Effects of Vegetation Restoration Type on Abundant and Scarce Soil Microbial Taxa in a Loess Plateau Mining Area
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Soil Sampling
2.2. Soil Physicochemical Properties
2.3. Soil DNA Analysis
2.4. Statistical Analyses
3. Results
3.1. Variations in Soil Physicochemical Properties and Carbon Fractions Across Vegetation Types
3.2. Composition of Abundant and Rare Bacterial/Fungal Communities in Soils Across Vegetation Types
3.3. Correlations Between Environmental Factors and Soil Microbial Communities (Abundant vs. Rare Taxa) Across Vegetation Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SOC | Soil organic carbon |
POC | Particulate organic carbon |
MAOC | Mineral-associated organic carbon |
DOC | Dissolved organic carbon |
MBC | Microbial biomass carbon |
ROC | Readily oxidizable organic carbon |
TN | Total nitrogen |
TP | Total phosphorus |
NH4+-N | Ammonium nitrogen |
NO3−-N | Nitrate nitrogen |
G | Grassland |
S | Shrubland |
GS | Mixed grass-shrub |
References
- Hossain, M.N.; Paul, S.K.; Hasan, M.M. Environmental impacts of coal mine and thermal power plant to the surroundings of Barapukuria, Dinajpur, Bangladesh. Environ. Monit. Assess. 2015, 187, 202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ma, J.; Yang, Y.J.; Luo, Z.B.; Wang, Y.F.; Chen, F. Mining subsidence-induced microtopographic effects alter the interaction of soil bacteria in the sandy pasture, China. Front. Environ. Sci. 2021, 9, 656708. [Google Scholar] [CrossRef]
- Keesstra, S.; Joao, N.; Agata, N.; David, F.; David, A.; Zahra, K.; Artemi, C. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef]
- Ma, J.; Hua, Z.Y.; Cheng, Y.J.; Zhu, Y.F.; Yang, Y.J.; Chen, F. Impacts of vegetation restoration type on abundant and rare microflora inreclaimed soil of open-pit mining area. Coal Sci. Technol. 2024, 52, 363–377. [Google Scholar]
- Zhang, Y.; Chen, X.Y.; Zhang, Y.; Wang, B. Quantitative contribution of climate change and vegetation restoration to ecosystem services in the Inner Mongolia under ecological restoration projects. Ecol. Indic. 2025, 171, 113240. [Google Scholar] [CrossRef]
- Shi, J.W.; Yang, L.; Liao, Y.; Li, J.W.; Jiao, S.; Shangguan, Z.P.; Deng, L. Soil labile organic carbon fractions mediate microbial community assembly processes during long-term vegetation succession in a semiarid region. iMeta 2023, 2, e142. [Google Scholar] [CrossRef]
- Yang, Y.L.; Xu, M.; Zhou, X.; Chen, J.; Zhang, J.; Zhang, J. Effects of different vegetation types on the characteristics of soil bacterial communities in the hilly area of Central Guizhou. J. Ecol. Rural Environ. 2021, 37, 518–525. [Google Scholar]
- Ma, X.D.; Qu, H.T.; Liao, S.M.; Dai, Y.; Ji, Y.; Li, J.P.; Chao, L.M.; Liu, H.J.; Bao, Y.Y. Changes in assembly processes and differential responses of soil microbial communities during mining disturbance in mining reclamation and surrounding grassland. CATENA 2023, 231, 107332. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, B.R.; Shen, J.K.; Xu, F.J.; Li, N.; Jia, P.H.; Jia, Y.J.; An, S.S.; Amoah, I.D.; Huang, Y.M. Shifts in C-degradation genes and microbial metabolic activity with vegetation types affected the surface soil organic carbon pool. Soil. Biol. Biochem. 2024, 192, 109371. [Google Scholar] [CrossRef]
- Lin, C.Y.; Li, X.L.; Zhang, Y.X.; Sun, H.J.; Li, C.Y.; Jin, L.Q.; Yang, X.G.; Liu, K. Responses of different degradation stages of alpine wetland on soil microbial community in the Yellow River source zone. Environ. Sci. 2021, 42, 3971–3984. [Google Scholar]
- Qiu, J.; Cao, J.; Lan, G.; Liang, Y.; Li, Q. The influence of land use patterns on soil bacterial community structure in the karst graben basin of Yunnan province, China. Forests 2020, 11, 51. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, Y.; Janssens, I.A.; Deng, Y.; He, X.J.; Liu, L.L.; Yi, Y.; Xiao, N.W.; Wang, X.D.; Li, C.; et al. Divergent rhizosphere and non-rhizosphere soil microbial structure and function in long-term warmed steppe due to altered root exudation. Glob. Change Biol. 2024, 30, e17111. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Quince, C.; Macdonald, C.A.; Khachane, A.; Thomas, N.; Abu Al-Soud, W.; Sorensen, S.J.; He, Z.L.; White, D.; Sinclair, A.; et al. Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environ. Microbiol. 2014, 16, 2408–2420. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Wang, J.M.; Wei, G.H.; Chen, W.M.; Lu, Y.H. Dominant role of abundant rather than rare bacterial taxa in maintaining agro-soil microbiomes under environmental disturbances. Chemosphere 2019, 235, 248–259. [Google Scholar] [CrossRef]
- Mo, Y.Y.; Zhang, W.J.; Yang, J.; Lin, Y.S.; Yu, Z.; Lin, S.J. Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME J. 2018, 12, 2198–2210. [Google Scholar] [CrossRef]
- Jousset, A.; Bienhold, C.; Chaztzinotas, A.; Gallien, L.; Gobet, A.; Kurm, V.; Küsel, K.; Rillig, M.C.; Rivett, D.W.; Salles, J.F.; et al. Where less may be more: How the rare biosphere pulls ecosystems strings. ISME J. 2017, 11, 853–862. [Google Scholar] [CrossRef]
- Liang, Y.; Xiao, X.; Nuccio, E.E.; Yuan, M.; Zhang, N.; Xue, K.; Cohan, F.M.; Zhou, J.; Sun, B.D. Differentiation strategies of soil rare and abundant microbial taxa in response to changing climatic regimes. Environ. Microbiol. 2020, 22, 1327–1340. [Google Scholar] [CrossRef]
- Xiong, D.; Ou, J.; Li, L.; Yang, S.; He, Y.; Li, C. Community composition and ecological function analysis of endophytic fungi in the roots of Rhododendron simsii in Pinus massoniana forest in Central Guizhou. Acta Ecol. Sin. 2020, 40, 1228–1239. [Google Scholar]
- Ma, L.; Niu, W.Q.; Li, G.C.; Du, Y.D.; Sun, J.; Zhang, Q.; Siddique, K.H.M. Crucial role of rare taxa in preserving bacterial community stability. Land Degrad. Dev. 2023, 35, 1397–1410. [Google Scholar] [CrossRef]
- Chen, G.; Ma, S.; Tian, D.I.; Xiao, W.; Jiang, L.; Xing, A.; Zou, A.; Zhou, L.; Shen, H.; Zheng, C.; et al. Patterns and determinants of soil microbial residues from tropical to boreal forests. Soil Biol. Biochem. 2020, 151, 108059. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, F.; Wu, S.; Wu, J.; Yan, J.; Xu, K.; Hong, Y. Biogeographic pattern of bacterioplanktonic community and potential function in the Yangtze River: Roles of abundant and rare taxa. Sci. Total Environ. 2020, 747, 141335. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.G.; Kuzyakov, Y.; Liang, Y.T. Drivers of microbially and plant-derived carbon in topsoil and subsoil. Glob. Change Biol. 2023, 29, 6188–6200. [Google Scholar] [CrossRef]
- Bai, Y.W.; Liu, C.Y.; Yuan, J.Q.; Li, P.F.; Guo, Q.; Wang, X.D.; Lai, H.X. Effects of different vegetation on soil microorganisms and carbon cycling genes in mining areas. J. Agro-Environ. Sci. 2025, 44, 1029–1045. [Google Scholar]
- Sun, Z.; Mao, Z.; Yang, L.; Liu, Z.; Han, J.; Wanag, H.; He, W. Impacts of climate change and afforestation on vegetation dynamic in the Mu Us Desert, China. Ecol. Indic. 2021, 129, 108020. [Google Scholar] [CrossRef]
- Bao, S.D. Agrochemical Analysis of Soil; China Agriculture Press: Beijing, China, 2008. [Google Scholar]
- Sheng, M.Y.; Xiong, K.N.; Wang, L.J.; Li, X.N.; Li, R.; Tian, X.J. Response of soil physical and chemical properties to rocky desertification succession in South China Karst. Carbonates Evaporites 2018, 33, 15–28. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K.; Elliott, E.T.; Combrink, C. Soil structure and organic matter I. distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 2000, 64, 681–689. [Google Scholar] [CrossRef]
- Wu, J.S.; Lin, Q.M.; Huang, Q.Y. Determination of soil microbial biomass and its application. In China Meteorological; Meteorological Press: Beijing, China, 2006. [Google Scholar]
- Ghani, A.; Dexter, M.; Perrott, K.W. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilization, grazing and cultivation. Soil. Biol. Biochem. 2003, 35, 1231–1243. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Zhou, Y.C.; Wang, S.J.; Huang, X.F. Change in SOC content in a small karst basin for the past 35 years and its influencing factors. Arch. Agron. Soil Sci. 2018, 64, 19–29. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, 590–596. [Google Scholar] [CrossRef]
- Jiao, S.; Chen, W.M.; Wei, G.H. Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils. Mol. Ecol. 2017, 26, 5305–5317. [Google Scholar] [CrossRef]
- Zhou, Z.B.; Zhang, Y.J.; Zhang, F.G. Abundant and rare bacteria possess different diversity and function in crop monoculture and rotation systems across regional farmland. Soil Biol. Biochem. 2022, 171, 108742. [Google Scholar] [CrossRef]
- Yang, Y.; Chai, Y.; Xie, H.; Zhang, L.; Zhang, Z.; Yang, X.; Hao, S.; Gai, J.; Chen, Y. Responses of soil microbial diversity, network complexity and multifunctionality to three land-use changes. Sci. Total Environ. 2023, 859, 160255. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhu, Y.; Ma, J.; Dong, W.; You, Y.; Yang, Y. Mechanism, potential and regulation of carbon sequestration and sink enhancement in ecological restoration of mining areas in the Loess Plateau. Coal Sci. Technol. 2023, 51, 502–513. [Google Scholar]
- Smith, J.L.; Paul, E.A. The significance of soil microbial biomass estimations. In Soil Biochemistry; Routledge: London, UK, 2017; pp. 357–398. [Google Scholar]
- Lange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.I.; Mellado-Vázquez, P.G.; Malik, A.A.; Roy, J.; Scheu, S.; et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 2015, 6, 6707. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Luo, H.; Wang, X.; Liu, H.; Peng, H.; Sheng, M.; Xu, F.; Xu, H. Effects of environmental factors on soil bacterial community structure and diversity in different contaminated districts of Southwest China mine tailings. Sci. Total Environ. 2022, 802, 149899. [Google Scholar] [CrossRef]
- Dong, W.; Ma, J.; He, H.; Zhu, Y.; You, Y.; Chen, F. Effects of land reclamation on soil microbial community structure and function in the Huang-Huai plain mining area. Coal Sci. Technol. 2023, 51, 223–233. [Google Scholar]
- Guo, Y.; Cheng, S.; Fang, H.; Yang, Y.; Li, Y.; Zhou, Y. Responses of soil fungal taxonomic attributes and enzyme activities to copper and cadmium co-contamination in paddy soils. Sci. Total Environ. 2022, 844, 157119. [Google Scholar] [CrossRef]
- Xu, Z.M.; Zhang, Y.X.; Wang, L.; Liu, C.G.; Sun, W.M.; Wang, Y.F.; Long, S.X.; He, X.T.; Lin, Z.; Liang, Z.; et al. Rhizobacteria communities reshaped by red mud based passivators is vital for reducing soil Cd accumulation in edible amaranth. Sci. Total Environ. 2022, 826, 154002. [Google Scholar] [CrossRef]
- Bastida, F.; Hernández, T.; Albaladejo, J.; García, C. Phylogenetic and functional changes in the microbial community of long-term restored soils under semiarid climate. Soil. Biol. Biochem. 2013, 65, 12–21. [Google Scholar] [CrossRef]
- Kong, J.; He, Z.; Chen, L.; Yang, R.; Du, J. Efficiency of biochar, nitrogen addition, and microbial agent amendments in remediation of soil properties and microbial community in Qilian Mountains mine soils. Ecol. Evol. 2021, 11, 9318–9331. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Hao, M.; Cui, Y.; Zhu, S.; Zhang, Y. Effects of vegetation restoration on soil bacterial communities, enzyme activities, and nutrients of reconstructed soil in a mining area on the Loess Plateau, China. Sustainability 2019, 11, 2295. [Google Scholar] [CrossRef]
- Zhu, B.; Karwautz, C.; Andrei, S.; Klingl, A.; Pernthaler, J.; Lueders, T. A novel Methylomirabilota methanotroph potentially couples methane oxidation to iodate reduction. mLife 2022, 1, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.X.; Tao, X.F.; Jia, R.; Hou, Y.R.; Li, Z.W.; Dong, Y.; Li, B.; Zhu, J. Effects of two rice-shrimp co-cultural models on soil organic nitrogen mineralization. J. South. Agric. 2022, 53, 1357–1367. [Google Scholar]
- Yang, Y.; Dou, Y.; Huang, Y.; An, S. Links between soil fungal diversity and plant and soil properties on the Loess Plateau. Front. Microbiol. 2017, 8, 2198. [Google Scholar] [CrossRef]
- Ma, J.J.; Yao, H.; Liu, H.; Tian, M.R. Evolution characteristics of soil nutrients and microorganisms during alfalfa restoration of mining area in Yanshan Mountain. J. Environ. Eng. Technol. 2023, 13, 270–279. [Google Scholar]
- Li, H.; Man, H.; Han, J.; Jia, X.; Wang, L.; Yang, H.; Shi, G. Soil Microorganism Interactions under Biological Fumigations Compared with Chemical Fumigation. Microorganisms 2024, 12, 2044. [Google Scholar] [CrossRef]
- Huang, L.; Bai, J.; Wang, J.; Zhang, G.; Wang, W.; Wang, X.; Zhang, L.; Wang, Y.; Liu, X.; Cui, B. Different stochastic processes regulate bacterial and fungal community assembly in estuarine wetland soils. Soil. Biol. Biochem. 2022, 167, 108586. [Google Scholar] [CrossRef]
- Bickel, S.; Or, D. The chosen few—Variations in common and rare soil bacteria across biomes. ISME J. 2021, 15, 3315–3325. [Google Scholar] [CrossRef]
- Pan, C.; Feng, Q.; Li, Y.; Li, Y.; Liu, L.; Yu, X.; Ren, S. Rare soil bacteria are more responsive in desertification restoration than abundant bacteria. Environ. Sci. Pollut. Res. 2022, 29, 33323–33334. [Google Scholar] [CrossRef]
- Liu, L.; Shi, J.S.; Gao, J.; Li, P.; Ren, Y.L.; Wang, L.Y. Effects of Long-Term Application of Organic Fertilizer on Rare and Abundant Bacterial Sub-Communities in Greenhouse Tomato Soil. Sci. Agric. Sin. 2023, 56, 3615–3628. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Y.; Zhou, D.; Zhao, H.; Li, P.; Sun, S.; Lai, H.; Guo, Q.; Shang, J. Effects of Vegetation Restoration Type on Abundant and Scarce Soil Microbial Taxa in a Loess Plateau Mining Area. Agronomy 2025, 15, 1383. https://doi.org/10.3390/agronomy15061383
Miao Y, Zhou D, Zhao H, Li P, Sun S, Lai H, Guo Q, Shang J. Effects of Vegetation Restoration Type on Abundant and Scarce Soil Microbial Taxa in a Loess Plateau Mining Area. Agronomy. 2025; 15(6):1383. https://doi.org/10.3390/agronomy15061383
Chicago/Turabian StyleMiao, Yanping, Daren Zhou, Hongchao Zhao, Pengfei Li, Shiqi Sun, Hangxian Lai, Qiao Guo, and Jianxuan Shang. 2025. "Effects of Vegetation Restoration Type on Abundant and Scarce Soil Microbial Taxa in a Loess Plateau Mining Area" Agronomy 15, no. 6: 1383. https://doi.org/10.3390/agronomy15061383
APA StyleMiao, Y., Zhou, D., Zhao, H., Li, P., Sun, S., Lai, H., Guo, Q., & Shang, J. (2025). Effects of Vegetation Restoration Type on Abundant and Scarce Soil Microbial Taxa in a Loess Plateau Mining Area. Agronomy, 15(6), 1383. https://doi.org/10.3390/agronomy15061383