Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (541)

Search Parameters:
Keywords = DC voltage gain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3607 KB  
Article
Dynamic Average-Value Modeling and Stability of Shipboard PV–Battery Converters with Curve-Scanning Global MPPT
by Andrei Darius Deliu, Emil Cazacu, Florențiu Deliu, Ciprian Popa, Nicolae Silviu Popa and Mircea Preda
Electricity 2025, 6(4), 66; https://doi.org/10.3390/electricity6040066 (registering DOI) - 12 Nov 2025
Abstract
Maritime power systems must reduce fuel use and emissions while improving resilience. We study a shipboard PV–battery subsystem interfaced with a DC–DC converter running maximum power point tracking (MPPT) and curve-scanning GMPPT to manage partial shading. Dynamic average-value models capture irradiance steps and [...] Read more.
Maritime power systems must reduce fuel use and emissions while improving resilience. We study a shipboard PV–battery subsystem interfaced with a DC–DC converter running maximum power point tracking (MPPT) and curve-scanning GMPPT to manage partial shading. Dynamic average-value models capture irradiance steps and show GMPPT sustains operation near the global MPP without local peak trapping. We compare converter options—conventional single-port stages, high-gain bidirectional dual-PWM converters, and three-level three-port topologies—provide sizing rules for passives, and note soft-switching in order to limit loss. A Fourier framework links the switching ripple to power quality metrics: as irradiance falls, the current THD rises while the PCC voltage distortion remains constant on a stiff bus. We make the loss relation explicit via Irms2R scaling with THDi and propose a simple reactive power policy, assigning VAR ranges to active power bins. For AC-coupled cases, a hybrid EMT plus transient stability workflow estimates ride-through margins and critical clearing times, providing a practical path from modeling to monitoring. Full article
Show Figures

Figure 1

23 pages, 7471 KB  
Article
Analysis of Transition Mode Operation and Characteristic Curves in a Buck–Boost Converter for Unmanned Guided Vehicles
by Kai-Jun Pai, Chih-Tsung Chang and Tzu-Chi Li
Electronics 2025, 14(22), 4388; https://doi.org/10.3390/electronics14224388 - 10 Nov 2025
Viewed by 50
Abstract
This study presents the development of a buck–boost converter for application in unmanned guided vehicles (UGVs). The converter was designed with its input connected to a lithium iron phosphate battery pack and its output connected to an inverter. This configuration enabled the inverter, [...] Read more.
This study presents the development of a buck–boost converter for application in unmanned guided vehicles (UGVs). The converter was designed with its input connected to a lithium iron phosphate battery pack and its output connected to an inverter. This configuration enabled the inverter, which powered the drive motor, to receive a stable DC voltage, thereby mitigating the effects of battery voltage fluctuations and enhancing the overall system stability. A pulse-width modulation (PWM) controller was employed to regulate the developed buck–boost converter. During the transition from buck mode to buck–boost mode, both power MOSFETs were simultaneously turned on; however, the datasheet of the PWM controller did not provide operational details or characteristic curve analysis for this mode. Therefore, this study derived the relationship between voltage gain and duty cycle ratio for the transition mode. To analyze the input voltage versus duty cycle characteristics, the linear equation was employed. This analytical model was adjusted to meet different converter specifications developed for experimental validation. Furthermore, the external-connect test capacitor method was used to extract the equivalent parasitic inductance and capacitance present in the practical circuit of the buck–boost converter. Based on these parameters, a snubber circuit was designed and connected across the drain–source terminals of the power MOSFETs to suppress voltage spikes occurring at the junctions. Finally, the developed buck–boost converter prototype was installed on an unmanned guided vehicle to convert the power from the lithium battery pack into the input power required by two inverters. A computer host was used to control the motor speed. By measuring the output voltage and current of the buck–boost converter, its electrical functionality and performance specifications were verified. The dimensions of the developed UGV chassis prototype were 40 cm in length, 45 cm in width, and 18.3 cm in height. Full article
Show Figures

Figure 1

30 pages, 16943 KB  
Article
Grid-Connected Bidirectional Off-Board Electric Vehicle Fast-Charging System
by Abdullah Haidar, John Macaulay and Zhongfu Zhou
Energies 2025, 18(22), 5913; https://doi.org/10.3390/en18225913 - 10 Nov 2025
Viewed by 141
Abstract
The widespread adoption of electric vehicles (EVs) is contingent on high-power fast-charging infrastructure that can also provide grid stabilization services through bidirectional power flow. While the constituent power stages of such off-board chargers are well-known, a critical research gap exists in their system-level [...] Read more.
The widespread adoption of electric vehicles (EVs) is contingent on high-power fast-charging infrastructure that can also provide grid stabilization services through bidirectional power flow. While the constituent power stages of such off-board chargers are well-known, a critical research gap exists in their system-level integration, where sub-optimal dynamic interaction between independently controlled stages often leads to DC-link instability and poor transient performance. This paper presents a rigorous, system-level study to address this gap by developing and optimizing a unified control framework for a high-power bidirectional EV fast-charging system. The system integrates a three-phase active front-end rectifier with an LCL filter and a four-phase interleaved bidirectional DC/DC converter. The methodology involves a holistic dynamic modeling of the coupled system, the design of a hierarchical control strategy augmented with a battery current feedforward scheme, and the system-wide optimization of all Proportional–Integral (PI) controller gains using the Artificial Bee Colony (ABC) algorithm. Comprehensive simulation results demonstrate that the proposed optimized control framework achieves a critically damped response, significantly outperforming a conventionally tuned baseline. Specifically, it reduces the DC-link voltage settling time during charging-to-discharging transitions by 74% (from 920 ms to 238 ms) and eliminates voltage undershoot, while maintaining excellent steady-state performance with grid current total harmonic distortion below 1.2%. The study concludes that system-wide metaheuristic optimization, rather than isolated component-level design, is key to unlocking the robust, high-performance operation required for next-generation EV fast-charging infrastructure, providing a validated blueprint for future industrial development. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

33 pages, 3575 KB  
Article
Small-Signal Modeling, Comparative Analysis, and Gain-Scheduled Control of DC–DC Converters in Photovoltaic Applications
by Vipinkumar Shriram Meshram, Fabio Corti, Gabriele Maria Lozito, Luigi Costanzo, Alberto Reatti and Massimo Vitelli
Electronics 2025, 14(21), 4308; https://doi.org/10.3390/electronics14214308 - 31 Oct 2025
Viewed by 278
Abstract
This paper presents an innovative approach to the modeling and dynamic analysis of DC–DC converters in photovoltaic applications. Departing from traditional studies that focus on the transfer function from duty cycle to output voltage, this work investigates the duty cycle to input voltage [...] Read more.
This paper presents an innovative approach to the modeling and dynamic analysis of DC–DC converters in photovoltaic applications. Departing from traditional studies that focus on the transfer function from duty cycle to output voltage, this work investigates the duty cycle to input voltage transfer function, which is critical for accurate dynamic representation of photovoltaic systems. A notable contribution of this study is the integration of the PV panel behavior in the small-signal representation, considering a model-derived differential resistance for various operating points. This technique enhances the model’s accuracy across different operating regions. The paper also validates the effectiveness of this linearization method through small-signal analysis. A comprehensive comparison is conducted among several non-isolated converter topologies such as Boost, Buck–Boost, Ćuk, and SEPIC under both open-loop and closed-loop conditions. To ensure fairness, all converters are designed using a consistent set of constraints, and controllers are tuned to maintain similar phase margins and crossover frequencies across topologies. In addition, a gain-scheduling control strategy is implemented for the Boost converter, where the PI gains are dynamically adapted as a function of the PV operating point. This approach demonstrates superior closed-loop performance compared to a fixed controller tuned only at the maximum power point, further highlighting the benefits of the proposed modeling and control framework. This systematic study therefore provides an objective evaluation of dynamic performance and offers valuable insights into optimal converter architectures and advanced control strategies for photovoltaic systems. Full article
(This article belongs to the Special Issue New Horizons and Recent Advances of Power Electronics)
Show Figures

Figure 1

27 pages, 7870 KB  
Review
Direct vs. Indirect Charge Transfer: A Paradigm Shift in Phase-Spanning Triboelectric Nanogenerators Focused on Liquid and Gas Interfaces
by Jee Hwan Ahn, Quang Tan Nguyen, Tran Buu Thach Nguyen, Md Fajla Rabbi, Van Hien Nguyen, Yoon Ho Lee and Kyoung Kwan Ahn
Energies 2025, 18(21), 5709; https://doi.org/10.3390/en18215709 - 30 Oct 2025
Viewed by 364
Abstract
Triboelectric nanogenerators (TENGs) have emerged as a promising technology for harvesting mechanical energy via contact electrification (CE) at diverse interfaces, including solid–liquid, liquid–liquid, and gas–liquid phases. This review systematically explores fluid-based TENGs (Flu-TENGs), introducing a foundational and novel classification framework based on direct [...] Read more.
Triboelectric nanogenerators (TENGs) have emerged as a promising technology for harvesting mechanical energy via contact electrification (CE) at diverse interfaces, including solid–liquid, liquid–liquid, and gas–liquid phases. This review systematically explores fluid-based TENGs (Flu-TENGs), introducing a foundational and novel classification framework based on direct versus indirect charge transfer to the charge-collecting electrode (CCE). This framework addresses a critical gap by providing the first unified analysis of charge transfer mechanisms across all major fluid interfaces, establishing a clear design principle for future device engineering. We comprehensively compare the underlying mechanisms and performance outcomes, revealing that direct charge transfer consistently delivers superior energy conversion—with specific studies achieving up to 11-fold higher current and 8.8-fold higher voltage in solid–liquid TENGs (SL-TENGs), 60-fold current and 3-fold voltage gains in liquid–liquid TENGs (LL-TENGs), and 34-fold current and 10-fold voltage enhancements in gas–liquid TENGs (GL-TENGs). Indirect mechanisms, relying on electrostatic induction, provide stable Alternating Current (AC) output ideal for low-power, long-term applications such as environmental sensors and wearable bioelectronics, while direct mechanisms enable high-efficiency Direct Current (DC) output suitable for energy-intensive systems including soft actuators and biomedical micro-pumps. This review highlights a paradigm shift in Flu-TENG design, where the deliberate selection of charge transfer pathways based on this framework can optimize energy harvesting and device performance across a broad spectrum of next-generation sensing, actuation, and micro-power systems. By bridging fundamental charge dynamics with application-driven engineering, this work provides actionable insights for advancing sustainable energy solutions and expanding the practical impact of TENG technology. Full article
(This article belongs to the Special Issue Advances in Energy Harvesting Systems)
Show Figures

Figure 1

9 pages, 1014 KB  
Proceeding Paper
Adaptive Observer-Based Robust Control of Mismatched Buck DC–DC Converters for Renewable Energy Applications
by Haris Sheh Zad, Abasin Ulasyar, Adil Zohaib and Sohail Khalid
Eng. Proc. 2025, 111(1), 22; https://doi.org/10.3390/engproc2025111022 - 27 Oct 2025
Viewed by 256
Abstract
This paper presents a new robust control strategy for buck DC–DC converters that achieve fast and robust voltage regulation in the presence of load disturbances and model uncertainties. First, an adaptive state observer is designed to estimate the inductor current and capacitor voltage [...] Read more.
This paper presents a new robust control strategy for buck DC–DC converters that achieve fast and robust voltage regulation in the presence of load disturbances and model uncertainties. First, an adaptive state observer is designed to estimate the inductor current and capacitor voltage by utilizing the output measurement. The observer gains are tuned online via a Lyapunov-based adaptation law, ensuring that the estimation error remains uniformly bounded, even when the disturbances act on the system. Based on the state estimates, an integral sliding-mode controller is designed in order to eliminate the steady state error and ensure the finite time sliding. The detailed stability proofs for both the observer and the sliding-mode controller are derived showing the finite-time reaching of the sliding surface and exponential convergence of the voltage error. Simulation results under varying load profiles confirm that the proposed scheme outperforms traditional sliding-mode designs in terms of disturbance rejection and settling time, while avoiding excessive chattering. Full article
Show Figures

Figure 1

31 pages, 2675 KB  
Article
Modeling and Experimental Verification of a Single-Switch Quadratic Boost DC–DC Converter with High Voltage Gain for Energy Harvesting
by Niloufar Dizangian, Slavisa Jovanovic and Philippe Poure
Energies 2025, 18(20), 5447; https://doi.org/10.3390/en18205447 - 16 Oct 2025
Viewed by 413
Abstract
This paper presents an enhanced non-isolated single-switch quadratic boost DC-DC converter. The proposed topology employs a single active switch, two inductors, two capacitors, and three diodes. The proposed design improves system reliability by replacing one of the active switches in a conventional cascaded [...] Read more.
This paper presents an enhanced non-isolated single-switch quadratic boost DC-DC converter. The proposed topology employs a single active switch, two inductors, two capacitors, and three diodes. The proposed design improves system reliability by replacing one of the active switches in a conventional cascaded boost converter with a diode. Two key features of this converter are its single switch, which simplifies operation, and the use of a lifting capacitor for voltage step-up. The reduced switch count and the use of Schottky diodes minimize switching losses and enhance overall efficiency. Comprehensive theoretical steady-state analysis under continuous conduction mode (CCM) is carried out to characterize the converter’s performance. Notably, at a 50% duty cycle, the converter achieves a voltage gain of four, while at a 70% duty cycle, it can reach a voltage gain of approximately 11. The proposed topology is validated through extensive simulations in MATLAB/Simulink (2023). In addition, a prototype with a 5 V input and 20 V output at a switching frequency of 50kHz was constructed and tested. The experimental unit achieved an efficiency of about 85% at a 5 V input. The results confirm that the converter achieves high voltage gain and improved efficiency, making it well-suited for IoT and energy harvesting applications. Full article
Show Figures

Figure 1

21 pages, 3305 KB  
Article
A Power Flow Sensitivity-Based Approach for Distributed Voltage Regulation and Power Sharing in Droop-Controlled DC Distribution Networks
by Nan Jiang, He Gao, Xingyu Zhang, Zhe Zhang, Yufei Peng and Dong Liang
Energies 2025, 18(20), 5382; https://doi.org/10.3390/en18205382 - 13 Oct 2025
Viewed by 334
Abstract
Aiming at the challenges of design complexity and parameter adjustment difficulties in existing distributed controllers, a novel power flow sensitivity-based distributed cooperative control approach is proposed for voltage regulation and power sharing in droop-controlled DC distribution networks (DCDNs). Firstly, based on the power [...] Read more.
Aiming at the challenges of design complexity and parameter adjustment difficulties in existing distributed controllers, a novel power flow sensitivity-based distributed cooperative control approach is proposed for voltage regulation and power sharing in droop-controlled DC distribution networks (DCDNs). Firstly, based on the power flow model of droop-controlled DCDNs, a comprehensive sensitivity model is established that correlates bus voltages, voltage source converter (VSC) loading rates, and VSC reference power adjustments. Leveraging the sensitivity model, a discrete-time linear state-space model is developed for DCDNs, using all VSC reference power as control variables, along with the weighted sum of the voltage deviation at the VSC connection point and the loading rate deviation of adjacent VSCs as state variables. A distributed consensus controller is then designed to alleviate the communication burden. The feedback gain design problem is formulated as an unconstrained multi-objective optimization model, which simultaneously enhances dynamic response speed, suppresses overshoot and oscillation, and ensures stability. The model can be efficiently solved by global optimization algorithms such as the genetic algorithm, and the feedback gains can be designed in a systematic and principled manner. The simulation results on a typical four-terminal DCDN under large power disturbances demonstrate that the proposed distributed control method achieves rapid voltage recovery and converter load sharing under a sparse communication network. The design complexity and parameter adjustment difficulties are greatly reduced without losing the control performance. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

20 pages, 17566 KB  
Article
An Isolated AC-DC LED Electronic Lighting Driver Circuit with Power Factor Correction
by Chun-An Cheng, Hung-Liang Cheng, En-Chih Chang and Man-Tang Chang
Electronics 2025, 14(19), 3953; https://doi.org/10.3390/electronics14193953 - 7 Oct 2025
Viewed by 502
Abstract
Light-emitting diodes (LEDs) have gained widespread adoption as solid-state lighting sources due to their compact size, long operational lifetime, high brightness, and mechanical robustness. This paper presents the development and implementation of an isolated AC-DC LED electronic lighting driver circuit that integrates a [...] Read more.
Light-emitting diodes (LEDs) have gained widespread adoption as solid-state lighting sources due to their compact size, long operational lifetime, high brightness, and mechanical robustness. This paper presents the development and implementation of an isolated AC-DC LED electronic lighting driver circuit that integrates a modified flyback converter with a lossless snubber circuit, along with inherent power factor correction (PFC). The proposed design operates the transformer’s magnetizing inductor in the discontinuous conduction mode (DCM), thereby naturally achieving PFC without the need for complex control circuitry. Furthermore, the circuit is capable of recycling the energy stored in the transformer’s leakage inductance, improving overall efficiency. The input current harmonics are shown to comply with the IEC 61000-3-2 Class C standard. A 72 W (36 V/2 A) prototype has been constructed and tested under a 110 V AC input. Experimental results confirm the effectiveness of the proposed design, achieving a power factor of 0.9816, a total harmonic distortion (THD) of 12.094%, an output voltage ripple factor of 9.7%, and an output current ripple factor of 11.22%. These results validate the performance and practical viability of the proposed LED driver architecture. Full article
Show Figures

Figure 1

21 pages, 4687 KB  
Article
Non-Isolated High Step-Up DC-DC Interleaved Boost Converter Based on Coupled Inductors and Voltage Multiplier Cells
by Thaís Carvalho Salvador, Rafael Mario da Silva, Waner Wodson Aparecido Goncalves Silva, Nedson Joaquim Maia, Fernando Lessa Tofoli and Enio Roberto Ribeiro
Energies 2025, 18(19), 5199; https://doi.org/10.3390/en18195199 - 30 Sep 2025
Viewed by 446
Abstract
This work introduces a non-isolated high step-up dc-dc interleaved boost converter combining magnetic coupling and voltage multiplier cells (VMCs). The proposed topology features a transformer with two primary windings of equal turns, interconnected to each other, enabling improved current sharing, and multiple secondary [...] Read more.
This work introduces a non-isolated high step-up dc-dc interleaved boost converter combining magnetic coupling and voltage multiplier cells (VMCs). The proposed topology features a transformer with two primary windings of equal turns, interconnected to each other, enabling improved current sharing, and multiple secondary windings that contribute to extending the voltage gain. A three-winding coupled inductor is integrated into the design, while VMCs not only boost the output voltage but also significantly reduce the voltage stresses on the switches, eliminating the need for extreme duty ratios. The converter exhibits inherent modularity, allowing for voltage gain adjustments either through the turns ratio of the coupled inductor or by incorporating additional VMCs. An in-depth analysis of the topology is derived, and an experimental prototype rated at 48 V/400 V, 25 kHz, and 1 kW is implemented to verify and validate the theoretical claims, achieving an efficiency of 95.12% at full-load conditions. Full article
Show Figures

Figure 1

24 pages, 6128 KB  
Article
DC/AC/RF Characteristic Fluctuation of N-Type Bulk FinFETs Induced by Random Interface Traps
by Sekhar Reddy Kola and Yiming Li
Processes 2025, 13(10), 3103; https://doi.org/10.3390/pr13103103 - 28 Sep 2025
Viewed by 438
Abstract
Three-dimensional bulk fin-type field-effect transistors (FinFETs) have been the dominant devices since the sub-22 nm technology node. Electrical characteristics of scaled devices suffer from different process variation effects. Owing to the trapping and de-trapping of charge carriers, random interface traps (RITs) degrade device [...] Read more.
Three-dimensional bulk fin-type field-effect transistors (FinFETs) have been the dominant devices since the sub-22 nm technology node. Electrical characteristics of scaled devices suffer from different process variation effects. Owing to the trapping and de-trapping of charge carriers, random interface traps (RITs) degrade device characteristics, and, to study this effect, this work investigates the impact of RITs on the DC/AC/RF characteristic fluctuations of FinFETs. Under high gate bias, the device screening effect suppresses large fluctuations induced by RITs. In relation to different densities of interface traps (Dit), fluctuations of short-channel effects, including potential barriers and current densities, are analyzed. Bulk FinFETs exhibit entirely different variability, despite having the same number of RITs. Potential barriers are significantly altered when devices with RITs are located near the source end. An analysis and a discussion of RIT-fluctuated gate capacitances, transconductances, cut-off, and 3-dB frequencies are provided. Under high Dit conditions, we observe ~146% variation in off-state current, ~26% in threshold voltage, and large fluctuations of ~107% and ~131% in gain and cut-off frequency, respectively. The effects of the random position of RITs on both AC and RF characteristic fluctuations are also discussed and designed in three different scenarios. Across all densities of interface traps, the device with RITs near the drain end exhibits relatively minimal fluctuations in gate capacitance, voltage gain, cut-off, and 3-dB frequencies. Full article
(This article belongs to the Special Issue New Trends in the Modeling and Design of Micro/Nano-Devices)
Show Figures

Figure 1

26 pages, 9188 KB  
Article
Revolutionizing Hybrid Microgrids Enhanced Stability and Efficiency with Nonlinear Control Strategies and Optimization
by Rimsha Ghias, Atif Rehman, Hammad Iqbal Sherazi, Omar Alrumayh, Abdulrahman Alsafrani and Abdullah Alburidy
Energies 2025, 18(19), 5061; https://doi.org/10.3390/en18195061 - 23 Sep 2025
Viewed by 409
Abstract
Microgrid systems play a vital role in managing distributed energy resources like solar, wind, batteries, and supercapacitors. However, maintaining stable AC/DC bus voltages and minimizing grid reliance under dynamic conditions is challenging. Traditional control methods such as Sliding Mode Controllers (SMCs) suffer from [...] Read more.
Microgrid systems play a vital role in managing distributed energy resources like solar, wind, batteries, and supercapacitors. However, maintaining stable AC/DC bus voltages and minimizing grid reliance under dynamic conditions is challenging. Traditional control methods such as Sliding Mode Controllers (SMCs) suffer from issues like chattering and slow convergence, reducing practical effectiveness. This paper proposes a hybrid AC/DC microgrid that operates in both grid-connected and islanded modes while ensuring voltage stability and efficient energy use. A Conditional-Based Super-Twisting Sliding Mode Controller (CBSTSMC) is employed to address the limitations of conventional SMCs. The CBSTSMC enhances system performance by reducing chattering, improving convergence speed, and offering better tracking and disturbance rejection. To further refine controller performance, an Improved Grey Wolf Optimization (IGWO) algorithm is used for gain tuning, resulting in enhanced system robustness and precision. An Energy Management System (EMS) is integrated to intelligently regulate power flow based on renewable generation and storage availability. The proposed system is tested in real time using a Texas Instruments Delfino C2000 microcontroller through a Controller-in-the-Loop (CIL) setup. The simulation and hardware results confirm the system’s ability to maintain stability and reliability under diverse operating scenarios, proving its suitability for future smart grid applications. Full article
Show Figures

Figure 1

22 pages, 2333 KB  
Article
RST-Controlled Interleaved Boost Converters for Enhanced Stability in CPL-Dominated DC Microgrids
by Abdullrahman A. Al-Shammaa, Hassan M. Hussein Farh, Hammed Olabisi Omotoso, AL-Wesabi Ibrahim, Akram M. Abdurraqeeb and Abdulrhman Alshaabani
Symmetry 2025, 17(10), 1585; https://doi.org/10.3390/sym17101585 - 23 Sep 2025
Viewed by 474
Abstract
Microgrids have emerged as a crucial solution for addressing environmental concerns, such as reducing greenhouse gas emissions and enhancing energy sustainability. By incorporating renewable energy sources like solar and wind, microgrids improve energy efficiency and offer a cleaner alternative to conventional power grids. [...] Read more.
Microgrids have emerged as a crucial solution for addressing environmental concerns, such as reducing greenhouse gas emissions and enhancing energy sustainability. By incorporating renewable energy sources like solar and wind, microgrids improve energy efficiency and offer a cleaner alternative to conventional power grids. Among various microgrid architectures, DC microgrids are gaining significant attention due to their higher efficiency, reduced reactive power losses, and direct compatibility with renewable energy sources and energy storage systems. However, DC microgrids face stability challenges, particularly due to the presence of constant power loads (CPLs), which exhibit negative incremental impedance characteristics. These loads can destabilize the system, leading to oscillations and performance degradation. This paper explores various control strategies designed to enhance the stability and dynamic response of DC microgrids, with a particular focus on interleaved boost converters (IBCs) interfaced with CPLs. Traditional control methods, including proportional–integral (PI) and sliding mode control (SMC), have shown limitations in handling dynamic variations and disturbances. To overcome these challenges, this paper proposes a novel RST-based control strategy for IBCs, offering improved stability, adaptability, and disturbance rejection. The efficacy of the RST controller is validated through extensive simulations tests, demonstrating competitive performance in maintaining DC bus voltage regulation and current distribution. Key performance indicators demonstrate competitive performance, including settling times below 40 ms for voltage transients, overshoot limited to ±2%, minimal voltage deviation from the reference, and precise current sharing between interleaved phases. The findings contribute to advancing the stability and efficiency of DC microgrids, facilitating their broader adoption in modern energy systems. Full article
Show Figures

Figure 1

23 pages, 7026 KB  
Article
Modeling, Simulation, and Performance Evaluation of a Commercial Electric Scooter
by Sajad Solgi, Andreas Stadler, Kazem Pourhossein, Amra Jahic, Maik Plenz and Detlef Schulz
World Electr. Veh. J. 2025, 16(9), 529; https://doi.org/10.3390/wevj16090529 - 18 Sep 2025
Viewed by 705
Abstract
As electric scooters (e-scooters) continue to populate city streets and gain popularity as a key mode of micro-mobility, issues such as their energy consumption and demand from the power grid, as well as optimizing their electrical systems, become increasingly important. Improving performance requires [...] Read more.
As electric scooters (e-scooters) continue to populate city streets and gain popularity as a key mode of micro-mobility, issues such as their energy consumption and demand from the power grid, as well as optimizing their electrical systems, become increasingly important. Improving performance requires a deep understanding of their electrical behavior and the design of smart control strategies. This paper presents a detailed analysis of the entire electrical system of commercial electric scooters, with a particular focus on the performance of key components such as the permanent magnet brushless direct current motor and the lithium-ion battery system. The study involves modeling and simulation of motor control, battery management, and DC-link voltage stabilization using MATLAB/Simulink. The simulations are complemented by laboratory measurements of the motor performance in an SXT Scooters MAX unit under various operating conditions. Additionally, a complete battery charging cycle is analyzed to evaluate charging characteristics and usable energy storage capacity. This paper presents a first step for researchers interested in studying the electrical systems of e-scooters. Additionally, it can serve as educational material for electrical engineers in the field of e-scooters. Full article
Show Figures

Figure 1

18 pages, 9662 KB  
Article
Isolated Bipolar Bidirectional Three-Port Converter with Voltage Self-Balancing Capability for Bipolar DC Microgrids
by Shusheng Wang, Chunxing Lian, Zhe Li, Zhenyu Zheng, Hai Zhou and Binxin Zhu
Electronics 2025, 14(18), 3672; https://doi.org/10.3390/electronics14183672 - 17 Sep 2025
Viewed by 425
Abstract
Bipolar DC microgrids gain significant attention for their flexible structure, high power supply reliability, and strong compatibility with distributed power sources. However, inter-pole voltage imbalance undermines system operational stability. An isolated bipolar bidirectional three-port converter with voltage self-balancing capability is proposed in this [...] Read more.
Bipolar DC microgrids gain significant attention for their flexible structure, high power supply reliability, and strong compatibility with distributed power sources. However, inter-pole voltage imbalance undermines system operational stability. An isolated bipolar bidirectional three-port converter with voltage self-balancing capability is proposed in this paper, which can serve as the interface between the energy storage system and bipolar bus while achieving automatic voltage balance between poles. Unlike traditional bidirectional grid-connected voltage balancers (VBs), the proposed converter requires no additional voltage monitoring or complex control systems. The operating modes, soft-switching boundary conditions, and inter-pole voltage self-balancing mechanism are elaborated. A 1 kW experimental prototype has been built to validate the theoretical analysis of the proposed converter. Full article
Show Figures

Figure 1

Back to TopTop