Preprocessing of Physician Notes by LLMs Improves Clinical Concept Extraction Without Information Loss
Abstract
:1. Introduction
1.1. Secondary Uses of the EHR Require Structured Data as Inputs
1.2. Current Approaches to Reducing Physician Burden and Improving Note Quality
1.3. Our Proposed Approach to Improving Note Quality
- Improved note quality, reflected in fewer spelling, grammar, and formatting errors.
- Greater retrieval of clinical concepts, as measured by Doc2Hpo.
2. Methods
- A neuroimmunological diagnosis, including multiple sclerosis, myasthenia gravis, neuromyelitis optica, and Guillain–Barré syndrome.
- Patient seen between 2016 and 2022
- Outpatient visit in the neurology clinic
- Examined by a neurology resident or attending physician
- Note length of at least 2000 characters
- raw notes
- preprocessed notes
- ground truth phrases
- ground truth terms
- raw-note terms
- preprocessed-note terms
- True Positive (TP): Term present in both the extracted set and the ground truth set.
- False Negative (FN): Ground truth term not captured in extraction set.
- False Positive (FP): Term extracted but not part of ground truth set.
- True Negative (TN): Term present in the note but not successfully mapped to HPO by Doc2Hpo.
3. Results and Discussion
3.1. Preprocessing Finds and Corrects Errors
3.2. Preprocessing Improves HPO Term Extraction by Doc2Hpo
- Raw Notes → Doc2Hpo → Raw Terms
- Preprocessed Notes → Doc2Hpo → Preprocessed Terms
- GPT-4o Extracted Phrases → Doc2Hpo → Ground Truth Terms
4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
API | Application Programming Interface |
ASCII | American Standard Code for Information Interchange |
EHR | Electronic Health Record |
FHIR | Fast Healthcare Interoperability Resources |
HIPAA | Health Insurance Portability and Accountability Act |
HPO | Human Phenotype Ontology |
ICD | International Classification of Diseases |
IRB | Institutional Review Board |
JSON | JavaScript Object Notation |
LLM | Large Language Model |
LOINC | Logical Observation Identifiers Names and Codes |
NLP | Natural Language Processing |
REDCap | Research Electronic Data Capture |
RxNorm | Standardized Nomenclature for Clinical Drugs |
TP/FN/FP/TN | True Positive/False Negative/False Positive/True Negative |
Appendix A. Prompt to GPT-4o to Preprocess a Physician Note
You are a highly skilled medical terminologist specializing in clinical note editing. Your task is to edit the note using the following rules: 1. Expand abbreviations (e.g., BP blood pressure), retaining common abbreviations in parentheses. 2. Correct spelling and grammar while preserving meaning. 3. Reorganize content under the following headings: History, Vital Signs, Examination, Labs, Radiology, Impression, and Plan. 4. Replace non-standard terms with standard clinical terminology.
Appendix B. Note Format Used by GPT-4o for Preprocessed Notes
{ "HISTORY": { "Chief Complaint": "...", "Interim History": "..." }, "VITAL SIGNS": { "Blood Pressure": "...", "Pulse": "...", "Temperature": "...", "Weight": "..." }, "EXAMINATION": { "Mental Status": "...", "Cranial Nerves": "...", "Motor": "...", "Sensory": "...", "Reflexes": "...", "Coordination": "...", "Gait and Station": "..." }, "LABS": "...", "RADIOLOGY": "...", "IMPRESSION": { "Assessment": "..." }, "PLAN": { "Testing": "...", "Education Provided": { "Instructions": "...", "Barriers to Learning": "...", "Content": "...", "Outcome": "..." }, "Return Visit": "..." }, "Metrics": { "Grammatical Errors": n, "Abbreviations and Acronyms Expanded": ["..."], "Spelling Errors": ["..."], "Non-Standard Terms Corrected": ["..."] } }
Appendix C. Example of Corrections Made by GPT-4o
"Abbreviations Expanded": [ "BP", "IVIG", "MRI", "EMG", "PT", "OTC", "OT", "CSF", "WBC", "RBC", "HSV", "PCR", "CIDP", "INCAT", "BPD", "CBD", "BSA", "FPL", "EHL", "FN", "PA" ], "Spelling Errors Corrected": [ "wreight", "materal", "unknwon", "schizphernia", "tjhan" ], "Non-Standard Terms Mapped": [ "heart attack -> myocardial infarction" ]
Appendix D. Prompt to GPT-4o to Identify Ground Truth Terms
You are an expert medical coder with expertise in medical terminologies such as the Human Phenotype Ontology (HPO). From the note text {note_text}, extract all potential HPO terms the patient may have. Return a JSON object with a list of extracted terms under the key "hpo_terms". Use this exact format: { "hpo_terms": ["term1", "term2", "term3"] }
Appendix E. Sample Neurological Examinations: Before and After Preprocessing
Neurologic:
Mental status : awake, alert, oriented to person,
place, and time. Follows commands briskly,
including 2-step commands. Naming and repetition intact.
Fluent speech with no dysarthria.
Cranial nerves : PERRL, no rAPD,
unable to perform full L
lateral gaze but otherwise EOMI, facial sensation full
and symmetric, smile full and symmetric, palate and
uvula elevate symmetrically, shoulder shrug intact,
tongue midline
...continues....
EXAMINATION:
Mental Status: Awake, alert, oriented to person, place,
and time. Follows commands briskly, including
two-step commands. Naming and repetition intact.
Fluent speech with no dysarthria.
Cranial Nerves: Pupils equal, round, and reactive
to light, no relative afferent pupillary
defect, unable to perform full left lateral gaze but
otherwise extraocular movements are intact,
facial sensation full and symmetric,
smile full and symmetric, palate and uvula elevate
symmetrically, shoulder shrug intact, tongue midline
...continues....
References
- Menachemi, N.; Collum, T.H. Benefits and drawbacks of electronic health record systems. Risk Manag. Healthc. Policy 2011, 4, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Bruner, A.; Kasdan, M.L. Handwriting errors: Harmful, wasteful and preventable. J.-Ky. Med Assoc. 2001, 99, 189–192. [Google Scholar]
- Kozak, E.A.; Dittus, R.S.; Smith, W.R.; Fitzgerald, J.F.; Langfeld, C.D. Deciphering the physician note. J. Gen. Intern. Med. 1994, 9, 52–54. [Google Scholar] [CrossRef]
- Rodríguez-Vera, F.J.; Marin, Y.; Sanchez, A.; Borrachero, C.; Pujol, E. Illegible handwriting in medical records. J. R. Soc. Med. 2002, 95, 545–546. [Google Scholar] [CrossRef]
- Holmgren, A.J.; Hendrix, N.; Maisel, N.; Everson, J.; Bazemore, A.; Rotenstein, L.; Phillips, R.L.; Adler-Milstein, J. Electronic health record usability, satisfaction, and burnout for family physicians. JAMA Netw. Open 2024, 7, e2426956. [Google Scholar] [CrossRef]
- Muhiyaddin, R.; Elfadl, A.; Mohamed, E.; Shah, Z.; Alam, T.; Abd-Alrazaq, A.; Househ, M. Electronic health records and physician burnout: A scoping review. In Informatics and Technology in Clinical Care and Public Health; IOS Press: Amsterdam, The Netherlands, 2022; pp. 481–484. [Google Scholar]
- Downing, N.L.; Bates, D.W.; Longhurst, C.A. Physician burnout in the electronic health record era: Are we ignoring the real cause? Ann. Intern. Med. 2018, 169, 50–51. [Google Scholar] [CrossRef]
- Elliott, M.; Padua, M.; Schwenk, T.L. Electronic health records, medical practice problems, and physician distress. Int. J. Behav. Med. 2022, 29, 387–392. [Google Scholar] [CrossRef]
- Carroll, A.E. How health information technology is failing to achieve its full potential. JAMA Pediatr. 2015, 169, 201–202. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, J.M.; Loeb, J.A.; Hier, D.B. It’s time to change our documentation philosophy: Writing better neurology notes without the burnout. Front. Digit. Health 2022, 4, 1063141. [Google Scholar] [CrossRef] [PubMed]
- Koopman, R.J.; Steege, L.M.B.; Moore, J.L.; Clarke, M.A.; Canfield, S.M.; Kim, M.S.; Belden, J.L. Physician information needs and electronic health records (EHRs): Time to reengineer the clinic note. J. Am. Board Fam. Med. 2015, 28, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Budd, J. Burnout related to electronic health record use in primary care. J. Prim. Care Community Health 2023, 14, 21501319231166921. [Google Scholar] [CrossRef]
- Kugic, A.; Schulz, S.; Kreuzthaler, M. Disambiguation of acronyms in clinical narratives with large language models. J. Am. Med. Inform. Assoc. 2024, 31, 2040–2046. [Google Scholar] [CrossRef]
- Aronson, J.K. When I use a word…Medical slang: A taxonomy. BMJ 2023, 382, 1516. [Google Scholar] [CrossRef]
- Lee, E.H.; Patel, J.P.; VI, A.H.F. Patient-centric medical notes: Identifying areas for improvement in the age of open medical records. Patient Educ. Couns. 2017, 100, 1608–1611. [Google Scholar] [CrossRef]
- Castro, C.M.; Wilson, C.; Wang, F.; Schillinger, D. Babel babble: Physicians’ use of unclarified medical jargon with patients. Am. J. Health Behav. 2007, 31, S85–S95. [Google Scholar] [CrossRef]
- Pitt, M.B.; Hendrickson, M.A. Eradicating jargon-oblivion—a proposed classification system of medical jargon. J. Gen. Intern. Med. 2020, 35, 1861–1864. [Google Scholar] [CrossRef]
- Workman, T.E.; Shao, Y.; Divita, G.; Zeng-Treitler, Q. An efficient prototype method to identify and correct misspellings in clinical text. BMC Res. Notes 2019, 12, 42. [Google Scholar] [CrossRef]
- Hamiel, U.; Hecht, I.; Nemet, A.; Pe’er, L.; Man, V.; Hilely, A.; Achiron, A. Frequency, comprehension and attitudes of physicians towards abbreviations in the medical record. Postgrad. Med J. 2018, 94, 254–258. [Google Scholar] [CrossRef]
- Myers, J.S.; Gojraty, S.; Yang, W.; Linsky, A.; Airan-Javia, S.; Polomano, R.C. A randomized-controlled trial of computerized alerts to reduce unapproved medication abbreviation use. J. Am. Med. Inform. Assoc. 2011, 18, 17–23. [Google Scholar] [CrossRef]
- Horon, K.; Hayek, K.; Montgomery, C. Prohibited abbreviations: Seeking to educate, not enforce. Can. J. Hosp. Pharm. 2012, 65, 294. [Google Scholar] [CrossRef]
- Cheung, S.; Hoi, S.; Fernandes, O.; Huh, J.; Kynicos, S.; Murphy, L.; Lowe, D. Audit on the use of dangerous abbreviations, symbols, and dose designations in paper compared to electronic medication orders: A multicenter study. Ann. Pharmacother. 2018, 52, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Shultz, J.; Strosher, L.; Nathoo, S.N.; Manley, J. Avoiding potential medication errors associated with non-intuitive medication abbreviations. Can. J. Hosp. Pharm. 2011, 64, 246. [Google Scholar] [CrossRef]
- Baker, D.E. Campaign to Eliminate Use of Error-Prone Abbreviations. Hosp. Pharm. 2006, 41, 809–810. [Google Scholar] [CrossRef]
- American Hospital Association; American Society of Health-System Pharmacists. Medication safety issue brief. Eliminating dangerous abbreviations, acronyms and symbols. Hosp. Health Networks 2005, 79, 41–42. [Google Scholar]
- Hultman, G.M.; Marquard, J.L.; Lindemann, E.; Arsoniadis, E.; Pakhomov, S.; Melton, G.B. Challenges and opportunities to improve the clinician experience reviewing electronic progress notes. Appl. Clin. Inform. 2019, 10, 446–453. [Google Scholar] [CrossRef]
- Wrenn, J.O.; Stein, D.M.; Bakken, S.; Stetson, P.D. Quantifying clinical narrative redundancy in an electronic health record. J. Am. Med Inform. Assoc. 2010, 17, 49–53. [Google Scholar] [CrossRef]
- Moja, L.; Kwag, K.H.; Lytras, T.; Bertizzolo, L.; Brandt, L.; Pecoraro, V.; Rigon, G.; Vaona, A.; Ruggiero, F.; Mangia, M.; et al. Effectiveness of computerized decision support systems linked to electronic health records: A systematic review and meta-analysis. Am. J. Public Health 2014, 104, e12–e22. [Google Scholar] [CrossRef]
- Coorevits, P.; Sundgren, M.; Klein, G.O.; Bahr, A.; Claerhout, B.; Daniel, C.; Dugas, M.; Dupont, D.; Schmidt, A.; Singleton, P.; et al. Electronic health records: New opportunities for clinical research. J. Intern. Med. 2013, 274, 547–560. [Google Scholar] [CrossRef]
- Carr, L.H.; Christ, L.; Ferro, D.F. The electronic health record as a quality improvement tool: Exceptional potential with special considerations. Clin. Perinatol. 2023, 50, 473–488. [Google Scholar] [CrossRef]
- Vorisek, C.N.; Lehne, M.; Klopfenstein, S.A.I.; Mayer, P.J.; Bartschke, A.; Haese, T.; Thun, S. Fast healthcare interoperability resources (FHIR) for interoperability in health research: Systematic review. JMIR Med. Inform. 2022, 10, e35724. [Google Scholar] [CrossRef]
- Lehne, M.; Luijten, S.; Vom Felde Genannt Imbusch, P.; Thun, S. The use of FHIR in digital health–a review of the scientific literature. In German Medical Data Sciences: Shaping Change–Creative Solutions for Innovative Medicine; IOS Press: Amsterdam, The Netherlands, 2019; pp. 52–58. [Google Scholar]
- Sitapati, A.; Kim, H.; Berkovich, B.; Marmor, R.; Singh, S.; El-Kareh, R.; Clay, B.; Ohno-Machado, L. Integrated precision medicine: The role of electronic health records in delivering personalized treatment. Wiley Interdiscip. Rev. Syst. Biol. Med. 2017, 9, e1378. [Google Scholar] [CrossRef] [PubMed]
- Kruse, C.S.; Stein, A.; Thomas, H.; Kaur, H. The use of electronic health records to support population health: A systematic review of the literature. J. Med. Syst. 2018, 42, 214. [Google Scholar] [CrossRef]
- Li, I.; Pan, J.; Goldwasser, J.; Verma, N.; Wong, W.P.; Nuzumlalı, M.Y.; Rosand, B.; Li, Y.; Zhang, M.; Chang, D.; et al. Neural natural language processing for unstructured data in electronic health records: A review. Comput. Sci. Rev. 2022, 46, 100511. [Google Scholar] [CrossRef]
- Xiao, C.; Choi, E.; Sun, J. Opportunities and challenges in developing deep learning models using electronic health records data: A systematic review. J. Am. Med Inform. Assoc. 2018, 25, 1419–1428. [Google Scholar] [CrossRef]
- McDonald, C.J.; Huff, S.M.; Suico, J.G.; Hill, G.; Leavelle, D.; Aller, R.; Forrey, A.; Mercer, K.; DeMoor, G.; Hook, J.; et al. LOINC, a universal standard for identifying laboratory observations: A 5-year update. Clin. Chem. 2003, 49, 624–633. [Google Scholar] [CrossRef]
- Hanna, J.; Joseph, E.; Brochhausen, M.; Hogan, W.R. Building a drug ontology based on RxNorm and other sources. J. Biomed. Semant. 2013, 4, 1–9. [Google Scholar] [CrossRef]
- Zarei, J.; Golpira, R.; Hashemi, N.; Azadmanjir, Z.; Meidani, Z.; Vahedi, A.; Bakhshandeh, H.; Fakharian, E.; Sheikhtaheri, A. Comparison of the accuracy of inpatient morbidity coding with ICD-11 and ICD-10. Health Inf. Manag. J. 2025, 54, 14–24. [Google Scholar] [CrossRef]
- Lee, D.; de Keizer, N.; Lau, F.; Cornet, R. Literature review of SNOMED CT use. J. Am. Med Inform. Assoc. 2014, 21, e11–e19. [Google Scholar] [CrossRef]
- Köhler, S.; Vasilevsky, N.A.; Engelstad, M.; Foster, E.; McMurry, J.; Aymé, S.; Baynam, G.; Bello, S.M.; Boerkoel, C.F.; Boycott, K.M.; et al. The human phenotype ontology in 2017. Nucleic Acids Res. 2017, 45, D865–D876. [Google Scholar] [CrossRef]
- Al Hadidi, S.; Upadhaya, S.; Shastri, R.; Alamarat, Z. Use of dictation as a tool to decrease documentation errors in electronic health records. J. Community Hosp. Intern. Med. Perspect. 2017, 7, 282–286. [Google Scholar] [CrossRef]
- Ash, J.S.; Corby, S.; Mohan, V.; Solberg, N.; Becton, J.; Bergstrom, R.; Orwoll, B.; Hoekstra, C.; Gold, J.A. Safe use of the EHR by medical scribes: A qualitative study. J. Am. Med Inform. Assoc. 2021, 28, 294–302. [Google Scholar] [CrossRef]
- Mehta, R.; Radhakrishnan, N.S.; Warring, C.D.; Jain, A.; Fuentes, J.; Dolganiuc, A.; Lourdes, L.S.; Busigin, J.; Leverence, R.R. The use of evidence-based, problem-oriented templates as a clinical decision support in an inpatient electronic health record system. Appl. Clin. Inform. 2016, 7, 790–802. [Google Scholar]
- Iannello, J.; Waheed, N.; Neilan, P. Template Design and Analysis: Integrating Informatics Solutions to Improve Clinical Documentation. Fed. Pract. 2020, 37, 527. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.H.; Topaz, M.; Goss, F.R.; Zhou, L. Automated misspelling detection and correction in clinical free-text records. J. Biomed. Inform. 2015, 55, 188–195. [Google Scholar] [CrossRef]
- Amosa, T.I.; Izhar, L.I.B.; Sebastian, P.; Ismail, I.B.; Ibrahim, O.; Ayinla, S.L. Clinical errors from acronym use in electronic health record: A review of NLP-based disambiguation techniques. IEEE Access 2023, 11, 59297–59316. [Google Scholar] [CrossRef]
- Baughman, D.J.; Botros, P.A.; Waheed, A. Technology in Medicine: Improving Clinical Documentation. FP Essentials 2024, 537, 26–38. [Google Scholar] [PubMed]
- NYU Langone Health. Artificial Intelligence Feedback on Physician Notes Improves Patient Care. 2024. Available online: https://nyulangone.org/news/artificial-intelligence-feedback-physician-notes-improves-patient-care (accessed on 8 May 2025).
- Balloch, J.; Sridharan, S.; Oldham, G.; Wray, J.; Gough, P.; Robinson, R.; Sebire, N.J.; Khalil, S.; Asgari, E.; Tan, C.; et al. Use of an ambient artificial intelligence tool to improve quality of clinical documentation. Future Healthc. J. 2024, 11, 100157. [Google Scholar] [CrossRef]
- Stults, C.D.; Deng, S.; Martinez, M.C.; Wilcox, J.; Szwerinski, N.; Chen, K.H.; Driscoll, S.; Washburn, J.; Jones, V.G. Evaluation of an Ambient Artificial Intelligence Documentation Platform for Clinicians. JAMA Netw. Open 2025, 8, e258614. [Google Scholar] [CrossRef]
- Mess, S.A.; Mackey, A.J.; Yarowsky, D.E. Artificial Intelligence Scribe and Large Language Model Technology in Healthcare Documentation: Advantages, Limitations, and Recommendations. Plast. Reconstr. Surg.-Open 2025, 13, e6450. [Google Scholar] [CrossRef] [PubMed]
- Avendano, J.P.; Gallagher, D.O.; Hawes, J.D.; Boyle, J.; Glasser, L.; Aryee, J.; Katt, B.M. Interfacing With the Electronic Health Record (EHR): A Comparative Review of Modes of Documentation. Cureus 2022, 14, e26330. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.S.; Plasek, J.M.; Xu, H.; Uzuner, Ö.; Cohen, T.; Yetisgen, M.; Liu, H.; Meystre, S.; Wang, Y. Large language models for biomedicine: Foundations, opportunities, challenges, and best practices. J. Am. Med Inform. Assoc. 2024, 31, 2114–2124. [Google Scholar] [CrossRef]
- Yan, C.; Ong, H.H.; Grabowska, M.E.; Krantz, M.S.; Su, W.C.; Dickson, A.L.; Peterson, J.F.; Feng, Q.; Roden, D.M.; Stein, C.M.; et al. Large language models facilitate the generation of electronic health record phenotyping algorithms. J. Am. Med. Inform. Assoc. 2024, 31, 1994–2001. [Google Scholar] [CrossRef] [PubMed]
- Munzir, S.I.; Hier, D.B.; Carrithers, M.D. High Throughput Phenotyping of Physician Notes with Large Language and Hybrid NLP Models. arXiv 2024, arXiv:2403.05920. [Google Scholar] [CrossRef]
- Omiye, J.A.; Gui, H.; Rezaei, S.J.; Zou, J.; Daneshjou, R. Large language models in medicine: The potentials and pitfalls. arXiv 2023, arXiv:2309.00087. [Google Scholar] [CrossRef]
- Clusmann, J.; Kolbinger, F.R.; Muti, H.S.; Carrero, Z.I.; Eckardt, J.N.; Laleh, N.G.; Löffler, C.M.L.; Schwarzkopf, S.C.; Unger, M.; Veldhuizen, G.P.; et al. The future landscape of large language models in medicine. Commun. Med. 2023, 3, 141. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, H.; Yerebakan, H.; Shinagawa, Y.; Luo, Y. Enhancing Health Data Interoperability with Large Language Models: A FHIR Study. arXiv 2023, arXiv:2310.12989. [Google Scholar]
- Van Veen, D.; Van Uden, C.; Blankemeier, L.; Delbrouck, J.B.; Aali, A.; Bluethgen, C.; Pareek, A.; Polacin, M.; Reis, E.P.; Seehofnerova, A.; et al. Clinical text summarization: Adapting large language models can outperform human experts. Res. Sq. 2024, 30, 1134–1142. [Google Scholar]
- Tang, L.; Sun, Z.; Idnay, B.; Nestor, J.G.; Soroush, A.; Elias, P.A.; Xu, Z.; Ding, Y.; Durrett, G.; Rousseau, J.F.; et al. Evaluating large language models on medical evidence summarization. NPJ Digit. Med. 2023, 6, 158. [Google Scholar] [CrossRef]
- Zhou, W.; Bitterman, D.; Afshar, M.; Miller, T.A. Considerations for health care institutions training large language models on electronic health records. arXiv 2023, arXiv:2309.12339. [Google Scholar]
- Qiu, J.; Li, L.; Sun, J.; Peng, J.; Shi, P.; Zhang, R.; Dong, Y.; Lam, K.; Lo, F.P.W.; Xiao, B.; et al. Large ai models in health informatics: Applications, challenges, and the future. IEEE J. Biomed. Health Inform. 2023, 27, 6074–6078. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Petzold, L. Are Large Language Models Ready for Healthcare. A Comparative Study on Clinical Language Understanding. arXiv 2023, arXiv:2304.05368. [Google Scholar]
- Ficarra, B.J. Grammar and Medicine. Arch. Surg. 1981, 116, 251–252. [Google Scholar] [CrossRef]
- Goss, F.R.; Zhou, L.; Weiner, S.G. Incidence of speech recognition errors in the emergency department. Int. J. Med Inform. 2016, 93, 70–73. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Peres Kury, F.S.; Li, Z.; Ta, C.; Wang, K.; Weng, C. Doc2Hpo: A web application for efficient and accurate HPO concept curation. Nucleic Acids Res. 2019, 47, W566–W570. [Google Scholar] [CrossRef]
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
- Jiang, L.Y.; Liu, X.C.; Nejatian, N.P.; Nasir-Moin, M.; Wang, D.; Abidin, A.; Eaton, K.; Riina, H.A.; Laufer, I.; Punjabi, P.; et al. Health system-scale language models are all-purpose prediction engines. Nature 2023, 619, 357–362. [Google Scholar] [CrossRef]
- Feldman, J.; Hochman, K.A.; Guzman, B.V.; Goodman, A.; Weisstuch, J.; Testa, P. Scaling note quality assessment across an academic medical center with AI and GPT-4. NEJM Catal. Innov. Care Deliv. 2024, 5, CAT–23. [Google Scholar] [CrossRef]
- Bakken, S. Can informatics innovation help mitigate clinician burnout? J. Am. Med. Inform. Assoc. 2019, 26, 93–94. [Google Scholar] [CrossRef]
- Kapoor, M. Physician burnout in the electronic health record era. Ann. Intern. Med. 2019, 170, 216. [Google Scholar] [CrossRef]
- Kang, C.; Sarkar, N. Interventions to reduce electronic health record-related burnout: A systematic review. Appl. Clin. Informatics 2024, 15, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Bracken, A.; Reilly, C.; Feeley, A.; Sheehan, E.; Merghani, K.; Feeley, I. Artificial Intelligence (AI)–Powered Documentation Systems in Healthcare: A Systematic Review. J. Med Syst. 2025, 49, 28. [Google Scholar] [CrossRef] [PubMed]
- Henderson, J. Fewer Physicians Consider Leaving Medicine, Survey Finds. MedPage Today, 29 March 2025. [Google Scholar]
- Ji, Z.; Wei, Q.; Xu, H. Bert-based ranking for biomedical entity normalization. AMIA Summits Transl. Sci. Proc. 2020, 2020, 269. [Google Scholar] [PubMed]
Challenge | Comments |
---|---|
Legibility | Former issue with handwritten notes; Solved with EHRs |
Availability | Paper chart inaccessibility; resolved through digitization |
Physician Burden | Ongoing crisis; contributes to dissatisfaction and burnout |
Note Quality | Persistent problem; bloat, errors, abbreviations, jargon |
Unstructured Free Text | Inability to transfer data to downstream applications |
Use | Comments |
---|---|
Decision Support | Early stages; requires structured data |
Precision Medicine | Needs structured data |
Population Health | Underutilized due to fragmented and unstructured data |
Data Exchange | FHIR adoption is underway, but not yet universal |
Clinical Research | Hindered by a lack of structured data |
Quality Improvement | Untapped potential, needs structured data |
Approach | Comments |
---|---|
Dictation | Costly; requires editing; complex workflow. |
Ambient AI | Promising; hallucinations; workflow issues. |
Smart Phrases or Copy-Paste | Adds redundancy; note bloat. |
Spelling and Grammar Checkers | Piecemeal; limited context awareness. |
Templates | Rigid; low physician satisfaction. |
Documentation training | Poor physician acceptance; limited efficacy |
LLM as a documentation coach | Promising emerging strategy |
Scribes | Costly; workflow disruption; authorship concerns. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hier, D.B.; Carrithers, M.A.; Platt, S.K.; Nguyen, A.; Giannopoulos, I.; Obafemi-Ajayi, T. Preprocessing of Physician Notes by LLMs Improves Clinical Concept Extraction Without Information Loss. Information 2025, 16, 446. https://doi.org/10.3390/info16060446
Hier DB, Carrithers MA, Platt SK, Nguyen A, Giannopoulos I, Obafemi-Ajayi T. Preprocessing of Physician Notes by LLMs Improves Clinical Concept Extraction Without Information Loss. Information. 2025; 16(6):446. https://doi.org/10.3390/info16060446
Chicago/Turabian StyleHier, Daniel B., Michael A. Carrithers, Steven K. Platt, Anh Nguyen, Ioannis Giannopoulos, and Tayo Obafemi-Ajayi. 2025. "Preprocessing of Physician Notes by LLMs Improves Clinical Concept Extraction Without Information Loss" Information 16, no. 6: 446. https://doi.org/10.3390/info16060446
APA StyleHier, D. B., Carrithers, M. A., Platt, S. K., Nguyen, A., Giannopoulos, I., & Obafemi-Ajayi, T. (2025). Preprocessing of Physician Notes by LLMs Improves Clinical Concept Extraction Without Information Loss. Information, 16(6), 446. https://doi.org/10.3390/info16060446