materials Developed by Additive Manufacturing with Machine Learning Validation
by Md Sakhawat Hossain, Sazid Noor Rabi, Sakib Mohammad, Kaden Cook, Farhan Chowdhury and Sabrina Nilufar
Polymers 2025, 17(11), 1495; https://doi.org/10.3390/polym17111495 - 28 May 2025
Viewed by 1073
Abstract
Stereolithography (SLA) is a popular additive manufacturing (AM) method frequently used in research and various industrial sectors. The acrylate resin used in this research is renowned for its flexibility and durability, enabling the creation of flawless 3D-printed parts with exceptional mechanical properties. This [...] Read more.
Stereolithography (SLA) is a popular additive manufacturing (AM) method frequently used in research and various industrial sectors. The acrylate resin used in this research is renowned for its flexibility and durability, enabling the creation of flawless 3D-printed parts with exceptional mechanical properties. This study aims to enhance the thermomechanical properties of 3D-printed hollow glass microballoon (HGM)-filled composite materials by adding minimal HGM into the acrylate resin. We investigated the material properties through uniaxial compression tests, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). To validate the results, a numerical investigation and a machine learning (ML) approach were carried out and compared with the experimental results. Adding a small number of microballoons increases compressive strength and stiffness. The viscoelastic behavior of the samples also provides an estimate of resilience at higher temperatures, considering the addition of filler material into the resin. Our study shows that the addition of 0.04% of HGM increased compressive strength by around 99.30% compared to the neat sample, while the stiffness increased by around 31.42% compared to the neat sample at 0.05% of HGM. It can also be estimated that the suitable range of HGM addition for the resin we used exists between 0.04% and 0.05%, where the materials achieve their maximum strength and stiffness. In addition, a predictive machine learning (ML) model, namely Random Forest Regressor (RFR), shows low mean squared error (MSE), mean absolute error (MAE), and excellent R2 scores, demonstrating the goodness of the model’s performance. This modern approach can guide us to selecting a suitable filler percentage for the photopolymer resin for 3D printing and making it applicable to different engineering prospects. Full article
(This article belongs to the Special Issue 3D Printing of Polymer Composite Materials)
Show Figures

Figure 1

17 pages, 4659 KiB  
Article
Effects of Gamma Irradiation on Solid Propellant Conventional and UV-Cured Binders
by Stefania Carlotti, Rocco Carcione, Beatrice D’Orsi, Tommaso Lusetti, Alessandro Finazzi, Jessica Scifo, Ilaria Di Sarcina, Matteo Ferrari, Alessia Cemmi and Filippo Maggi
Aerospace 2025, 12(6), 471; https://doi.org/10.3390/aerospace12060471 - 27 May 2025
Viewed by 487
Abstract
Ionizing radiations are responsible for bond scission, radical formation, and oxidative degradation of polymer matrices. This study focuses on the effects of gamma irradiation on solid propellant binders, targeting a comprehensive chemical and mechanical characterization of different formulations. Samples were produced either by [...] Read more.
Ionizing radiations are responsible for bond scission, radical formation, and oxidative degradation of polymer matrices. This study focuses on the effects of gamma irradiation on solid propellant binders, targeting a comprehensive chemical and mechanical characterization of different formulations. Samples were produced either by conventional methods based on hydroxyl-terminated polybutadiene and standard polyaddition reaction using isocyanates, or innovative approaches involving UV-driven radical curing. The samples were irradiated for comparison and to study their evolution as a function of three absorbed doses (25, 45, 130 kGy) for preliminary characterization studies, using a 60-Co gamma source. Samples were irradiated in air at uncontrolled room temperature. The coupling of spectroscopy techniques (Fourier transform infrared—FTIR, Raman and electron paramagnetic resonance—EPR) and dynamic mechanical analysis (DMA) highlighted the key role of antioxidant agents in tailoring mechanical changes in the binder phase. The absence of antioxidants enhances radical formation, oxidation, and cross-linking. These processes lead to progressively increased rigidity and reduced flexibility as a function of the absorbed dose. Complex interactions between photocured components largely influence radical stabilization and material degradation. These findings provide valuable insights for designing novel radiation-resistant binders, enabling the development of solid propellants tailored for reliable, long-term permanence in space, and advancing the knowledge on the applicability of 3D-printed propellants. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

20 pages, 1483 KiB  
Article
The Effect of Synthesis Conditions and Chemical Structure of Thermoplastic Polyimides on Their Thermomechanical Properties and Short-Term Electrical Strength
by Victor M. Nazarychev, Andrey A. Pavlov, Almaz M. Kamalov, Margarita E. Borisova, Andrei L. Didenko, Elena M. Ivan’kova, Vadim E. Kraft, Gleb V. Vaganov, Alexandra L. Nikolaeva, Anna S. Ivanova, Victor K. Lavrentiev, Elena N. Popova, Ivan V. Abalov, Aleksey N. Blokhin, Alexander N. Bugrov and Vladislav V. Kudryavtsev
Polymers 2025, 17(10), 1385; https://doi.org/10.3390/polym17101385 - 18 May 2025
Viewed by 628
Abstract
Polyimides (PIs) are materials that are resistant to high temperatures and crucial for the manufacturing of films, fibers, coatings, and 3D-printed items. PIs are widely used as electrically insulating materials in electronics and electrical engineering. This study investigated how the chemical structure (i.e., [...] Read more.
Polyimides (PIs) are materials that are resistant to high temperatures and crucial for the manufacturing of films, fibers, coatings, and 3D-printed items. PIs are widely used as electrically insulating materials in electronics and electrical engineering. This study investigated how the chemical structure (i.e., choice of initial monomers), the synthesis conditions of the prepolymer (i.e., choice of amide solvent), and the conditions for forming polyimide films (i.e., final curing temperature) affect the thermophysical properties and short-term electrical strength of obtained polyimide films of different chemical structures. In this work, we varied the compositions of the dianhydrides used for synthesizing polyamic acids—pyromellitic acid (PMDA), tetracarboxylic acid diphenyl oxide (ODPA) and 1,3-bis(3′,4-dicarboxyphenoxy)benzene acid (R)—with a constant diamine: 4,4′-oxydianiline (ODA). Additionally, we varied the amide solvents employed: N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), and N-methyl-2-pyrrolidone (NMP). This study represents the first investigation into how the choice of solvent in the synthesis of thermoplastic polyimide prepolymers affects their short-term electrical strength. The molecular weights of the polyamic acids were determined using gel permeation chromatography (GPC). The deformation and strength characteristics of the investigated films were also assessed. The thermophysical properties of the polyimides were evaluated via dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). X-ray diffraction analysis and infrared spectroscopy (IR) were conducted on the examined film samples. The short-term electrical strength was also evaluated. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

14 pages, 7632 KiB  
Communication
A Dynamic Mechanical Analysis Device for In Vivo Material Characterization of Plantar Soft Tissue
by Longyan Wu, Ran Huang, Jun Zhu and Xin Ma
Technologies 2025, 13(5), 191; https://doi.org/10.3390/technologies13050191 - 9 May 2025
Cited by 1 | Viewed by 488
Abstract
Understanding the viscoelastic properties of plantar soft tissue under dynamic conditions is crucial for assessing foot health and preventing injuries. In this work, we document an in vivo device, employing the principles of dynamic mechanical analysis (DMA), which, for the first time, enables [...] Read more.
Understanding the viscoelastic properties of plantar soft tissue under dynamic conditions is crucial for assessing foot health and preventing injuries. In this work, we document an in vivo device, employing the principles of dynamic mechanical analysis (DMA), which, for the first time, enables in situ, real-time multidimensional mechanical characterization of plantar soft tissues. This device overcomes the limitations of conventional ex vivo and single-DOF testing methods by integrating three sinusoidal mechanism-based multi-DOF dynamic testing modules, providing measurements of tensile, compressive, shear, and torsional properties in a physiological setting. The innovative modular design integrates advanced sensors for precise force and displacement detection, allowing for comprehensive assessment under cyclic loading conditions. Validation tests on volunteers demonstrate the device’s reliability and highlight the significant viscoelastic characteristics of the plantar soft tissue. The example dataset was analyzed to calculate the storage modulus, loss modulus, loss factor, and energy dissipation. All design files, CAD models, and assembly instructions are made available as open-source resources, facilitating replication and further research. This work paves the way for enhanced diagnostics and personalized treatments in orthopedic and rehabilitative medicine. Full article
Show Figures

Figure 1

19 pages, 1866 KiB  
Article
Mechanical and Thermal Performance of In-Situ Synthesized PDMS-SiO2 Composite as Electrical Insulating Coatings
by Aldo Cordoba, Rossana Faride Vargas-Coronado, Rodrigo Velázquez-Castillo, Juan Valerio Cauich-Rodríguez and Karen Esquivel
Molecules 2025, 30(10), 2107; https://doi.org/10.3390/molecules30102107 - 9 May 2025
Viewed by 577
Abstract
Polydimethylsiloxane (PDMS) has been extensively employed in electrical insulation applications owing to its excellent thermal stability, hydrophobicity, and dielectric properties. However, its inherent mechanical limitations require structural reinforcement to enhance its performance under more demanding operational conditions. In this study, the mechanical, thermal, [...] Read more.
Polydimethylsiloxane (PDMS) has been extensively employed in electrical insulation applications owing to its excellent thermal stability, hydrophobicity, and dielectric properties. However, its inherent mechanical limitations require structural reinforcement to enhance its performance under more demanding operational conditions. In this study, the mechanical, thermal, and surface properties of PDMS-SiO2 nanocomposites synthesized via in situ sol–gel process was systematically investigated. The influence of different SiO2 nanoparticle concentrations (5, 10, and 15 wt%), sol–gel catalyst type (acidic and alkaline), and tetraethyl orthosilicate (TEOS) crosslinking agent ratios (15:1, 10:1, 5:1) was evaluated. Tensile mechanical testing, dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA) revealed that the incorporation of SiO2 notably improved both the mechanical strength and thermal stability of the composites. The 5-15b and 10-15a composites exhibited the highest tensile stress and viscoelastic modulus among all samples. Furthermore, the composites retained key functional properties, including hydrophobicity, high volumetric electrical resistivity (~1011 Ω·cm), and strong adhesion. These findings confirm the potential of in situ PDMS-SiO2 nanocomposites for use as high-performance insulating coatings in advanced electrical applications. Full article
Show Figures

Graphical abstract

20 pages, 5413 KiB  
Article
Investigation of the Mechanical, Fatigue, and Creep Properties of PA6/GO Nanocomposites Manufactured by a Combination of Melt and Solvent Mixing
by Mehmet Palabiyik, Serhat Aydin and Oguzkan Senturk
Polymers 2025, 17(9), 1186; https://doi.org/10.3390/polym17091186 - 27 Apr 2025
Viewed by 824
Abstract
This study investigated the mechanical, fatigue, and creep properties of polyamide 6 (PA6)/graphene oxide (GO) nanocomposites manufactured by a combination of melt and solvent mixing. Results showed that increasing GO content improved tensile and bending properties and reduced temperature dependence. The tensile modulus [...] Read more.
This study investigated the mechanical, fatigue, and creep properties of polyamide 6 (PA6)/graphene oxide (GO) nanocomposites manufactured by a combination of melt and solvent mixing. Results showed that increasing GO content improved tensile and bending properties and reduced temperature dependence. The tensile modulus and strength of PA6/GO nanocomposite containing 1 wt.% GO (PA6 + 1GO) were measured with an increment of 33% and 37%, respectively, compared with neat PA6. The reduction in tensile strength occurred gradually with the increasing amount of GO. As the temperature increased from 25 °C to 70 °C, the tensile strength of PA6 and PA6 + 1GO decreased by 20% and 4%, respectively. Fatigue tests demonstrated that the rigid GO particles hindered the deformation capability of the matrix and facilitated crack propagation. While the PA6 reached 105 cycles at 60% of its tensile strength, PA6 + 1GO was able to reach 105 cycles at 35% of its tensile strength. Dynamic mechanical analysis (DMA) revealed that GO enhanced both storage modulus and glass transition temperature (Tg). Creep tests demonstrated better deformation resistance under stress in PA6/GO nanocomposites compared to pure PA6. After a 10 h creep test, the decrease in creep strain was observed as 52.4% for PA6 + 1GO. Full article
Show Figures

Figure 1

21 pages, 8011 KiB  
Article
Dynamic Mechanical Analysis and Optimization of Vibration Damping in Epoxy-Based Nano Cement Composite Dampers for Sustainable Structures
by Sandhya R. Jalgar, Anand M. Hunashyal, U. Satisha Prabhu, B. M. Gurumurthy, Pavan Hiremath and Nithesh Naik
J. Compos. Sci. 2025, 9(5), 202; https://doi.org/10.3390/jcs9050202 - 24 Apr 2025
Viewed by 2711
Abstract
Traditional cement-based materials often fall short in delivering both high mechanical strength and effective vibration damping. Although nano-modified composites have shown promise, a gap remains in understanding the interaction between nanofillers and polymeric phases in epoxy-based cement systems. This study investigates the development [...] Read more.
Traditional cement-based materials often fall short in delivering both high mechanical strength and effective vibration damping. Although nano-modified composites have shown promise, a gap remains in understanding the interaction between nanofillers and polymeric phases in epoxy-based cement systems. This study investigates the development of epoxy-based cement composite dampers with enhanced mechanical strength and vibration damping for structural applications. The composite integrates nano-SiO2 and graphene to improve the energy dissipation, structural integrity, and long-term performance. A comprehensive experimental and mathematical modeling approach was employed to evaluate the storage modulus, loss modulus, and damping factor (tan δ) using Dynamic Mechanical Analysis (DMA). The results indicated that incorporating 2.0 wt.% nano-SiO2 and 0.05 wt.% graphene leads to an optimum increase in both mechanical and damping properties, achieving a 92% enhancement in compressive strength and a 38% improvement in damping factor compared to conventional cement composites. Beyond this optimal composition, agglomeration effects reduce the reinforcement efficiency. Microstructural investigations using TEM and EDX confirmed the homogeneous dispersion of the nanofillers, leading to enhanced matrix densification and improved interfacial bonding. A validated mathematical model was proposed to predict viscoelastic behavior, correlating well with experimental findings. These results highlight the potential of epoxy-based cement composites for high-performance damping applications in sustainable infrastructures. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

20 pages, 6847 KiB  
Article
Thermodynamic and Technological Compatibility of Polyvinyl Chloride, Thermoplastic Polyurethane, and Bio-Plasticizer Blends
by Yitbarek Firew Minale, Ivan Gajdoš, Pavol Štefčák, Ľudmila Dulebová, Tomasz Jachowicz, Tamás Szabó, Andrea Ádámné Major and Kálmán Marossy
Polymers 2025, 17(9), 1149; https://doi.org/10.3390/polym17091149 - 23 Apr 2025
Viewed by 729
Abstract
Polymer blending enhances material properties by combining different polymers, which requires careful consideration of both thermodynamic and technological compatibility. This study investigates the compatibility of polyvinyl chloride (PVC), thermoplastic polyurethane (TPU), and a bio-plasticizer in blends produced via roll milling at various mixing [...] Read more.
Polymer blending enhances material properties by combining different polymers, which requires careful consideration of both thermodynamic and technological compatibility. This study investigates the compatibility of polyvinyl chloride (PVC), thermoplastic polyurethane (TPU), and a bio-plasticizer in blends produced via roll milling at various mixing ratios. Compatibility and morphology were analyzed using thermally stimulated discharge (TSD), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM), while mechanical and thermal properties were assessed by mechanical testing and thermogravimetric analysis (TGA). The PVC/TPU (100/30) blend exhibited superior phase compatibility over PVC/TPU (100/50), as indicated by a single relaxation peak in TSD and DMA, along with a more homogeneous morphology and enhanced tensile properties. The PVC/TPU/bio-plasticizer (100/20/50) blend showed a well-balanced mechanical performance and improved phase homogeneity. The TSD peak maxima trends for the TPU/bio-plasticizer blend highlighted the bio-plasticizer’s dual role in enhancing flexibility at low concentrations while restricting molecular mobility at higher concentrations. TGA revealed TPU’s positive effect on PVC’s degradation profile, while the bio-plasticizer reduced thermal stability. These findings demonstrate that blending PVC, TPU, and bio-plasticizer creates compatible materials with enhanced and diverse properties, making them suitable for industrial applications. Full article
Show Figures

Figure 1

Back to TopTop