Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = DOC degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 7541 KiB  
Article
Harnessing Bacillus subtilis–Moss Synergy: Carbon–Structure Optimization for Erosion-Resistant Barrier Formation in Cold Mollisols
by Tianxiao Li, Shunli Zheng, Zhaoxing Xiao, Qiang Fu, Fanxiang Meng, Mo Li, Dong Liu and Qingyuan Liu
Agriculture 2025, 15(14), 1465; https://doi.org/10.3390/agriculture15141465 - 8 Jul 2025
Viewed by 247
Abstract
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing [...] Read more.
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing soil structural stability. Mosses contribute to soil particle fixation through their unique rhizoid structures; however, the mechanisms underlying their interactions in mixed inoculation remain unclear. Therefore, this study addresses soil and water loss caused by rainfall erosion in the cold black soil region. We conducted controlled laboratory experiments cultivating Bacillus subtilis and cold-adapted moss species, evaluating the erosion mitigation effects of different biological treatments under gradient slopes (3°, 6°, 9°) and rainfall intensities (70 mm h−1, 120 mm h−1), and elucidating their carbon-based structural reinforcement mechanism. The results indicated that compared to the control group, Treatment C significantly increased the mean weight diameter (MWD) and geometric mean diameter (GMD) of soil aggregates by 121.6% and 76.75%, respectively. In separate simulated rainfall events at 70 mm h−1 and 120 mm h−1, Treatment C reduced soil loss by 95.70% and 96.75% and decreased runoff by 38.31% and 67.21%, respectively. Crucially, the dissolved organic carbon (DOC) loss rate in Treatment C was only 21.98%, significantly lower than that in Treatment A (32.32%), Treatment B (22.22%), and the control group (51.07%)—representing a 59.41% reduction compared to the control. This demonstrates the following: (1) Bacillus subtilis enhances microbial metabolism, driving carbon conversion into stable pools, while mosses reduce carbon leaching via physical barriers, synergistically forming a dual “carbon protection–structural reinforcement” barrier. (2) The combined inoculation optimizes soil structure by increasing the proportion of large soil particles and enhancing aggregate stability, effectively suppressing soil loss even under extreme rainfall erosion. This study elucidates, for the first time, the biological pathway through which microbe–moss interactions achieve synergistic carbon sequestration and erosion resistance by regulating aggregate formation and pore water dynamics. It provides a scalable “carbon–structure”-optimized biotechnology system (co-inoculation of Bacillus subtilis and moss) for the ecological restoration of the cold black soil region. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 3394 KiB  
Article
Effects of Bioavailability and Microbial Community on the Degradation of Atrazine in Sewage Sludge Biochar-Amended Soils
by Siying Li, Xin Li, Yunyang Li and Yue Zhao
Energies 2025, 18(12), 3158; https://doi.org/10.3390/en18123158 - 16 Jun 2025
Viewed by 360
Abstract
Biochar, as an emerging biotechnology, has been widely used in the remediation of soil organic pollution, mainly by promoting the abundance of related degrading bacteria in soil. In this study, we explored the influence of sewage sludge biochars pyrolyzed at different temperatures of [...] Read more.
Biochar, as an emerging biotechnology, has been widely used in the remediation of soil organic pollution, mainly by promoting the abundance of related degrading bacteria in soil. In this study, we explored the influence of sewage sludge biochars pyrolyzed at different temperatures of 300–700 °C (SSB300-SSB700) and addition rates (1% and 5%) on the atrazine biodegradation in soils. After a 21-day incubation, the application of 5% SSB300 significantly increased soil catalase (CAT), urease activity, dissolved organic carbon (DOC), and electrical conductivity (EC). However, biochar amendment exhibited inhibitory effects on atrazine degradation in soils. The atrazine degradation ratio decreased with decreasing pyrolysis temperature and increasing addition rates. Further analysis found that there were two possible reasons for the significant decline of atrazine biodegradation in SSB300 groups: (1) SSB300 demonstrated higher adsorption capacity for atrazine compared to SSB500 and SSB700 and reduced atrazine bioavailability due to its stronger hydrophobic nature and more abundant surface functional groups; and (2) the SSB300 significantly decreased the abundances of dominant atrazine-degraders (Arthrobacter and Pseudomonas) and atrazine-degrading genes (atzA, atzB, and trzN). Full article
(This article belongs to the Topic Biomass Use and its Health and Environmental Effects)
Show Figures

Figure 1

16 pages, 1698 KiB  
Article
Dark Fermentation of Sizing Process Waste: A Sustainable Solution for Hydrogen Production and Industrial Waste Management
by Marlena Domińska, Martyna Gloc, Magdalena Olak-Kucharczyk and Katarzyna Paździor
Water 2025, 17(11), 1716; https://doi.org/10.3390/w17111716 - 5 Jun 2025
Viewed by 468
Abstract
The possibility of hydrogen (H2) production from sizing waste, specifically starch-based substrates, was investigated through dark fermentation. Modified starch substrates produced less (up to 54% without heating and 18% after heating) H2 than natural ones. However, heating modified starch samples [...] Read more.
The possibility of hydrogen (H2) production from sizing waste, specifically starch-based substrates, was investigated through dark fermentation. Modified starch substrates produced less (up to 54% without heating and 18% after heating) H2 than natural ones. However, heating modified starch samples led to 18% higher H2 production than unheated ones, suggesting that high temperatures activate more favorable metabolic pathways. The highest H2 production (215 mL/gTVS_substrate) was observed with unheated natural starch, where the classic butyric–acetic fermentation pathway predominated. This variant also generated the highest CO2 levels (250 mL/gTVS_substrate), confirming the correlation between H2 and CO2 production in these pathways. Modified starch substrates shifted fermentation towards fatty acid chain elongation, reducing CO2 production. The proportion of CO2 in the fermentation gases correlated strongly with H2 production across all variants. A decrease in total volatile solids (TVS) indicated effective organic matter conversion, while varying dissolved organic carbon (DOC) levels suggested different degradation rates. Nitrogen analysis (TN) revealed that the differences between variants were due to varying nitrogen processing mechanisms by microorganisms. These results highlight the potential of sizing waste as a substrate for bioH2 production and offer insights for optimizing the process and developing industrial technologies for bioH2 and other valuable products. Full article
(This article belongs to the Special Issue Novel Methods in Wastewater and Stormwater Treatment)
Show Figures

Figure 1

15 pages, 3270 KiB  
Article
Effects of Vegetation Restoration Type on Abundant and Scarce Soil Microbial Taxa in a Loess Plateau Mining Area
by Yanping Miao, Daren Zhou, Hongchao Zhao, Pengfei Li, Shiqi Sun, Hangxian Lai, Qiao Guo and Jianxuan Shang
Agronomy 2025, 15(6), 1383; https://doi.org/10.3390/agronomy15061383 - 4 Jun 2025
Viewed by 419
Abstract
Vegetation restoration is critical for improving soil quality and microbial community dynamics in degraded mining areas. This study explored the effects of different vegetation types (grassland, shrubland, and mixed grass–shrub areas) on soil physicochemical properties, organic carbon fractions, and abundant versus scarce microbial [...] Read more.
Vegetation restoration is critical for improving soil quality and microbial community dynamics in degraded mining areas. This study explored the effects of different vegetation types (grassland, shrubland, and mixed grass–shrub areas) on soil physicochemical properties, organic carbon fractions, and abundant versus scarce microbial taxa assemblies in a Loess Plateau coal mining area. Soil samples from four depths (0–100 cm) were analyzed using high-throughput sequencing for nutrient content; carbon components, soil organic carbon (SOC), particulate organic carbon (POC), mineral-associated organic carbon (MAOC), dissolved organic carbon (DOC), microbial biomass organic carbon (MBC), and readily oxidizable organic carbon (ROC); microbial diversity. Shrubland soils exhibited significantly higher total nitrogen (TN), total phosphorus (TP), and organic carbon components (SOC, MAOC, and POC) than other vegetation types (p < 0.05), with the greatest carbon accumulation noted in the surface layer depths (0–20 cm). Microbial communities displayed vegetation-specific patterns: abundant taxa (e.g., Actinobacteria, Proteobacteria) dominated nutrient cycling and exhibited resilience to environmental gradients, while rare taxa (e.g., Methylomirabilota, Olpidiomycota) correlated strongly with labile carbon fractions (DOC and POC) and demonstrated metabolic flexibility. Mantel tests identified soil pH, TN, and organic carbon components as key drivers of microbial community divergence (p < 0.01). Shrubland vegetation enhanced soil nutrient retention and carbon stabilization, whereas the mixed grass–shrub systems promoted niche partitioning among rare taxa. These findings highlight the roles of vegetation-mediated carbon inputs and environmental filtering in shaping microbial assembly, providing a scientific framework for optimizing restoration strategies in mining ecosystems. Full article
Show Figures

Figure 1

14 pages, 1324 KiB  
Article
Preprocessing of Physician Notes by LLMs Improves Clinical Concept Extraction Without Information Loss
by Daniel B. Hier, Michael A. Carrithers, Steven K. Platt, Anh Nguyen, Ioannis Giannopoulos and Tayo Obafemi-Ajayi
Information 2025, 16(6), 446; https://doi.org/10.3390/info16060446 - 27 May 2025
Viewed by 706
Abstract
Clinician notes are a rich source of patient information, but often contain inconsistencies due to varied writing styles, abbreviations, medical jargon, grammatical errors, and non-standard formatting. These inconsistencies hinder their direct use in patient care and degrade the performance of downstream computational applications [...] Read more.
Clinician notes are a rich source of patient information, but often contain inconsistencies due to varied writing styles, abbreviations, medical jargon, grammatical errors, and non-standard formatting. These inconsistencies hinder their direct use in patient care and degrade the performance of downstream computational applications that rely on these notes as input, such as quality improvement, population health analytics, precision medicine, clinical decision support, and research. We present a large-language-model (LLM) approach to the preprocessing of 1618 neurology notes. The LLM corrected spelling and grammatical errors, expanded acronyms, and standardized terminology and formatting, without altering clinical content. Expert review of randomly sampled notes confirmed that no significant information was lost. To evaluate downstream impact, we applied an ontology-based NLP pipeline (Doc2Hpo) to extract biomedical concepts from the notes before and after editing. F1 scores for Human Phenotype Ontology extraction improved from 0.40 to 0.61, confirming our hypothesis that better inputs yielded better outputs. We conclude that LLM-based preprocessing is an effective error correction strategy that improves data quality at the level of free text in clinical notes. This approach may enhance the performance of a broad class of downstream applications that derive their input from unstructured clinical documentation. Full article
(This article belongs to the Special Issue Biomedical Natural Language Processing and Text Mining)
Show Figures

Figure 1

18 pages, 2395 KiB  
Article
Functional Characteristics and Cellulose Degradation Genes of the Microbial Community in Soils with Different Initial pH Values
by Li Jiang, Boyan Xu and Qi Wang
Agriculture 2025, 15(10), 1068; https://doi.org/10.3390/agriculture15101068 - 15 May 2025
Viewed by 570
Abstract
Soil pH critically regulates microbial community structure and activity, thereby influencing carbon transformation processes in terrestrial ecosystems. However, the mechanisms underlying pH-mediated shifts in microbial metabolic functions and cellulose-degrading functional genes remain poorly understood. This study investigated the responses of bacterial communities, metabolic [...] Read more.
Soil pH critically regulates microbial community structure and activity, thereby influencing carbon transformation processes in terrestrial ecosystems. However, the mechanisms underlying pH-mediated shifts in microbial metabolic functions and cellulose-degrading functional genes remain poorly understood. This study investigated the responses of bacterial communities, metabolic profiles, and the abundance of cellobiohydrolase I (cbhI) and glycoside hydrolase family 48 (GH48) genes to varying pH levels in fluvo-aquic and red soils. High-throughput sequencing, PICRUSt-based metabolic prediction, and quantitative PCR were employed to analyze microbial composition, functional traits, and gene dynamics. Network analysis clarified linkages between functional genes, pathways, and taxa. The results revealed that elevated pH significantly increased CO2 emissions and dissolved organic carbon (DOC) content in both soils. Dominant taxa, including Alphaproteobacteria, Bacteroidetes, Xanthomonadaceae, and Mycoplasma, exhibited pH-dependent enrichment. Metabolic predictions indicated that pH positively influenced genes linked to biodegradation and xenobiotic metabolism in fluvo-aquic soil but suppressed energy-metabolism-related genes. Contrastingly, in red soil, cbhI and GH48 gene abundance declined with rising pH, suggesting that acidic conditions favor cellulolytic activity. Network analysis identified strong positive correlations between CO2 emissions and Caulobacteraceae, while cbhI and GH48 genes were closely associated with taxa such as Xanthomonadaceae, Comamonadaceae, and Micromonosporaceae, which drive organic matter decomposition. These findings underscore pH as a pivotal regulator of microbial community structure and functional gene expression, with soil-specific responses highlighting the need for tailored strategies to optimize carbon cycling and sequestration in agricultural ecosystems. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

15 pages, 1902 KiB  
Article
Rice-Fish Co-Culture Promotes Soil Carbon Sequestration Through Alterations in Soil Microbial Community Structure
by Daolin Sun, Hongjun Zheng, Zhaoji Shi, Jiaen Zhang, Qi Jia, Xing Liu, Min Zhao, Yuting Chen, Qi Chen and Mingzhu Luo
Agronomy 2025, 15(5), 1054; https://doi.org/10.3390/agronomy15051054 - 27 Apr 2025
Viewed by 497
Abstract
The high-input production mode of rice monoculture (RM) has caused severe soil degradation and biodiversity loss, necessitating a transition toward more sustainable practices. The traditional rice-fish co-culture (RF) may provide valuable insights for this situation. However, it remains elusive how long-term RF system [...] Read more.
The high-input production mode of rice monoculture (RM) has caused severe soil degradation and biodiversity loss, necessitating a transition toward more sustainable practices. The traditional rice-fish co-culture (RF) may provide valuable insights for this situation. However, it remains elusive how long-term RF system influences soil microbial community structure, enzyme activities, and carbon (C) sequestration. Here, a study was conducted at two representative RF areas in Lianshan Zhuang and Yao Autonomous County. At Shatian (P1), three treatments included rice monoculture (RM1) and 2-year and 5-year RF (RF2, RF5). At Gaoliao (P2), the experimental treatments included rice monoculture (RM2) and 15 and 30 years of RF (RF15, RF30). We collected the surface layer (0–20 cm) soils. Then, we analyzed the chemical properties, phospholipid fatty acids (PLFA), and enzyme activities to investigate the effects of their variation on soil C sequestration. The results showed that RF treatments significantly increased soil organic C (SOC) content. Specifically, RF2 and RF5 treatments promoted the SOC content by 4.82% and 13.60% compared with RM1 treatment at P1, respectively; RF15 and RF30 treatments increased the SOC content by 23.41% and 31.93% compared with RM2 treatment at P2, respectively. Additionally, RF5 treatment significantly increased the biomass of the soil microbial community in comparison with RM1 treatment, as did RF15 treatment and RF30 treatment compared with RM2 treatment, including the contents of total PLFA and the PLFA of gram-positive bacteria (G+), gram-negative bacteria (G−), actinomycetes, fungi, and bacteria. Activities of β-glucosidase, cellobiohydrolase, β-1,4-N-acetylglucosaminidase, and urease significantly increased in RF5 and RF30 treatments. The piecewise SEM results indicated that the changes of total PLFA content and the PLFA content ratio of fungi to bacteria were related to contents of dissolved organic C (DOC) and total N (TN) under different RF durations, which are key indicators affecting SOC content. Overall, SOC storage increases with the RF durations, and soil microbial community structure may drive soil C sequestration under long-term RF, which provides a scientific significance and practical value in promoting the sustainability of agricultural ecosystems, enhancing the potential of soil as a carbon sink, and addressing global climate change. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

14 pages, 3345 KiB  
Article
Adsorption of Heavy Metal Pb(II) in Dredged Sediment Using Different Biochar Materials
by Ying Su, Qianyi Liao, Shuhan Xia, Xu Shen, Jiang Zhu, Yubing Liao, Wenhao Wang, Zhou Fang and Debin Liu
Processes 2025, 13(4), 957; https://doi.org/10.3390/pr13040957 - 24 Mar 2025
Cited by 1 | Viewed by 417
Abstract
China generates a significant amount of dredged sediment annually, much of which is contaminated with heavy metals. This study investigates the adsorption of Pb(II) from water and dredged sediment using different biochar materials, including BC and HC. The results show that the maximum [...] Read more.
China generates a significant amount of dredged sediment annually, much of which is contaminated with heavy metals. This study investigates the adsorption of Pb(II) from water and dredged sediment using different biochar materials, including BC and HC. The results show that the maximum adsorption of Pb(II) by BC-350-2h and HC-350-1:2-0.5h was 9.90 mg/g and 9.95 mg/g, respectively, with adsorption efficiencies of 99.0% and 99.5% for a 50 mg/L Pb(II) solution at a dosing concentration of 5 g/L, under 10 min of adsorption. BC-350-2h effectively adsorbed Pb(II) from dredged sediment, with no detectable Pb(II) concentration in the liquid fraction of the dredged sediment after 20 days. However, when the adsorption time increased, a small portion of Pb migrated into an unstable form, probably due to its binding to dissolved organic carbon (DOC), which dissolves out of the biochar. Microbial activity may also contribute to the degradation of DOC into small-molecule dissolved organic carbon (SDOC), thereby reducing the binding strength of biochar to DOC, which adsorbs Pb(II). This study highlights the importance of considering the effects of DOC and the long-term stability of biochar when used to treat contaminated dredged sediment. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

16 pages, 7121 KiB  
Article
Aridification Inhibits the Release of Dissolved Organic Carbon from Alpine Soils in Southwest China
by Yanmei Li, Jihong Qin, Yuwen Chen, Hui Sun and Xinyue Hu
Soil Syst. 2025, 9(1), 24; https://doi.org/10.3390/soilsystems9010024 - 6 Mar 2025
Viewed by 596
Abstract
The alpine peatlands in western Sichuan Province are currently experiencing aridification. To understand the effects of aridification on the characteristics of organic carbon release from alpine soils, the soil in the northwest Sichuan Plateau was investigated. Soil columns were incubated under different moisture [...] Read more.
The alpine peatlands in western Sichuan Province are currently experiencing aridification. To understand the effects of aridification on the characteristics of organic carbon release from alpine soils, the soil in the northwest Sichuan Plateau was investigated. Soil columns were incubated under different moisture conditions in situ and in the laboratory, and ultraviolet-visible absorption spectroscopy and three-dimensional fluorescence spectroscopy were used to assess the soil dissolved organic carbon (DOC) levels. The results revealed that (1) the cumulative release of DOC from alpine soil in the northwest Sichuan Plateau decreased with decreasing moisture content. The cumulative release of soil DOC in the laboratory (0–5 cm soil reached 1.93 ± 0.43 g/kg) was greater than that from soil incubated in situ (0–5 cm soil reached 1.40 ± 0.13 g/kg); (2) the cumulative release of DOC in 0–5 cm soil exhibited the greatest response to changes in water content, and the cumulative release of DOC from the 0–5 cm soil layer (1.40 ± 0.13 g/kg) was greater than that from the 5–15 cm soil layer (1.25 ± 0.03 g/kg); and (3) UV-visible absorption spectra and 3D fluorescence spectral characteristics indicated that aridification increases the content of chromophoric dissolved organic matter (CDOM) components with strong hydrophobicity, especially tyrosine components (surface soil increased 39.59~63.31%), in alpine soil DOC. This increase in hydrophobic CDOM components enhances the aromaticity and degree of humification of DOC. Our results revealed that drought inhibits the release of soil DOC, which is unfavorable for the sequestration of organic carbon in alpine soils, potentially resulting in the loss of soil carbon pools and further degradation of alpine ecosystem functions. Full article
Show Figures

Figure 1

13 pages, 1727 KiB  
Article
Degradation of Phenolic Compounds and Organic Matter from Real Winery Wastewater by Fenton and Photo-Fenton Processes Combined with Ultrasound
by Ricardo Augusto Rodrigues, Mariana Bizari Machado de Campos and Paulo Sergio Tonello
Water 2025, 17(5), 763; https://doi.org/10.3390/w17050763 - 6 Mar 2025
Viewed by 771
Abstract
Real winery wastewater (WW), with a high concentration of organic matter (OM), was treated using Fenton (FP), photo-Fenton (PFP), sono-Fenton (SFP), and sono-photo-Fenton processes (SPFP), with the primary objective of removing phenolic compounds (PhCs). Although beneficial to human health, these compounds are considered [...] Read more.
Real winery wastewater (WW), with a high concentration of organic matter (OM), was treated using Fenton (FP), photo-Fenton (PFP), sono-Fenton (SFP), and sono-photo-Fenton processes (SPFP), with the primary objective of removing phenolic compounds (PhCs). Although beneficial to human health, these compounds are considered recalcitrant and toxic to aquatic organisms, posing significant environmental risks if discharged into water bodies. They can also reduce the efficiency of biological treatment processes. After physicochemical characterization and two hours of treatment, the removal efficiencies achieved by the FP, PFP, SFP, and SPFP processes were 29.35%, 41.30%, 28.82%, and 33.95% for PhCs; 27.88%, 31.51%, 23.19%, and 29.29% for chemical oxygen demand (COD); and 12.53%, 13.92%, 9.28%, and 10.62% for dissolved organic carbon (DOC), respectively. The degradations achieved by SFP and SPFP were lower than those of FP and PFP, respectively, due to reactions that scavenge hydroxyl radicals. Treatment of a gallic acid (GA) solution, used as a model compound for PhCs, exhibited similar trends, indicating that the lower efficiency in processes involving ultrasound is not due to the OM in the effluent, but rather the interaction between ultrasound (US) and H2O2, which reduces hydroxyl radical concentration. However, under the conditions of the wastewater used, the technologies applied did not completely reduce the parameters analyzed, being recommended as pre- or post-treatment, and combined with other processes. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

19 pages, 3642 KiB  
Article
Nitrogen-Fixing Plants Enhance Soil Phosphorus Availability by Promoting Transformations Among Phosphorus Fractions in a Subtropical Karst Forest
by Yu Zhu, Zhizhuo Gao, Lijun Liu, Jie Li, Tongbin Zhu, Jiangming Ma, Thomas H. DeLuca and Min Duan
Forests 2025, 16(2), 360; https://doi.org/10.3390/f16020360 - 17 Feb 2025
Cited by 1 | Viewed by 823
Abstract
Nitrogen (N)-fixing plants are commonly employed in the restoration of degraded terrestrial ecosystems due to their ability to increase soil N capital and boost ecosystem productivity. Given the close coupling between N and phosphorus (P) in soil, the effects of N-fixing plants on [...] Read more.
Nitrogen (N)-fixing plants are commonly employed in the restoration of degraded terrestrial ecosystems due to their ability to increase soil N capital and boost ecosystem productivity. Given the close coupling between N and phosphorus (P) in soil, the effects of N-fixing plants on soil P fractions and availability in karst forests remain largely unexplored. Herein, we compared soil P pools, fractions, and availability in the rhizosphere and non-rhizosphere soils of N-fixing and non-N-fixing plants, and explored associated drivers, such as soil, microbial, and plant properties, in a subtropical karst forest. The results showed that the N-fixing plants increased total P, inorganic P, and available P in both the rhizosphere and non-rhizosphere soils. The nitrogen-fixing plants increased soil labile P (LP) and non-labile P (NLP), but decreased moderately labile P (MLP), particularly in the rhizosphere soils, due to transformations among different soil P fractions. Soil P fractions were primarily influenced by soil inorganic P, root and leaf N, and microbial biomass N in the N-fixing plant treatment, whereas soil inorganic P, dissolved organic carbon (DOC), and dissolved organic N (DON) were the key factors in the non-N-fixing plant treatment. Consequently, soil properties, microbial attributes, plant nutrients, and soil P fractions collectively exerted both direct and indirect effects to increase soil P availability in the N-fixing plant treatment. In contrast, soil P fractions directly and soil properties indirectly influenced soil P availability in the non-N-fixing plant treatment. Our results revealed the unique role of N-fixing plants in driving soil P availability in subtropical karst forests. These findings are essential for developing effective strategies for P nutrient management and guiding the selection of appropriate plant species for vegetation restoration in karst regions. Full article
(This article belongs to the Special Issue Climate Variation & Carbon and Nitrogen Cycling in Forests)
Show Figures

Figure 1

45 pages, 6788 KiB  
Article
Biomass Refined: 99% of Organic Carbon in Soils
by Robert J. Blakemore
Biomass 2024, 4(4), 1257-1300; https://doi.org/10.3390/biomass4040070 - 20 Dec 2024
Cited by 1 | Viewed by 2500
Abstract
Basic inventory is required for proper understanding and utilization of Earth’s natural resources, especially with increasing soil degradation and species loss. Soil carbon is newly refined at >30,000 Gt C (gigatonnes C), ten times above prior totals. Soil organic carbon (SOC) is up [...] Read more.
Basic inventory is required for proper understanding and utilization of Earth’s natural resources, especially with increasing soil degradation and species loss. Soil carbon is newly refined at >30,000 Gt C (gigatonnes C), ten times above prior totals. Soil organic carbon (SOC) is up to 24,000 Gt C, plus plant stocks at ~2400 Gt C, both above- and below-ground, hold >99% of Earth’s biomass. On a topographic surface area of 25 Gha with mean 21 m depth, Soil has more organic carbon than all trees, seas, fossil fuels, or the Atmosphere combined. Soils are both the greatest biotic carbon store and the most active CO2 source. Values are raised considerably. Disparity is due to lack of full soil depth survey, neglect of terrain, and other omissions. Herein, totals for mineral soils, Permafrost, and Peat (of all forms and ages), are determined to full depth (easily doubling shallow values), then raised for terrain that is ignored in all terrestrial models (doubling most values again), plus SOC in recalcitrant glomalin (+25%) and friable saprock (+26%). Additional factors include soil inorganic carbon (SIC some of biotic origin), aquatic sediments (SeOC), and dissolved fractions (DIC/DOC). Soil biota (e.g., forests, fungi, bacteria, and earthworms) are similarly upgraded. Primary productivity is confirmed at >220 Gt C/yr on land supported by Barrow’s “bounce” flux, C/O isotopes, glomalin, and Rubisco. Priority issues of species extinction, humic topsoil loss, and atmospheric CO2 are remedied by SOC restoration and biomass recycling via (vermi-)compost for 100% organic husbandry under Permaculture principals, based upon the Scientific observation of Nature. Full article
Show Figures

Figure 1

15 pages, 2557 KiB  
Article
Effects of Applying Organic Amendments on Soil Aggregate Structure and Tomato Yield in Facility Agriculture
by Wen-Qu Tao, Qian-Qian Wu, Jie Zhang, Ting-Ting Chang and Xin-Na Liu
Plants 2024, 13(21), 3064; https://doi.org/10.3390/plants13213064 - 31 Oct 2024
Cited by 3 | Viewed by 2106
Abstract
Amendment significantly improves soil structure and promotes crop growth. To combat soil degradation and low crop yields in facility agriculture, it is crucial to study the optimal application rate of amendments. This study analyzed the effects of biochar, vermicompost, and mineral-source potassium fulvic [...] Read more.
Amendment significantly improves soil structure and promotes crop growth. To combat soil degradation and low crop yields in facility agriculture, it is crucial to study the optimal application rate of amendments. This study analyzed the effects of biochar, vermicompost, and mineral-source potassium fulvic acid on the stability of aggregate structure, soil nutrient content, and tomato yield in cambisols, providing a theoretical basis for improving the soil quality of plastic greenhouses in Southern China. A pot experiment on tomato cultivation was carried out in yellow-brown soil in plastic greenhouses. The experiment included eight treatments: 1% biochar (B1); 3% biochar (B3); 5% biochar (B5); 3% vermicompost (V3); 5% vermicompost (V5); 0.1% mineral-source potassium fulvic acid (F1); 0.2% mineral-source potassium fulvic acid (F2); and the control condition without adding soil amendments (CK). The results showed that the biochar and vermicompost treatments effectively reduced soil bulk density and increased total soil porosity. Compared to the control, treatments with soil amendments significantly increased soil pH and had different effects on soil nutrients: F2 showed the most significant improvement in the content of available nitrogen, available phosphorus, and available potassium, with an increase of 133.33%, 834.59%, and 74.34%, respectively; B3 treatment had the highest increase in dissolved organic carbon (DOC), while B5 treatment had the highest organic matter content. Compared to the CK, the particle size of the biochar treatment was mainly 0.053~0.25 mm, while the V3, F1, and F2 mainly occurred with a particle size > 0.25 mm; and V3 has the best aggregate stability. Biochar, vermicompost, and mineral potassium fulvic acid can all promote tomato yield, with the F2 and V3 treatments having a yield increase effect of over 30%. Furthermore, Pearson’s correlation analysis showed a highly significant positive correlation between geometric mean diameter (GMD) and mean weight diameter (MWD), water-stable macroaggregate content (R0.25), and a positive correlation between alkaline-dissolved nitrogen, available phosphorus, dissolved organic carbon content, and aggregate stability indicators. Adding 0.2% mineral-source potassium fulvic acid optimizes cambisols’ properties, enhances aggregate formation and stability, boosts tomato yield, and shows great application potential. Full article
(This article belongs to the Special Issue Soil Fertility Management for Plant Growth and Development)
Show Figures

Figure 1

20 pages, 4644 KiB  
Article
Application of Fenton’s Reaction for Removal of Organic Matter from Groundwater
by Izabela Krupińska
Molecules 2024, 29(21), 5150; https://doi.org/10.3390/molecules29215150 - 31 Oct 2024
Cited by 1 | Viewed by 1271
Abstract
In this study, the effectiveness of the Fenton process in removing natural organic matter (NOM) from groundwater was investigated. The subject of this study is groundwater characterised by increased content of NOM and iron (II) compounds. In laboratory-scale studies, the influence of the [...] Read more.
In this study, the effectiveness of the Fenton process in removing natural organic matter (NOM) from groundwater was investigated. The subject of this study is groundwater characterised by increased content of NOM and iron (II) compounds. In laboratory-scale studies, the influence of the ratio of concentrations of Fe(II) ions, which are naturally occurring in groundwater, to hydrogen peroxide (H2O2) as well as oxidation time and pH on the removal efficiency of organic matter was determined. Indicators such as total organic carbon (TOC), dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254), UV absorbance at 272 nm (UV272), and specific UV absorbance (SUVA254) were used to quantitatively and qualitatively assess the organic substances present in the raw water and after oxidation with Fenton’s reagent. Analysis of the results obtained showed that the highest removal efficiency of organic substances in the deep oxidation process using the Fenton reaction was obtained for a concentration ratio of Fe(II) to H2O2 = 1:5. Acidification of the water samples to a pH of about 4 and extending the oxidation time to 30 min significantly increased the removal efficiency of organic substances including mainly dissolved organic substances containing aromatic rings. The organic substances containing aromatic rings, determined at a wavelength of 254 nm, were degraded to other organic intermediates. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Figure 1

18 pages, 2785 KiB  
Article
Characterization of Phytoplankton-Derived Amino Acids and Tracing the Source of Organic Carbon Using Stable Isotopes in the Amundsen Sea
by Jun-Oh Min, Min-Seob Kim, Boyeon Lee, Jong-Ku Gal, Jinyoung Jung, Tae-Wan Kim, Jisoo Park and Sun-Yong Ha
Mar. Drugs 2024, 22(10), 476; https://doi.org/10.3390/md22100476 - 18 Oct 2024
Viewed by 3092
Abstract
We utilized amino acid (AA) and carbon stable isotope analyses to characterize phytoplankton-derived organic matter (OM) and trace the sources of organic carbon in the Amundsen Sea. Carbon isotope ratios of particulate organic carbon (δ13C-POC) range from −28.7‰ to −23.1‰, indicating [...] Read more.
We utilized amino acid (AA) and carbon stable isotope analyses to characterize phytoplankton-derived organic matter (OM) and trace the sources of organic carbon in the Amundsen Sea. Carbon isotope ratios of particulate organic carbon (δ13C-POC) range from −28.7‰ to −23.1‰, indicating that particulate organic matter originated primarily from phytoplankton. The dissolved organic carbon isotope (δ13C-DOC) signature (−27.1 to −21.0‰) observed in the sea-ice melting system suggests that meltwater contributes to the DOC supply of the Amundsen Sea together with OM produced by phytoplankton. A negative correlation between the degradation index and δ13C-POC indicates that the quality of OM significantly influences isotopic fractionation (r2 = 0.59, p < 0.001). The AA distribution in the Amundsen Sea (5.43 ± 3.19 µM) was significantly larger than previously reported in the Southern Ocean and was associated with phytoplankton biomass (r2 = 0.49, p < 0.01). Under conditions dominated by P. antarctica (DI = 2.29 ± 2.30), OM exhibited greater lability compared to conditions co-dominated by diatoms and D. speculum (DI = 0.04 ± 3.64). These results highlight the important role of P. antarctica in influencing the properties of OM, suggesting potential impacts on carbon cycling and microbial metabolic activity in the Amundsen Sea. Full article
(This article belongs to the Special Issue Marine Algal Chemical Ecology 2024)
Show Figures

Figure 1

Back to TopTop