Effects of Bioavailability and Microbial Community on the Degradation of Atrazine in Sewage Sludge Biochar-Amended Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples
2.2. Biochar Characteristics
2.3. Pot Experiment
2.4. Atrazine Analysis
2.5. Soil Enzyme Activity Analysis
2.6. Determination of Environmental Factors
2.7. DNA Extraction and Sequencing
2.8. Relative Quantification of Atrazine-Degrading Genes
2.9. Statistical Analysis
3. Results and Discussion
3.1. Analysis of the Properties of Biochar and Soils Amended with Biochar
3.2. Impacts of SSB on Atrazine Degradation and Bioavailability
3.3. Dynamics of Soil Microbial Community Structure with Biochar Application
3.4. Biodegradation Mechanisms of Atrazine in SSB-Amended Soils
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silva, V.; Montanarella, L.; Fernández-Ugalde, O.; Mol, H.G.J.; Ritsema, C.J.; Geissen, V. Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Sci. Total Environ. 2018, 621, 1352–1359. [Google Scholar] [CrossRef] [PubMed]
- Hvězdová, M.; Kosubová, P.; Košíková, M.; Scherr, K.E.; Šimek, Z.; Brodský, L. Currently and recently used pesticides in Central European arable soils. Sci. Total Environ. 2018, 613–614, 361–370. [Google Scholar] [CrossRef] [PubMed]
- FAO. World Food and Agriculture—Statistical Pocketbook 2019; FAO: Rome, Italy, 2019. [Google Scholar]
- Roser, M. Pesticides. 2022. Available online: https://ourworldindata.org/pesticides (accessed on 29 September 2022).
- Sabzevari, S.; Hofman, J. A worldwide review of currently used pesticides’ monitoring in agricultural soils. Sci. Total Environ. 2022, 812, 152344. [Google Scholar] [CrossRef]
- Baxter, J.; Cummings, S.P. The degradation of the herbicide bromoxynil and its impact on bacterial diversity in a top soil. J. Appl. Microbiol. 2008, 104, 1605–1616. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in European agricultural soils–A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef]
- Sun, J.T.; Pan, L.L.; Tsang, D.C.W.; Zhan, L.Z.; Li, X.D. Atrazine contamination in agricultural soils from the Yangtze River Delta of China and associated health risks. Environ. Geochem. Health 2016, 39, 369–378. [Google Scholar] [CrossRef]
- Dou, R.; Sun, J.; Deng, F.; Wang, P.; Zhou, H.; Wei, Z.; Chen, M.; He, Z.; Lai, M.; Ye, T.; et al. Contamination of pyrethroids and atrazine in greenhouse and open-field agricultural soils in China. Sci. Total Environ. 2020, 701, 134916. [Google Scholar] [CrossRef]
- Hayes, T.B.; Collins, A.; Lee, M.; Mendoza, M.; Noriega, N.; Stuart, A.A.; Vonk, A. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc. Natl. Acad. Sci. USA 2002, 99, 5476–5480. [Google Scholar] [CrossRef]
- Shenoy, V.S. Atrazine and its endocrine-disrupting effects: A review. Environ. Toxicol. Pharmacol. 2012, 33, 594–609. [Google Scholar]
- Manyà, J.J. Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environ. Sci. Technol. 2012, 46, 7939–7954. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, B.; Chen, Z.; Zhu, L.; Schnoor, J.L. Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environ. Sci. Technol. 2018, 52, 5027–5047. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.M.; Xu, W.H.; Dong, J.; Yang, T.; Shangguan, Z.C.; Qu, J.; Li, X.; Tan, X. The effects of biochar and its applications in the microbial remediation of contaminated soil: A review. J. Hazard. Mater. 2022, 438, 129557. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.Y.; Wang, J.F.; Zhang, H.; Li, J.; Li, H.; Wu, F.Y. Effects of biochar and organic substrates on biodegradation of polycyclic aromatic hydrocarbons and microbial community structure in PAHs-contaminated soils. J. Hazard. Mater. 2020, 385, 121595. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Huang, P.; Xu, X.J.; Sun, H.W.; Jiang, B.; Liao, Y.H. Spectroscopic and molecular characterization of biochar-derived dissolved organic matter and the associations with soil microbial responses. Sci. Total Environ. 2020, 708, 134619. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, C.L.; Rong, Q.; Li, C.Z.; Mao, J.; Liu, Y.; Chen, J.; Liu, X. Effect of two organic amendments on atrazine degradation and microorganisms in soil. Appl. Soil Ecol. 2020, 152, 103564. [Google Scholar] [CrossRef]
- Zhang, P.; Ren, C.; Sun, H.W.; Min, L.J. Biochars change the sorption and degradation of thiacloprid in soil: Insights into chemical and biological mechanisms. Environ. Pollut. 2018, 236, 158–167. [Google Scholar] [CrossRef]
- Huang, S.Y.; Bao, J.P.; Shan, M.J.; Qin, H.; Wang, H.L.; Yu, X.J.; Chen, J.H.; Xu, Q.F. Dynamic changes of polychlorinated biphenyls (PCBs) degradation and adsorption to biochar as affected by soil organic carbon content. Chemosphere 2018, 211, 120–127. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.M.; Feng, Y. The effects of biochar addition on soil physicochemical properties: A review. Catena 2021, 202, 105284. [Google Scholar] [CrossRef]
- Liu, N.; Charrua, B.A.; Weng, C.H.; Yuan, X.; Ding, F. Characterization of biochars derived from agricultural wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study. Bioresour. Technol. 2015, 198, 55–62. [Google Scholar] [CrossRef]
- Ji, M.Y.; Wang, X.X.; Usman, M.; Liu, F.H.; Dan, Y.T.; Zhou, L.; Campanaro, S.; Luo, G.; Sang, W. Effects of different feedstocks-based biochar on soil remediation: A review. Environ. Pollut. 2022, 294, 118655. [Google Scholar] [CrossRef]
- Zhu, B.; Wu, S.; Xia, X.; Lu, X.; Zhang, X.; Xia, N.; Liu, T. Effects of carbonaceous materials on microbial bioavailability of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) in sediments. J. Hazard. Mater. 2016, 312, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, A.H.; McAllister, L.E.; Chen, R.; Semple, K.T. Impact of activated charcoal on the mineralisation of 14C-phenanthrene in soils. Chemosphere 2010, 79, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Y.; Miao, R.H.; Guo, M.X.; Shang, X.T.; Zhou, Y.M.; Zhu, J.W. Biochar enhanced polycyclic aromatic hydrocarbons degradation in soil planted with ryegrass: Bacterial community and degradation gene expression mechanisms. Sci. Total Environ. 2022, 838, 156076. [Google Scholar] [CrossRef] [PubMed]
- Sopeña, F.; Semple, K.; Sohi, S.; Bending, G. Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar. Chemosphere 2012, 88, 77–83. [Google Scholar] [CrossRef]
- Fan, M.J.; Li, C.; Shao, Y.W.; Zhang, S.; Gholizadeh, M.; Hu, X. Pyrolysis of cellulose: Correlation of hydrophilicity with evolution of functionality of biochar. Sci. Total Environ. 2022, 825, 153959. [Google Scholar] [CrossRef]
- Luo, S.; Zhen, Z.; Zhu, X.; Ren, L.; Wu, W.; Zhang, W.; Chen, Y.; Zhang, D.; Song, Z.; Lin, Z.; et al. Accelerated atrazine degradation and altered metabolic pathways in goat manure assisted soil bioremediation. Ecotoxicol. Environ. Saf. 2021, 221, 112432. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Li, Y.Y.; Bao, H.Y.; Nan, J.; Xu, G.R. Rapid biodegradation of atrazine by a novel Paenarthrobacter ureafaciens ZY and its effects on soil native microbial community dynamic. Front. Microbiol. 2023, 13, 1103168. [Google Scholar] [CrossRef]
- Cao, X.D.; Ma, L.N.; Liang, Y.; Gao, B.; Harris, W. Simultaneous Immobilization of Lead and Atrazine in Contaminated Soils Using Dairy-Manure Biochar. Environ. Sci. Technol. 2011, 45, 4884–4889. [Google Scholar] [CrossRef]
- Bergknut, M.; Sehlin, E.; Lundstedt, S.; Andersson, P.L.; Haglund, P.; Tysklind, M. Comparison of techniques for estimating PAH bioavailability: Uptake in Eisenia fetida, passive samplers and leaching using various solvents and additives. Environ. Pollut. 2007, 145, 154–160. [Google Scholar] [CrossRef]
- Hou, Q.; Wang, W.X.; Yang, Y.; Hu, J.; Bian, C.S.; Jin, L.P.; Li, G.C.; Xiong, X.Y. Rhizosphere microbial diversity and community dynamics during potato cultivation. Eur. J. Soil Biol. 2020, 98, 103176. [Google Scholar] [CrossRef]
- Miao, S.J.; Tang, Y.J.; Xue, H.Q.; Qiao, Y.F. Soil bacterial community responses to land-use change in Mollisol of Northeast China. Ecol. Eng. 2022, 184, 106771. [Google Scholar] [CrossRef]
- Mulbry, W.W.; Zhu, H.; Nour, S.M. The triazine hydrolase gene trzN from Nocardioides sp. strain C190: Cloning and construction of gene-specific primers. FEMS Microbiol. Lett. 2002, 206, 75–79. [Google Scholar] [CrossRef] [PubMed]
- De Souza, M.L.; Seffernick, J.; Martinez, B.; Sadowsky, M.J.; Wackett, L.P. The atrazine catabolism genes atzABC are widespread and highly conserved. J. Bacteriol. 1998, 180, 1951–1954. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Yu, G.; Shi, C.P.; Liu, L.M.; Guo, Q.; Han, C.; Zhang, D.; Zhang, L.; Liu, B.; Gao, H.; et al. Majorbio Cloud: A one-stop, comprehensive bioinformatic platform for multiomics analyses. iMeta 2022, 1, e12. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.Y.; Lei, H.W.; Zhang, X.S.; Wang, L.; Bu, Q.; Wei, Y. Production of hydrocarbons from biomass-derived biochar assisted microwave catalytic pyrolysis. Energy Fuels 2018, 2, 1781–1790. [Google Scholar] [CrossRef]
- Lang, T.; Jensen, A.D.; Jensen, P.A. Retention of organic elements during solid fuel pyrolysis with emphasis on the peculiar behavior of nitrogen. Energy Fuels 2005, 19, 1631–1643. [Google Scholar] [CrossRef]
- Cao, X.; Harris, W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 2010, 101, 5222–5228. [Google Scholar] [CrossRef]
- Tian, S.S.; Tan, Z.X.; Kasiulienė, A.; Ai, P. Transformation mechanism of nutrient elements in the process of biochar preparation for returning biochar to soil. J. Chem. Eng. 2017, 25, 477–486. [Google Scholar] [CrossRef]
- Xing, J.; Li, L.; Li, G.B.; Xu, G.R. Feasibility of sludge-based biochar for soil remediation: Characteristics and safety performance of heavy metals influenced by pyrolysis temperatures. Ecotoxicol. Environ. Saf. 2019, 180, 457–465. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Li, Y.Y.; Bao, H.Y.; Xing, J.; Zhu, Y.Z.; Nan, J.; Xu, G.R. Biochar acts as an emerging soil amendment and its potential ecological risks: A review. Energies 2023, 16, 410. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Mandal, S.; Niazi, N.K.; Vithanage, M.; Parikh, S.J.; Mukome, F.N.D.; Rizwan, M.; Oleszczuk, P.; Al-Wabel, M.I.; Bolan, N.S.; et al. Advances and future directions of biochar characterization methods and applications. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2275–2330. [Google Scholar] [CrossRef]
- Cui, J.L.; Glatzel, S.; Bruckman, V.J.; Wang, B.; Lai, D.Y.F. Long-term effects of biochar application on greenhouse gas production and microbial community in temperate forest soils under increasing temperature. Sci. Total Environ. 2021, 767, 145021. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Y.; Chang, K.H.; Kim, Y.J.; Zhang, J.; Yoo, G. Effects of different biochar amendments on carbon loss and leachate characterization from an agricultural soil. Chemosphere 2019, 226, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Xu, G.R.; Li, G.B. Comparison of pyrolysis process, various fractions, and potential soil applications between sewage sludge-based biochars and lignocellulose-based biochars. Ecotoxicol. Environ. Saf. 2021, 208, 111756. [Google Scholar] [CrossRef]
- Cao, H.; Ning, L.; Xun, M.; Feng, F.; Yang, H. Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. Appl. Soil Ecol. 2019, 135, 25–32. [Google Scholar] [CrossRef]
- Lee, J.K.; Park, H.J.; Cha, S.J.; Kwon, S.J.; Park, J.H. Effect of Pyroligneous Acid on Soil Urease, Amidase, and Nitrogen Use Efficiency by Chinese Cabbage (Brassica campestris var. pekinensis). Environ. Pollut. 2021, 291, 118132. [Google Scholar] [CrossRef]
- Feng, Y.F.; Sun, H.J.; Xue, H.J.; Wang, Y.M.; Yang, L.Z.; Shi, W.M.; Xing, B.S. Sawdust Biochar Application to Rice Paddy Field: Reduced Nitrogen Loss in Floodwater Accompanied with Increased NH3 Volatilization. Environ. Sci. Pollut. Res. 2018, 25, 8388–8395. [Google Scholar] [CrossRef]
- Trasar-Cepeda, B.; Gil-Sotres, F.; Leiros, M.C. Thermodynamic Parameters of Enzymes in Grassland Soils from Galicia, NW Spain. Soil Biol. Biochem. 2007, 39, 311–319. [Google Scholar] [CrossRef]
- Alef, K.; Nannipieri, P. Methods in Applied Soil Microbiology and Biochemistry; Academic Press: London, UK, 1995. [Google Scholar]
- Zhang, P.; Ren, C.; Sun, H.W.; Min, L.J. Sorption, Desorption and Degradation of Neonicotinoids in Four Agricultural Soils and Their Effects on Soil Microorganisms. Sci. Total Environ. 2018, 615, 59–69. [Google Scholar] [CrossRef]
- Ferrario, C.; Pittino, F.; Tagliaferri, I.; Gandolfi, I.; Bestetti, G.; Azzoni, R.S.; Diolaiuti, G.; Franzetti, A.; Ambrosini, R.; Villa, S. Bacteria Contribute to Pesticide Degradation in Cryoconite Holes in an Alpine Glacier. Environ. Pollut. 2017, 230, 919–926. [Google Scholar] [CrossRef]
- Zielińska, A.; Oleszczuk, P. Bioavailability and Bioaccessibility of Polycyclic Aromatic Hydrocarbons (PAHs) in Historically Contaminated Soils after Lab Incubation with Sewage Sludge-Derived Biochars. Chemosphere 2016, 163, 480–489. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yao, T.; Tan, S.; Yu, B.Q.; Liu, K.L.; Hu, L.F.; Luo, K.; Liu, M.; Liu, X.Y.; Bai, L.Y. Effects of pH and Gallic Acid on the Adsorption of Two Ionizable Organic Contaminants to Rice Straw-Derived Biochar-Amended Soils. Ecotoxicol. Environ. Saf. 2019, 184, 109656. [Google Scholar] [CrossRef] [PubMed]
- Ni, N.; Song, Y.; Shi, R.Y.; Liu, Z.T.; Bian, Y.R.; Wang, F.; Yang, X.L.; Gu, C.G.; Jiang, X. Biochar Reduces the Bioaccumulation of PAHs from Soil to Carrot (Daucus carota L.) in the Rhizosphere: A Mechanism Study. Sci. Total Environ. 2017, 601–602, 1015. [Google Scholar] [CrossRef] [PubMed]
- Fruehwirth, M.; Sbizzaro, M.; Rosa, D.M.; Sampaio, S.C.; dos Reis, R.R. Adsorption of Atrazine by Biochars Produced from Byproducts of the Wood Industry. Eng. Agric. 2020, 40, 769–776. [Google Scholar] [CrossRef]
- Zhao, Z.D.; Wu, Q.; Nie, T.T.; Zhou, W.J. Quantitative Evaluation of Relationships Between Adsorption and Partition of Atrazine in Biochar-Amended Soils with Biochar Characteristics. RSC Adv. 2019, 9, 4162–4171. [Google Scholar] [CrossRef]
- Qiu, H.S.; Liu, J.Y.; Boorboori, M.R.; Li, D.; Chen, S.; Ma, X.; Cheng, P.; Zhang, H. Effect of Biochar Application Rate on Changes in Soil Labile Organic Carbon Fractions and the Association between Bacterial Community Assembly and Carbon Metabolism with Time. Sci. Total Environ. 2023, 855, 158876. [Google Scholar] [CrossRef]
- Yin, S.J.; Zhang, X.; Suo, F.Y.; You, X.W.; Yuan, Y.; Cheng, Y.D.; Zhang, C.S.; Li, Y.Q. Effect of Biochar and Hydrochar from Cow Manure and Reed Straw on Lettuce Growth in an Acidified Soil. Chemosphere 2022, 298, 134191. [Google Scholar] [CrossRef]
- Close, D.C.; Sohi, S.P.; Bending, G.D. Microbial Diversity and the Carbon and Nitrogen Cycles in Soils Affected by Biochar. Soil Biol. Biochem. 2009, 41, 1016–1027. [Google Scholar]
- Ding, Z.; Zhang, F.; Gong, H.F.; Sun, N.; Huang, J.J.; Chi, J. Responses of Phenanthrene Degradation to the Changes in Bioavailability and Microbial Community Structure in Soils Amended with Biochars Pyrolyzed at Low and High Temperatures. J. Hazard. Mater. 2021, 410, 124584. [Google Scholar] [CrossRef]
- Khatoon, H.; Rai, J.P.N. Optimization Studies on Biodegradation of Atrazine by Bacillus badius abp6 Strain Using Response Surface Methodology. Biotechnol. Rep. 2020, 26, e00459. [Google Scholar] [CrossRef]
- Jakinala, P.; Lingampally, N.; Kyama, A.; and Hameeda, B. Enhancement of Atrazine Biodegradation by Marine Isolate Bacillus velezensis mhnk1 in Presence of Surfactin Lipopeptide. Ecotoxicol. Environ. Saf. 2019, 182, 109372. [Google Scholar] [CrossRef]
- Saez, J.M.; González, S.K.; Ocante, T.A.L.; Bigliardo, A.L.; Briceño, G.E.; and Benimeli, C.S. Actinobacteria Bioaugmentation and Substrate Evaluation for Biobeds Useful for the Treatment of Atrazine Residues in Agricultural Fields. J. Environ. Manag. 2022, 320, 115870. [Google Scholar] [CrossRef]
- Omotayo, A.E.; Ilori, M.O.; Radosevich, M.; Amund, O.O. Metabolism of Atrazine in Liquid Cultures and Soil Microcosms by Nocardioides Strains Isolated from a Contaminated Nigerian Agricultural Soil. Soil Sediment Contam. 2013, 22, 365–375. [Google Scholar] [CrossRef]
- Niu, L.; Liu, Y.; Zhang, W.; Chen, H.; Li, Z.; Zhao, Z. Adsorption of Atrazine on Biochar Derived from Rice Straw: Characterization and Effects of Solution pH. Chemosphere 2015, 138, 186–193. [Google Scholar]
- Zhang, Y.; Cao, B.; Jiang, Z.; Dong, X.N.; Hu, M.; Wang, Z.G. Metabolic Ability and Individual Characteristics of an Atrazine-Degrading Consortium DNC5. J. Hazard. Mater. 2012, 237–238, 376–381. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Wang, L.; Ma, F.; Yang, J.X. Characterisation of an Efficient Atrazine-Degrading Bacterium, Arthrobacter sp. ZXY-2: An Attempt to Lay the Foundation for Potential Bioaugmentation Applications. Biotechnol. Biofuels 2018, 11, 113. [Google Scholar] [CrossRef]
- Boundy-Mills, K.L.; Souza, M.L.D.; Mandelbaum, R.T.; Wackett, L.P.; Sadowsky, M.J. The atzB Gene of Pseudomonas sp. Strain ADP Encodes the Second Enzyme of a Novel Atrazine Degradation Pathway. Appl. Environ. Microbiol. 1997, 63, 916–923. [Google Scholar] [CrossRef]
- Bazhanov, D.P.; Yang, K.; Li, H.M.; Li, C.Y.; Li, J.S.; Chen, X.F.; Yang, H.T. Colonization of Plant Roots and Enhanced Atrazine Degradation by a Strain of Arthrobacter ureafaciens. Appl. Microbiol. Biotechnol. 2017, 101, 6809–6820. [Google Scholar] [CrossRef]
- Rehan, M.; Kluge, M.; Fränzle, S.; Kellner, H.; Ullrich, R.; Hofrichter, M. Degradation of Atrazine by Frankia alni ACN14a: Gene Regulation, Dealkylation, and Dechlorination. Appl. Microbiol. Biotechnol. 2014, 98, 6125–6135. [Google Scholar] [CrossRef]
- Tonelli Fernandes, A.F.; Braz, V.S.; Bauermeister, A.; Rizzato Paschoal, J.A.; Lopes, N.P.; Stehling, E.G. Degradation of Atrazine by Pseudomonas sp. and Achromobacter sp. Isolated from Brazilian Agricultural Soil. Int. Biodeterior. Biodegr. 2018, 130, 17–22. [Google Scholar] [CrossRef]
- Kolekar, P.D.; Phugare, S.S.; Jadhav, J.P. Biodegradation of Atrazine by Rhodococcus sp. BCH2 to N-Isopropylammelide with Subsequent Assessment of Toxicity of Biodegraded Metabolites. Environ. Sci. Pollut. Res. 2014, 21, 2334–2345. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.L.; Hu, A.B.; Wang, Q.D.; Ai, J.; Zhang, W.J.; Liang, Y.; Cao, M.X.; Wu, H.J.; Wang, D.S. Molecular Composition and Biotoxicity Effects of Dissolved Organic Matters in Sludge-Based Carbon: Effects of Pyrolysis Temperature. J. Hazard. Mater. 2022, 424, 127346. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Li, X.; Li, Y.; Zhao, Y. Effects of Bioavailability and Microbial Community on the Degradation of Atrazine in Sewage Sludge Biochar-Amended Soils. Energies 2025, 18, 3158. https://doi.org/10.3390/en18123158
Li S, Li X, Li Y, Zhao Y. Effects of Bioavailability and Microbial Community on the Degradation of Atrazine in Sewage Sludge Biochar-Amended Soils. Energies. 2025; 18(12):3158. https://doi.org/10.3390/en18123158
Chicago/Turabian StyleLi, Siying, Xin Li, Yunyang Li, and Yue Zhao. 2025. "Effects of Bioavailability and Microbial Community on the Degradation of Atrazine in Sewage Sludge Biochar-Amended Soils" Energies 18, no. 12: 3158. https://doi.org/10.3390/en18123158
APA StyleLi, S., Li, X., Li, Y., & Zhao, Y. (2025). Effects of Bioavailability and Microbial Community on the Degradation of Atrazine in Sewage Sludge Biochar-Amended Soils. Energies, 18(12), 3158. https://doi.org/10.3390/en18123158