Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,251)

Search Parameters:
Keywords = DnaG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1241 KiB  
Review
PCOS and the Genome: Is the Genetic Puzzle Still Worth Solving?
by Mario Palumbo, Luigi Della Corte, Dario Colacurci, Mario Ascione, Giuseppe D’Angelo, Giorgio Maria Baldini, Pierluigi Giampaolino and Giuseppe Bifulco
Biomedicines 2025, 13(8), 1912; https://doi.org/10.3390/biomedicines13081912 - 5 Aug 2025
Abstract
Background: Polycystic ovary syndrome (PCOS) is a complex and multifactorial disorder affecting reproductive, endocrine, and metabolic functions in women of reproductive age. While environmental and lifestyle factors play a role, increasing evidence highlights the contribution of genetic and epigenetic mechanisms to its pathogenesis. [...] Read more.
Background: Polycystic ovary syndrome (PCOS) is a complex and multifactorial disorder affecting reproductive, endocrine, and metabolic functions in women of reproductive age. While environmental and lifestyle factors play a role, increasing evidence highlights the contribution of genetic and epigenetic mechanisms to its pathogenesis. Objective: This narrative review aims to provide an updated overview of the current evidence regarding the role of genetic variants, gene expression patterns, and epigenetic modifications in the etiopathogenesis of PCOS, with a focus on their impact on ovarian function, fertility, and systemic alterations. Methods: A comprehensive search was conducted across MEDLINE, EMBASE, PubMed, Web of Science, and the Cochrane Library using MeSH terms including “PCOS”, “Genes involved in PCOS”, and “Etiopathogenesis of PCOS” from January 2015 to June 2025. The selection process followed the SANRA quality criteria for narrative reviews. Seventeen studies published in English were included, focusing on original data regarding gene expression, polymorphisms, and epigenetic changes associated with PCOS. Results: The studies analyzed revealed a wide array of molecular alterations in PCOS, including the dysregulation of SIRT and estrogen receptor genes, altered transcriptome profiles in cumulus cells, and the involvement of long non-coding RNAs and circular RNAs in granulosa cell function and endometrial receptivity. Epigenetic mechanisms such as the DNA methylation of TGF-β1 and inflammation-related signaling pathways (e.g., TLR4/NF-κB/NLRP3) were also implicated. Some genetic variants—particularly in DENND1A, THADA, and MTNR1B—exhibit signs of positive evolutionary selection, suggesting possible ancestral adaptive roles. Conclusions: PCOS is increasingly recognized as a syndrome with a strong genetic and epigenetic background. The identification of specific molecular signatures holds promise for the development of personalized diagnostic markers and therapeutic targets. Future research should focus on large-scale genomic studies and functional validation to better understand gene–environment interactions and their influence on phenotypic variability in PCOS. Full article
Show Figures

Figure 1

17 pages, 3095 KiB  
Article
Haplotypes, Genotypes, and DNA Methylation Levels of Neuromedin U Gene Are Associated with Cardio-Metabolic Parameters: Results from the Moli-sani Study
by Fabrizia Noro, Annalisa Marotta, Simona Costanzo, Benedetta Izzi, Alessandro Gialluisi, Amalia De Curtis, Antonietta Pepe, Sarah Grossi, Augusto Di Castelnuovo, Chiara Cerletti, Maria Benedetta Donati, Giovanni de Gaetano, Francesco Gianfagna and Licia Iacoviello
Biomedicines 2025, 13(8), 1906; https://doi.org/10.3390/biomedicines13081906 - 5 Aug 2025
Abstract
Background/Objectives: Neuromedin U (NMU) is a highly conserved gene encoding a neuropeptide involved in the regulation of feeding behavior and energy homeostasis. We aimed to analyze the association between NMU genetic and epigenetic variations and cardio-metabolic parameters in an Italian population to identify [...] Read more.
Background/Objectives: Neuromedin U (NMU) is a highly conserved gene encoding a neuropeptide involved in the regulation of feeding behavior and energy homeostasis. We aimed to analyze the association between NMU genetic and epigenetic variations and cardio-metabolic parameters in an Italian population to identify the role of these variants in cardio-metabolic risk. Methods: A total of 4028 subjects were randomly selected from the Moli-sani study cohort. NMU haplotypes were estimated using seven SNPs located in the gene body and in the promoter region; DNA methylation levels in the promoter region, previously associated with lipid-related variables in the same population, were also used. Results: Among the haplotypes inferred, the haplotype carrying the highest number of minor variants (frequency 16.6%), when compared with the most frequent haplotype, was positively associated with insulin levels, HOMA-IR, and diastolic blood pressure, and negatively with HDL-cholesterol. The multivariable analysis that considered methylation levels along with their interactions with SNPs showed that increased methylation levels in two close CpG sites were associated with higher levels of lipid-related variables. Conclusions: This study supports a role for NMU as a regulator of human metabolism. This finding suggests that NMU could be a potential target for preventive interventions against coronary and cerebrovascular diseases, and that NMU genetic and epigenetic variability may serve as a biomarker for cardio-metabolic risk. Full article
(This article belongs to the Special Issue Epigenetics and Metabolic Disorders)
Show Figures

Figure 1

22 pages, 2517 KiB  
Article
Characterization and Engineering of Two Novel Strand-Displacing B Family DNA Polymerases from Bacillus Phage SRT01hs and BeachBum
by Yaping Sun, Kang Fu, Wu Lin, Jie Gao, Xianhui Zhao, Yun He and Hui Tian
Biomolecules 2025, 15(8), 1126; https://doi.org/10.3390/biom15081126 - 5 Aug 2025
Abstract
Polymerase-coupled nanopore sequencing requires DNA polymerases with strong strand displacement activity and high processivity to sustain continuous signal generation. In this study, we characterized two novel B family DNA polymerases, SRHS and BBum, isolated from Bacillus phages SRT01hs and BeachBum, respectively. Both enzymes [...] Read more.
Polymerase-coupled nanopore sequencing requires DNA polymerases with strong strand displacement activity and high processivity to sustain continuous signal generation. In this study, we characterized two novel B family DNA polymerases, SRHS and BBum, isolated from Bacillus phages SRT01hs and BeachBum, respectively. Both enzymes exhibited robust strand displacement, 3′→5′ exonuclease activity, and maintained processivity under diverse reaction conditions, including across a broad temperature range (10–45 °C) and in the presence of multiple divalent metal cofactors (Mg2+, Mn2+, Fe2+), comparable to the well-characterized Phi29 polymerase. Through biochemical analysis of mutants designed using AlphaFold3-predicted structural models, we identified key residues (G96, M97, D486 in SRHS; S97, M98, A493 in BBum) that modulated exonuclease activity, substrate specificity and metal ion utilization. Engineered variants SRHS_F and BBum_Pro_L efficiently incorporated unnatural nucleotides in the presence of Mg2+—a function not observed in Phi29 and other wild-type strand-displacing B family polymerases. These combined biochemical features highlight SRHS and BBum as promising enzymatic scaffolds for nanopore-based long-read sequencing platforms. Full article
(This article belongs to the Section Enzymology)
Show Figures

Figure 1

19 pages, 2870 KiB  
Review
Etiopathogenesis and Treatment of Colorectal Cancer
by Mayara Bocchi, Eduardo Vignoto Fernandes, Nathália de Sousa Pereira and Marla Karine Amarante
Immuno 2025, 5(3), 31; https://doi.org/10.3390/immuno5030031 - 4 Aug 2025
Viewed by 114
Abstract
Human colorectal cancer (CRC) encompasses tumors affecting a segment of the large intestine (colon) and rectum. It is the third most commonly diagnosed malignancy and the second leading cause of cancer deaths worldwide. It is a multifactorial disease, whose carcinogenesis process involves genetic [...] Read more.
Human colorectal cancer (CRC) encompasses tumors affecting a segment of the large intestine (colon) and rectum. It is the third most commonly diagnosed malignancy and the second leading cause of cancer deaths worldwide. It is a multifactorial disease, whose carcinogenesis process involves genetic and epigenetic alterations in oncogenes and tumor suppressor genes, including genes related to DNA repair. The pathogenic mechanisms are described based on the pathways of chromosomal instability, microsatellite instability, and CpG island methylator phenotype. When detected early, CRC is potentially curable, and its treatment is based on the pathological characteristics of the tumor and factors related to the patient, as well as on drug efficacy and toxicity studies. Therefore, the aim of this study was to review the pathogenesis and molecular subtypes of CRC and to describe the main targets of disease-directed therapy used in patients refractory to current treatments. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

15 pages, 550 KiB  
Article
New Insights into the Telomere Structure in Hemiptera (Insecta) Inferred from Chromosome-Level and Scaffold-Level Genome Assemblies
by Desislava Stoianova, Snejana Grozeva, Nadezhda Todorova, Miroslav Rangelov, Vladimir A. Lukhtanov and Valentina G. Kuznetsova
Diversity 2025, 17(8), 552; https://doi.org/10.3390/d17080552 - 4 Aug 2025
Viewed by 40
Abstract
Telomeres are terminal regions of chromosomes that protect and stabilize chromosome structures. Telomeres are usually composed of specific DNA repeats (motifs) that are maintained by telomerase and a complex of specific proteins. Telomeric DNA sequences are generally highly conserved throughout the evolution of [...] Read more.
Telomeres are terminal regions of chromosomes that protect and stabilize chromosome structures. Telomeres are usually composed of specific DNA repeats (motifs) that are maintained by telomerase and a complex of specific proteins. Telomeric DNA sequences are generally highly conserved throughout the evolution of different groups of eukaryotes. The most common motif in insects is TTAGG, but it is not universal, including in the large order Hemiptera. In particular, several derived telomeric motifs were identified in this order by analyzing chromosome-level genome assemblies or by FISH screening the chromosomes of target species. Here, we analyzed chromosome-level genome assemblies of 16 species from three hemipteran suborders, including Sternorrhyncha (Coccoidea: Planococcus citri, Acanthococcus lagerstroemiae, and Trionymus diminutus; Aphidoidea: Tuberolachnus salignus, Metopolophium dirhodum, Rhopalosiphum padi, and Schizaphis graminum), Auhenorrhyncha (Cicadomorpha: Allygus modestus, Arthaldeus pascuellus, Aphrophora alni, Cicadella viridis, Empoasca decipiens, and Ribautiana ulmi), and Heteroptera (Gerromorpha: Gerris lacustris; Pentatomomorpha: Aradus depressus and A. truncatus). In addition, scaffold-level genome assemblies of three more species of Heteroptera (Gerromorpha: Gerris buenoi, Microvelia longipes, and Hermatobates lingyangjiaoensis) were examined. The presumably ancestral insect motif TTAGG was found at the ends of chromosomes of all species studied using chromosome-level genome assembly analysis, with four exceptions. In Aphrophora alni, we detected sequences of 4 bp repeats of TGAC, which were tentatively identified as a telomeric motif. In Gerris lacustris, from the basal true bug infraorder Gerromorpha, we found a 10 bp motif TTAGAGGTGG, previously unknown not only in Heteroptera or Hemiptera but also in Arthropoda in general. Blast screening of the scaffold-level assemblies showed that TTAGAGGTGG is also likely to be a telomeric motif in G. buenoi and Microvelia. longipes, while the results obtained for H. lingyangjiaoensis were inconclusive. In A. depressus and A. truncatus from the basal for Pentatomomorpha family Aradidae, we found a 10 bp motif TTAGGGATGG. While the available data allowed us to present two alternative hypotheses about the evolution of telomeric motifs in Heteroptera, further data are needed to verify them, especially for the yet unstudied basal infraorders Enicocephalomorpha, Dipsocoromorpha, and Leptopodomorpha. Full article
Show Figures

Figure 1

19 pages, 5733 KiB  
Article
The Production Optimization of a Thermostable Phytase from Bacillus subtilis SP11 Utilizing Mustard Meal as a Substrate
by Md. Al Muid Khan, Sabina Akhter, Tanjil Arif, Md. Mahmuduzzaman Mian, Md. Arafat Al Mamun, Muhammad Manjurul Karim and Shakila Nargis Khan
Fermentation 2025, 11(8), 452; https://doi.org/10.3390/fermentation11080452 - 3 Aug 2025
Viewed by 167
Abstract
Phytate, an antinutritional molecule in poultry feed, can be degraded by applying phytase, but its use in low- and middle-income countries is often limited due to importation instead of local production. Here, inexpensive raw materials were used to optimize the production of a [...] Read more.
Phytate, an antinutritional molecule in poultry feed, can be degraded by applying phytase, but its use in low- and middle-income countries is often limited due to importation instead of local production. Here, inexpensive raw materials were used to optimize the production of a thermostable phytase from an indigenous strain of Bacillus subtilis SP11 that was isolated from a broiler farm in Dhaka. SP11 was identified using 16s rDNA and the fermentation of phytase was optimized using a Plackett–Burman design and response surface methodology, revealing that three substrates, including the raw material mustard meal (2.21% w/v), caused a maximum phytase production of 436 U/L at 37 °C and 120 rpm for 72 h, resulting in a 3.7-fold increase compared to unoptimized media. The crude enzyme showed thermostability up to 80 °C (may withstand the feed pelleting process) with an optimum pH of 6 (near pH of poultry small-intestine), while retaining 96% activity at 41 °C (the body temperature of the chicken). In vitro dephytinization demonstrated its applicability, releasing 978 µg of inorganic phosphate per g of wheat bran per hour. This phytase has the potential to reduce the burden of phytase importation in Bangladesh by making local production and application possible, contributing to sustainable poultry nutrition. Full article
Show Figures

Figure 1

59 pages, 1351 KiB  
Review
The Redox Revolution in Brain Medicine: Targeting Oxidative Stress with AI, Multi-Omics and Mitochondrial Therapies for the Precision Eradication of Neurodegeneration
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7498; https://doi.org/10.3390/ijms26157498 - 3 Aug 2025
Viewed by 131
Abstract
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce [...] Read more.
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce protein misfolding, and promote chronic neuroinflammation, creating a positive feedback loop of neuronal damage and cognitive decline. Despite its centrality in promoting disease progression, attempts to neutralize oxidative stress with monotherapeutic antioxidants have largely failed owing to the multifactorial redox imbalance affecting each patient and their corresponding variation. We are now at the threshold of precision redox medicine, driven by advances in syndromic multi-omics integration, Artificial Intelligence biomarker identification, and the precision of patient-specific therapeutic interventions. This paper will aim to reveal a mechanistically deep assessment of oxidative stress and its contribution to diseases of neurodegeneration, with an emphasis on oxidatively modified proteins (e.g., carbonylated tau, nitrated α-synuclein), lipid peroxidation biomarkers (F2-isoprostanes, 4-HNE), and DNA damage (8-OHdG) as significant biomarkers of disease progression. We will critically examine the majority of clinical trial studies investigating mitochondria-targeted antioxidants (e.g., MitoQ, SS-31), Nrf2 activators (e.g., dimethyl fumarate, sulforaphane), and epigenetic reprogramming schemes aiming to re-establish antioxidant defenses and repair redox damage at the molecular level of biology. Emerging solutions that involve nanoparticles (e.g., antioxidant delivery systems) and CRISPR (e.g., correction of mutations in SOD1 and GPx1) have the potential to transform therapeutic approaches to treatment for these diseases by cutting the time required to realize meaningful impacts and meaningful treatment. This paper will argue that with the connection between molecular biology and progress in clinical hyperbole, dynamic multi-targeted interventions will define the treatment of neurodegenerative diseases in the transition from disease amelioration to disease modification or perhaps reversal. With these innovations at our doorstep, the future offers remarkable possibilities in translating network-based biomarker discovery, AI-powered patient stratification, and adaptive combination therapies into individualized/long-lasting neuroprotection. The question is no longer if we will neutralize oxidative stress; it is how likely we will achieve success in the new frontier of neurodegenerative disease therapies. Full article
Show Figures

Figure 1

15 pages, 2791 KiB  
Article
In Vitro and In Vivo Efficacy of the Essential Oil from the Leaves of Annona amazonica R.E. Fries (Annonaceae) Against Liver Cancer
by Maria V. L. de Castro, Milena C. F. de Lima, Gabriela A. da C. Barbosa, Sabrine G. Carvalho, Amanda M. R. M. Coelho, Luciano de S. Santos, Valdenizia R. Silva, Rosane B. Dias, Milena B. P. Soares, Emmanoel V. Costa and Daniel P. Bezerra
Molecules 2025, 30(15), 3248; https://doi.org/10.3390/molecules30153248 - 2 Aug 2025
Viewed by 162
Abstract
Annona amazonica R.E. Fries (synonyms Annona amazonica var. lancifolia R.E. Fries), popularly known in Brazil as “envireira”, is a tropical tree belonging to the Annonaceae family and is traditionally used as a food source. In this work, the in vitro and in vivo [...] Read more.
Annona amazonica R.E. Fries (synonyms Annona amazonica var. lancifolia R.E. Fries), popularly known in Brazil as “envireira”, is a tropical tree belonging to the Annonaceae family and is traditionally used as a food source. In this work, the in vitro and in vivo anti-liver cancer effects of essential oil (EO) from A. amazonica leaves were investigated for the first time. The chemical composition of the EO was evaluated via GC–MS and GC–FID. The alamar blue assay was used to evaluate the cytotoxicity of EOs against different cancerous and noncancerous cell lines. Cell cycle analyses, YO-PRO-1/PI staining, and rhodamine 123 staining were performed via flow cytometry in HepG2 cells treated with EO. The in vivo antitumor activity of EO was evaluated in NSG mice that were xenografted with HepG2 cells and treated with EO at a dose of 60 mg/kg. The major constituents (>5%) of the EO were (E)-caryophyllene (32.01%), 1,8-cineole (13.93%), α-copaene (7.77%), α-humulene (7.15%), and α-pinene (5.13%). EO increased apoptosis and proportionally decreased the number of viable HepG2 cells. The induction of DNA fragmentation and cell shrinkage together with a significant reduction in the ΔΨm in EO-treated HepG2 cells confirmed that EO can induce apoptosis. A significant 39.2% inhibition of tumor growth in vivo was detected in EO-treated animals. These data indicate the anti-liver cancer potential of EO from A. amazonica leaves. Full article
(This article belongs to the Special Issue Advances and Opportunities of Natural Products in Drug Discovery)
Show Figures

Figure 1

16 pages, 1919 KiB  
Article
CampyTube: Seamless Integration of a Molecular Test and Lateral Flow Detection of Campylobacter in a Single Vial
by Natalia Sandetskaya, Andreas Kölsch, Kai Mattern, Vanessa Vater, Dirk Kuhlmeier and Florian Priller
Biosensors 2025, 15(8), 497; https://doi.org/10.3390/bios15080497 - 1 Aug 2025
Viewed by 107
Abstract
Background: The efficient control of hygiene and Campylobacter’s contamination status at various steps of poultry meat production is essential for the prevention of Campylobacter transmission to humans. Microbiological methods are laborious and time-consuming, and molecular methods of detection are often too skill- [...] Read more.
Background: The efficient control of hygiene and Campylobacter’s contamination status at various steps of poultry meat production is essential for the prevention of Campylobacter transmission to humans. Microbiological methods are laborious and time-consuming, and molecular methods of detection are often too skill- and infrastructure-demanding. Methods: We have developed CampyTube, a simple and user-friendly format for the integration of isothermal DNA amplification with embedded instrument-free detection on a miniaturized lateral flow test in a single vial. All test components, from the dry amplification reagents to the mini lateral flow tests, are incorporated into a standard single vial, which is closed after the addition of the liquid sample and never has to be opened again. This ensures the absolute prevention of carry-over contamination and makes the system very safe and simple to use in point-of-need settings. Results: As few as 60 Campylobacter genome copies per reaction could be successfully detected with CampyTube. We have primarily developed and evaluated CampyTube for the detection of Campylobacter in chicken neck skin samples and could reach 100% sensitivity and 100% specificity in the samples exceeding the regulatory limit of 1000 CFU/g confirmed microbiologically, while the sensitivity in all samples that tested positive using qPCR (1.4 × 102–2.5 × 106 genome copies/g) was 71.1%. We discuss the impact of sample preparation on CampyTube performance and suggest further options for test optimization. Conclusions: CampyTube is a highly versatile and efficient, yet simple, affordable, and material-saving system that can be adapted for other targets and sample types. Full article
(This article belongs to the Special Issue Biosensors for Monitoring and Diagnostics)
Show Figures

Figure 1

15 pages, 1363 KiB  
Article
Evaluation of a Rhenium(I) Complex and Its Pyridostatin-Containing Chelator as Radiosensitizers for Chemoradiotherapy
by António Paulo, Sofia Cardoso, Edgar Mendes, Elisa Palma, Paula Raposinho and Ana Belchior
Molecules 2025, 30(15), 3240; https://doi.org/10.3390/molecules30153240 - 1 Aug 2025
Viewed by 159
Abstract
The use of radiosensitizers is a beneficial approach in cancer radiotherapy treatment. However, the enhancement of radiation effects on cancer cells by radiosensitizers involves several different mechanisms, reflecting the chemical nature of the radiosensitizer. G-quadruplex (G4) DNA ligands have emerged in recent years [...] Read more.
The use of radiosensitizers is a beneficial approach in cancer radiotherapy treatment. However, the enhancement of radiation effects on cancer cells by radiosensitizers involves several different mechanisms, reflecting the chemical nature of the radiosensitizer. G-quadruplex (G4) DNA ligands have emerged in recent years as a potential new class of radiosensitizers binding to specific DNA sequences. Recently, we have shown that the Re(I) tricarbonyl complex PDF-Pz-Re and its pyrazolyl-diamine chelator PDF-Pz, carrying a N-methylated pyridostatin (PDF) derivative, act as G4 binders of various G4-forming DNA and RNA sequences. As described in this contribution, these features prompted us to evaluate PDF-Pz-Re and PDF-Pz as radiosensitizers of prostate cancer PC3 cells submitted to concomitant treatment with Co-60 radiation. The compound RHPS4 was also tested, as this G4 ligand was previously shown to exhibit strong radiosensitizing properties in other cancer cell lines. The assessment of the resulting radiobiological effects, namely through clonogenic cell survival, DNA damage, and ROS production assays, showed that PDF-Pz-Re and PDF-Pz were able to radiosensitize PC3 cells despite being less active than RHPS4. Our results corroborate that G4 DNA ligands are a class of compounds with potential interest as radiosensitizers, deserving further studies to optimize their radiosensitization activity and elucidate the mechanisms of action. Full article
(This article belongs to the Special Issue Metal-Based Drugs: Past, Present and Future, 3rd Edition)
Show Figures

Figure 1

12 pages, 1650 KiB  
Communication
Salsolinol-Containing Senna silvestris Exerts Antiviral Activity Against Hepatitis B Virus
by Alberto Quintero, Maria Maillo, Nelson Gomes, Angel Fernández, Hector R. Rangel, Fabian Michelangeli and Flor H. Pujol
Plants 2025, 14(15), 2372; https://doi.org/10.3390/plants14152372 - 1 Aug 2025
Viewed by 186
Abstract
Several natural products have been shown to display antiviral activity against the hepatitis B virus (HBV), among a number of other viruses. In a previous study, the hydro-alcoholic extracts (n = 66) of 31 species from the Venezuelan Amazonian rain forest were tested [...] Read more.
Several natural products have been shown to display antiviral activity against the hepatitis B virus (HBV), among a number of other viruses. In a previous study, the hydro-alcoholic extracts (n = 66) of 31 species from the Venezuelan Amazonian rain forest were tested on the hepatoma cell line HepG2.2.15, which constitutively produces HBV. One of the species that exerted inhibitory activity on HBV replication was Senna silvestris. The aim of this study was the bioassay-guided purification of the ethanol fraction of leaves of S. silvestris, which displayed the most significant inhibitory activity against HBV. After solvent extraction and two rounds of reverse-phase HPLC purification, NMR analysis identified salsolinol as the compound that may exert the desired antiviral activity. The purified compound exerted inhibition of both HBV DNA and core HBV DNA. Pure salsolinol obtained from a commercial source also displayed anti-HBV DNA inhibition, with an approximate MIC value of 12 µM. Although salsolinol is widely used in Chinese traditional medicine to treat congestive heart failure, it has also been associated with Parkinson’s disease. More studies are warranted to analyze the effect of changes in its chemical conformation, searching for potent antiviral, perhaps dual agents against HBV and HIV, with reduced toxicity. Full article
Show Figures

Figure 1

9 pages, 1157 KiB  
Article
Center Degenerated Walking-Primer PCR: A Novel and Universal Genome-Walking Method
by Dandan Gao, Zhenkang Pan, Hao Pan, Yinwei Gu and Haixing Li
Curr. Issues Mol. Biol. 2025, 47(8), 602; https://doi.org/10.3390/cimb47080602 - 1 Aug 2025
Viewed by 109
Abstract
Enhancing the specificity and applicability of PCR-based genome-walking methods is highly desirable. A new and universal genome-walking tool, called center degenerated walking-primer PCR (CDWP-PCR), is presented in this study. CDWP-PCR involves adopting a center degenerated walking primer (cdWP) in the secondary/tertiary round of [...] Read more.
Enhancing the specificity and applicability of PCR-based genome-walking methods is highly desirable. A new and universal genome-walking tool, called center degenerated walking-primer PCR (CDWP-PCR), is presented in this study. CDWP-PCR involves adopting a center degenerated walking primer (cdWP) in the secondary/tertiary round of amplification. This cdWP is generated by degenerating the seven central nucleotides of the normal walking primer (nWP) used in primary PCR to NNNNNNN (where N includes the bases A, T, C, and G). Clearly, a partially complementary structure is formed between the two primers. Accordingly, the primary CDWP-PCR non-target products defined by the nWP are diluted in secondary/tertiary CDWP-PCR, as these non-targets have difficulty in annealing with the cdWP; conversely, the primary target product can still be efficiently amplified. The working performance of the proposed CDWP-PCR is verified through cloning of the unknown flanks of three known genes. All the clear DNA bands in the tertiary CDWP-PCRs are confirmed to be correct, and the largest DNA band is 8.0 kb. Overall, CDWP-PCR can be considered as a reliable supplement to existing genome-walking methods. Full article
(This article belongs to the Special Issue Technological Advances Around Next-Generation Sequencing Application)
Show Figures

Figure 1

25 pages, 1473 KiB  
Review
Environmental Hazards and Glial Brain Tumors: Association or Causation?
by Robert P. Ostrowski, Albert Acewicz, Zhaohui He, Emanuela B. Pucko and Jakub Godlewski
Int. J. Mol. Sci. 2025, 26(15), 7425; https://doi.org/10.3390/ijms26157425 - 1 Aug 2025
Viewed by 160
Abstract
Progress in establishing environmental risk factors and, consequently, prophylactic measures for glial tumors, particularly for glioblastomas, is of utmost importance, considering the dismal prognosis and limited treatment options. This report surveyed updates on established and recently identified factors that can predispose a patient [...] Read more.
Progress in establishing environmental risk factors and, consequently, prophylactic measures for glial tumors, particularly for glioblastomas, is of utmost importance, considering the dismal prognosis and limited treatment options. This report surveyed updates on established and recently identified factors that can predispose a patient to glioma formation while highlighting possible mechanistic links and further research directions. In addition to established factors that increase the risk of glioma, i.e., brain irradiation and several genetic syndromes, another group consists of likely factors contributing to such risks, such as the use of tobacco and those yielding ambiguous results (e.g., UV exposure). Oxidative stress is a common denominator for several types of exposure, and a mechanistic background for other factors remains elusive. Nevertheless, the analysis of clinical and basic research strongly suggests that, apart from the effect of environmental stressors on DNA alterations and mutation burden, the impact of modifying the tumor microenvironment should be considered. Identifying the involvement of environmental hazards in gliomagenesis and glial tumor progression would lower overall risk by modifying clinical practice, patient management, and lifestyle choices. Further verifying the environmental hazards in glioma formation and progression would have far-reaching implications for neurologists, neurosurgeons, and patients. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Figure 1

12 pages, 3641 KiB  
Article
Metallic Lanthanum (III) Hybrid Magnetic Nanocellulose Composites for Enhanced DNA Capture via Rare-Earth Coordination Chemistry
by Jiayao Yang, Jie Fei, Hongpeng Wang and Ye Li
Inorganics 2025, 13(8), 257; https://doi.org/10.3390/inorganics13080257 - 1 Aug 2025
Viewed by 147
Abstract
Lanthanide rare earth elements possess significant promise for material applications owing to their distinctive optical and magnetic characteristics, as well as their versatile coordination capabilities. This study introduced a lanthanide-functionalized magnetic nanocellulose composite (NNC@Fe3O4@La(OH)3) for effective phosphorus/nitrogen [...] Read more.
Lanthanide rare earth elements possess significant promise for material applications owing to their distinctive optical and magnetic characteristics, as well as their versatile coordination capabilities. This study introduced a lanthanide-functionalized magnetic nanocellulose composite (NNC@Fe3O4@La(OH)3) for effective phosphorus/nitrogen (P/N) ligand separation. The hybrid material employs the adaptable coordination geometry and strong affinity for oxygen of La3+ ions to show enhanced DNA-binding capacity via multi-site coordination with phosphate backbones and bases. This study utilized cellulose as a carrier, which was modified through carboxylation and amination processes employing deep eutectic solvents (DES) and polyethyleneimine. Magnetic nanoparticles and La(OH)3 were subsequently incorporated into the cellulose via in situ growth. NNC@Fe3O4@La(OH)3 showed a specific surface area of 36.2 m2·g−1 and a magnetic saturation intensity of 37 emu/g, facilitating the formation of ligands with accessible La3+ active sites, hence creating mesoporous interfaces that allow for fast separation. NNC@Fe3O4@La(OH)3 showed a significant affinity for DNA, with adsorption capacities reaching 243 mg/g, mostly due to the multistage coordination binding of La3+ to the phosphate groups and bases of DNA. Simultaneously, kinetic experiments indicated that the binding process adhered to a pseudo-secondary kinetic model, predominantly dependent on chemisorption. This study developed a unique rare-earth coordination-driven functional hybrid material, which is highly significant for constructing selective separation platforms for P/N-containing ligands. Full article
Show Figures

Graphical abstract

16 pages, 1291 KiB  
Article
Biotechnological Potential of Weizmannia ginsengihumi in the Conversion of Xylose into Lactic Acid: A Sustainable Strategy
by Larissa Provasi Santos, Ingrid Yoshimura, Fernanda Batista de Andrade and Jonas Contiero
Fermentation 2025, 11(8), 447; https://doi.org/10.3390/fermentation11080447 - 31 Jul 2025
Viewed by 228
Abstract
The aim of this study was to isolate Weizmannia spp. that produce lactic acid from xylose and use an experimental design to optimize the production of the metabolite. After isolation, the experiments were conducted in xylose-yeast extract-peptone medium. The identification of isolates was [...] Read more.
The aim of this study was to isolate Weizmannia spp. that produce lactic acid from xylose and use an experimental design to optimize the production of the metabolite. After isolation, the experiments were conducted in xylose-yeast extract-peptone medium. The identification of isolates was performed using the 16S rDNA PCR technique, followed by sequencing. A central composite rotatable design (CCRD) was used to optimize the concentrations of the carbon source (xylose), nitrogen source (yeast extract and peptone), and sodium acetate. Two strains were considered promising for lactic acid production, with W. coagulans BLMI achieving greater lactic acid production under anaerobic conditions (21.93 ± 0.9 g.L−1) and a yield of 69.18 %, while the strain W. ginsengihumi BMI was able to produce 19.79 ± 0.8 g.L−1, with a yield of 70.46 %. CCRD was used with the W. ginsengihumi strain due to the lack of records in the literature on its use for lactic acid production. The carbon and nitrogen sources influenced the response, but the interactions of the variables were nonsignificant (p < 0.05). The response surface analysis indicated that the optimal concentrations of carbon and nitrogen sources were 32.5 and 3.0 g.L−1, respectively, without the need to add sodium acetate to the culture medium, leading to the production of 20.02 ± 0.19 g.L−1, productivity of 0.55 g/L/h after 36 hours of fermentation, and a residual sugar concentration of 12.59 ± 0.51 g.L−1. These results demonstrate the potential of W. ginsengihumi BMI for the production of lactic acid by xylose fermentation since it is carried out at 50 °C, indicating a path for future studies Full article
Back to TopTop