DC/AC/RF Characteristic Fluctuation of N-Type Bulk FinFETs Induced by Random Interface Traps
Abstract
1. Introduction
2. The Statistical Device Simulation
3. Results and Discussion
3.1. RITs Impact on DC Characteristics
3.2. Significance of Interface Trap Random Position
3.3. Impact of RITs on Drain Cureent Mismatch
3.4. Impact of RITs on RTS Noise
3.5. Impact of RITs on AC Characteristics
3.6. Significance of RITs on RF Characteristics
3.7. Significance of Interface Trap Random Position on RF and AC Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Dit | Density of Interface Trap |
HKMG | High-κ metal gate |
RIT | Random Interface Trap |
FinFET | Fin Field-Effect Transistor |
References
- Nagy, D.; Espineira, G.; Indalecio, G.; Garcia-Loureiro, A.J.; Kalna, K.; Seoane, N. Benchmarking of FinFET, Nanosheet, and Nanowire FET Architectures for Future Technology Nodes. IEEE Access 2020, 8, 53196–53202. [Google Scholar] [CrossRef]
- Gupta, A.; Mertens, H.; Tao, Z.; Demuynck, S.; Bommels, J.; Arutchelvan, G.; Devriendt, K.; Pedreira, O.V.; Ritzenthaler, R.; Wang, S.; et al. Buried Power Rail Integration with Si FinFETs for CMOS Scaling beyond the 5 Nm Node. IEEE Trans. Electron. Devices 2020, 67, 5349–5354. [Google Scholar] [CrossRef]
- Ciou, F.M.; Lin, J.H.; Chen, P.H.; Chang, T.C.; Chang, K.C.; Hsu, J.T.; Lin, Y.S.; Jin, F.Y.; Hung, W.C.; Yeh, C.H.; et al. Comparison of the Hot Carrier Degradation of N- And P-Type Fin Field-Effect Transistors in 14-Nm Technology Nodes. IEEE Electron. Device Lett. 2021, 42, 1420–1423. [Google Scholar] [CrossRef]
- Das, U.K.; Hussain, M.M. Benchmarking Silicon FinFET with the Carbon Nanotube and 2D-FETs for Advanced Node CMOS Logic Application. IEEE Trans. Electron. Devices 2021, 68, 3643–3648. [Google Scholar] [CrossRef]
- Chiang, C.K.; Pai, H.; Lin, J.L.; Chang, J.K.; Lee, M.Y.; Hsieh, E.; Li, K.S.; Luo, G.L.; Cheng, O.; Chung, S.S. FinFET Plus: A Scalable FinFET Architecture with 3D Air-Gap and Air-Spacer Toward the 3nm Generation and Beyond. In Proceedings of the 2021 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Sinchu, Taiwan, 19–22 April 2021; pp. 2–3. [Google Scholar] [CrossRef]
- International Roadmap for Devices and SystemsTM. Available online: https://irds.ieee.org/editions/2021 (accessed on 10 August 2025).
- Kushwaha, P.; Agarwal, H.; Lin, Y.K.; Kao, M.Y.; Duarte, J.P.; Chang, H.L.; Wong, W.; Fan, J.; Xia, Y.; Chauhan, Y.S.; et al. Modeling of Advanced RF Bulk FinFETs. IEEE Electron. Device Lett. 2018, 39, 791–794. [Google Scholar] [CrossRef]
- Lu, P.; Colombeau, B.; Hung, S.; Li, W.; Duan, X.; Li, Y.; Bazizi, E.M.; Natarajan, S.; Woo, J.C.S. Source/Drain Extension Doping Engineering for Variability Suppression and Performance Enhancement in 3-Nm Node FinFETs. IEEE Trans. Electron. Devices 2021, 68, 1352–1357. [Google Scholar] [CrossRef]
- Wu, S.Y.; Lin, C.Y.; Chiang, M.C.; Liaw, J.J.; Cheng, J.Y.; Yang, S.H.; Tsai, C.H.; Chen, P.N.; Miyashita, T.; Chang, C.H.; et al. A 7nm CMOS Platform Technology Featuring 4th Generation FinFET Transistors with a 0.027um2 High Density 6-T SRAM Cell for Mobile SoC Applications. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2017; pp. 2.6.1–2.6.4. [Google Scholar] [CrossRef]
- Sreenivasulu, V.B.; Nelam, A.K.; Kola, S.R.; Singh, J.; Li, Y. Exploring the Performance of 3-D Nanosheet FET in Inversion and Junctionless Modes: Device and Circuit-Level Analysis and Comparison. IEEE Access 2023, 11, 90421–90429. [Google Scholar] [CrossRef]
- Nagy, D.; Indalecio, G.; Garcia-Loureiro, A.J.; Elmessary, M.A.; Kalna, K.; Seoane, N. FinFET versus Gate-All-around Nanowire FET: Performance, Scaling, and Variability. IEEE J. Electron. Devices Soc. 2018, 6, 332–340. [Google Scholar] [CrossRef]
- Yoon, J.S.; Jeong, J.; Lee, S.; Baek, R.H. Systematic DC/AC Performance Benchmarking of Sub-7-Nm Node FinFETs and Nanosheet FETs. IEEE J. Electron. Devices Soc. 2018, 6, 942–947. [Google Scholar] [CrossRef]
- Eng, Y.C.; Hu, L.; Chang, T.F.; Hsu, S.; Chiou, C.M.; Wang, T.; Yang, C.W.; Cheng, O.; Wang, C.Y.; Tseng, C.S.; et al. Importance of Δ VDIBLSS/(Ion /Ioff) in Evaluating the Performance of n-Channel Bulk FinFET Devices. IEEE J. Electron. Devices Soc. 2018, 6, 207–213. [Google Scholar] [CrossRef]
- Lederer, D.; Parvais, B.; Mercha, A.; Collaert, N.; Jurczak, M.; Raskin, J.P.; Decoutere, S. Dependence of FinFET RF Performance on Fin Width. In Proceedings of the Digest of Papers. 2006 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, San Diego, CA, USA, 8–20 January 2006; pp. 8–11. [Google Scholar] [CrossRef]
- Razavieh, A.; Chen, Y.; Ethirajan, T.; Gu, M.; Cimino, S.; Shimizu, T.; Hassan, M.K.; Morshed, T.; Singh, J.; Zheng, W.; et al. Extremely-Low Threshold Voltage FinFET for 5G MmWave Applications. Kola 2021, 9, 165–169. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, H.W. Random Interface-Traps-Induced Electrical Characteristic Fluctuation in 16-Nm-Gate High-κ/Metal Gate Complementary Metal-Oxide-Semiconductor Device and Inverter Circuit. Jpn. J. Appl. Phys. 2012, 51, 04DC08. [Google Scholar] [CrossRef]
- Seoane, N.; Fernandez, J.G.; Kalna, K.; Comesana, E.; Garcia-Loureiro, A. Simulations of Statistical Variability in N-Type FinFET, Nanowire, and Nanosheet FETs. IEEE Electron. Device Lett. 2021, 42, 1416–1419. [Google Scholar] [CrossRef]
- Vincent, B.; Hathwar, R.; Kamon, M.; Ervin, J.; Schram, T.; Chiarella, T.; Demuynck, S.; Baudot, S.; Siew, Y.K.; Kubicek, S.; et al. Process Variation Analysis of Device Performance Using Virtual Fabrication: Methodology Demonstrated on a CMOS 14-Nm FinFET Vehicle. IEEE Trans. Electron. Devices 2020, 67, 5374–5380. [Google Scholar] [CrossRef]
- Makarov, A.; Linten, D.; Tyaginov, S.; Kaczer, B.; Roussel, P.; Chasin, A.; Vandemaele, M.; Hellings, G.; El-Sayed, A.M.; Jech, M.; et al. Stochastic Modeling of the Impact of Random Dopants on Hot-Carrier Degradation in n-FinFETs. IEEE Electron. Device Lett. 2019, 40, 870–873. [Google Scholar] [CrossRef]
- Wang, L.; Brown, A.R.; Nedjalkov, M.; Alexander, C.; Cheng, B.; Millar, C.; Asenov, A. Impact of Self-Heating on the Statistical Variability in Bulk and SOI FinFETs. IEEE Trans. Electron. Devices 2015, 62, 2106–2112. [Google Scholar] [CrossRef]
- Wang, X.; Brown, A.R.; Cheng, B.; Asenov, A. Statistical Variability and Reliability in Nanoscale FinFETs. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Sumangala, M.P.; Shylendra, A.; Frank, D.J.; Ando, T.; Trivedi, A.R. A Simulation Study on Minimizing Threshold Voltage Variability by Optimizing Oxygen Vacancy Concentration under Metal Gate Granularity. IEEE Electron. Device Lett. 2020, 41, 1396–1399. [Google Scholar] [CrossRef]
- Kola, S.R.; Li, Y.; Chen, C.; Chuang, M. A Unified Statistical Analysis of Comprehensive Fluctuations of Gate-All-Around Silicon Nanosheet MOSFETs Induced by RDF, ITF, and WKF Simultaneously. In Proceedings of the 2022 23rd International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 6–7 April 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Butola, R.; Li, Y.; Kola, S.R.; Chen, C.Y.; Chuang, M.H. Artificial Neural Network-Based Modeling for Estimating the Effects of Various Random Fluctuations on DC/Analog/RF Characteristics of GAA Si Nanosheet FETs. IEEE Trans. Microw. Theory Tech. 2022, 70, 4835–4848. [Google Scholar] [CrossRef]
- Butola, R.; Li, Y.; Kola, S.R. A Machine Learning Approach to Modeling Intrinsic Parameter Fluctuation of Gate-All-Around Si Nanosheet MOSFETs. IEEE Access 2022, 10, 71356–71369. [Google Scholar] [CrossRef]
- Kola, S.R.; Li, Y.; Thoti, N. Characteristics of Gate-All-Around Silicon Nanowire and Nanosheet MOSFETs with Various Spacers. In Proceedings of the 2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Kobe, Japan, 23 September–6 October 2020; pp. 79–82. [Google Scholar] [CrossRef]
- Kola, S.R.; Chuang, M.H.; Li, Y. Characteristics Fluctuation of Sub-3-Nm Bulk FinFET Devices Induced by Random Interface Traps. In Proceedings of the 2023 IEEE 23rd International Conference on Nanotechnology (NANO), Jeju City, Republic of Korea, 2–5 July 2023; pp. 917–922. [Google Scholar] [CrossRef]
- Fan, M.L.; Hu, V.P.H.; Chen, Y.N.; Su, P.; Chuang, C.-T. Impacts of Random Telegraph Noise on FinFET Devices, 6T SRAM Cell, and Logic Circuits. In Proceedings of the 2012 IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, USA, 15–19 April 2012; pp. 2227–2234. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, B.; Brown, A.R.; Millar, C.; Kuang, J.B.; Nassif, S.; Asenov, A. Impact of Statistical Variability and Charge Trapping on 14 Nm SOI FinFET SRAM Cell Stability. In Proceedings of the 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC), Bucharest, Romania, 16–20 September 2013; pp. 234–237. [Google Scholar] [CrossRef]
- Rzepa, G.; Waltl, M.; Goes, W.; Kaczer, B.; Grasser, T. Microscopic Oxide Defects Causing BTI, RTN, and SILC on High-k FinFETs. In Proceedings of the 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Washington, DC, USA, 9–11 September 2015; pp. 144–147. [Google Scholar] [CrossRef]
- Ohguro, T.; Inaba, S.; Kaneko, A.; Okano, K. Technology of FinFET for High RF and Analog/Mixed-Signal Performance Circuits. IEICE Trans. Electron. 2015, E98C, 455–460. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, P.; Wei, K.; Zeng, L.; Liu, X.; Du, G.; Zhang, X.; Kang, J. Impact of Random Interface Traps and Random Dopants in High-k /Metal Gate Junctionless FETs. IEEE Trans. Nanotechnol. 2014, 13, 584–588. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, K.; Liu, X.; Du, G.; Kang, J. Random Interface Trap Induced Fluctuation in 22nm High-k/Metal Gate Junctionless and Inversion-Mode FinFETs. In Proceedings of the 2013 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, Taiwan, 22–24 April 2013; pp. 54–55. [Google Scholar] [CrossRef]
- Boksteen, B.K.; Schmitz, J.; Hueting, R.J.E. Interface Trap Density Estimation in FinFETs Using the gm/ID Method in the Subthreshold Regime. IEEE Trans. Electron Devices 2016, 63, 1814–1820. [Google Scholar] [CrossRef]
- Yang, H.; Luo, W.; Zhou, L.; Xu, H.; Tang, B.; Simoen, E.; Yin, H.; Zhu, H.; Zhao, C.; Wang, W.; et al. Impact of ALD TiN Capping Layer on Interface Trap and Channel Hot Carrier Reliability of HKMG NMOSFETs. IEEE Electron. Device Lett. 2018, 39, 1129–1132. [Google Scholar] [CrossRef]
- Kola, S.R.; Li, Y.; Thoti, N. Random Telegraph Noise in Gate-All-around Silicon Nanowire MOSFETs Induced by a Single Charge Trap or Random Interface Traps. J. Comput. Electron. 2020, 19, 253–262. [Google Scholar] [CrossRef]
- Makarov, A.; Linten, D.; Tyaginov, S.; Kaczer, B.; Roussel, P.; Chasin, A.; Vandemaele, M.; Hellings, G.; El-Sayed, A.M.; Jech, M.; et al. Stochastic Modeling of Hot-Carrier Degradation in NFinFETs Considering the Impact of Random Traps and Random Dopants. In Proceedings of the ESSDERC 2019—49th European Solid-State Device Research Conference (ESSDERC), Cracow, Poland, 23–26 September 2019; pp. 262–265. [Google Scholar] [CrossRef]
- Butola, R.; Li, Y.; Kola, S.R. Machine Learning Approach to Characteristic Fluctuation of Bulk FinFETs Induced by Random Interface Traps. In Proceedings of the 2022 23rd International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 6–7 April 2022; pp. 1–6. [Google Scholar]
- Hsu, S.C.; Li, Y. Electrical Charact eristic Fluctuation of 16-Nm-Gate High-κ/Metal Gate Bulk FinFET Devices in the Presence of Random Interface Traps. Nanoscale Res. Lett. 2014, 9, 633. [Google Scholar] [CrossRef]
- Yoon, J.S.; Baek, R.H. Device Design Guideline of 5-Nm-Node FinFETs and Nanosheet FETs for Analog/RF Applications. IEEE Access 2020, 8, 189395–189403. [Google Scholar] [CrossRef]
- Cheng, H.W.; Li, F.H.; Han, M.H.; Yiu, C.Y.; Yu, C.H.; Lee, K.F.; Li, Y. 3D Device Simulation of Work Function and Interface Trap Fluctuations on High-κ / Metal Gate Devices. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 379–382. [Google Scholar] [CrossRef]
- Fan, M.L.; Hu, V.P.H.; Chen, Y.N.; Su, P.; Chuang, C. Te Analysis of Single-Trap-Induced Random Telegraph Noise and Its Interaction with Work Function Variation for Tunnel FET. IEEE Trans. Electron. Devices 2013, 60, 2038–2044. [Google Scholar] [CrossRef]
- Adamu-lema, F.; Compagnoni, C.M.; Amoroso, S.M.; Castellani, N.; Gerrer, L.; Markov, S.; Spinelli, A.S.; Member, S.; Lacaita, A.L.; Asenov, A. Accuracy and Issues of the Spectroscopic Analysis of RTN Traps in Nanoscale MOSFETs. IEEE Trans. Electron. Devices 2013, 60, 833–839. [Google Scholar] [CrossRef]
- Gerrer, L.; Amoroso, S.; Hussin, R.; Adamu-Lema, F.; Asenov, A. 3D Atomistic Simulations of Bulk, FDSOI and Fin FETs Sensitivity to Oxide Reliability. In Proceedings of the 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Yokohama, Japan, 9–11 September 2014; pp. 93–96. [Google Scholar] [CrossRef]
- Georgiev, V.P.; Amoroso, S.M.; Gerrer, L.; Adamu-Lema, F.; Asenov, A. Interplay between Quantum Mechanical Effects and a Discrete Trap Position in Ultra-Scaled FinFETs. In Proceedings of the 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Washington, DC, USA, 9–11 September 2015; pp. 246–249. [Google Scholar]
- Li, Y.; Chang, H.T.; Lai, C.N.; Chao, P.J.; Chen, C.Y. Process Variation Effect, Metal-Gate Work-Function Fluctuation and Random Dopant Fluctuation of 10-Nm Gate-All-around Silicon Nanowire MOSFET Devices. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 887–890. [Google Scholar] [CrossRef]
- Eng, Y.-C.; Hu, L.; Chang, T.-F.; Wang, C.-Y.; Hsu, S.; Cheng, O.; Lin, C.-T.; Lin, Y.-S.; Tsai, Z.-J.; Yang, C.-W.; et al. Significance of Overdrive Voltage in the Analysis of Short-Channel Behaviors of n-FinFET Devices. IEEE J. Electron. Devices Soc. 2022, 10, 281–288. [Google Scholar] [CrossRef]
- Kola, S.R.; Li, Y.; Thoti, N. Effects of a Dual Spacer on Electrical Characteristics and Random Telegraph Noise of Gate-All-around Silicon Nanowire p-Type Metal—Oxide—Semiconductor Field-Effect Transistors. Jpn. J. Appl. Phys. 2020, 51, SGGA02. [Google Scholar] [CrossRef]
- Young, C.D.; Akarvardar, K.; Baykan, M.O.; Matthews, K.; Ok, I.; Ngai, T.; Ang, K.W.; Pater, J.; Smith, C.E.; Hussain, M.M.; et al. (110) and (100) Sidewall-Oriented FinFETs: A Performance and Reliability Investigation. Solid. State. Electron. 2012, 78, 2–10. [Google Scholar] [CrossRef]
- Chang, L.; Ieong, M.; Yang, M. CMOS Circuit Performance Enhancement by Surface Orientation Optimization. IEEE Trans. Electron. Devices 2004, 51, 1621–1627. [Google Scholar] [CrossRef]
- Elmessary, M.A.; Nagy, D.; Aldegunde, M.; Garcia-Loureiro, A.J.; Kalna, K. 3D MC Simulations of Strain, Channel Orientation, and Quantum Confinement Effects in Nanoscale Si SOI FinFETs. In Proceedings of the 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg, Germany, 6–8 September 2016; Volume 110, pp. 229–232. [Google Scholar] [CrossRef]
- Goel, A.; Rawat, A.; Rawat, B. Benchmarking of Analog/RF Performance of Fin-FET, NW-FET, and NS-FET in the Ultimate Scaling Limit. IEEE Trans. Electron. Devices 2022, 69, 1298–1305. [Google Scholar] [CrossRef]
- Hong, B.H.; Cho, N.; Lee, S.J.; Yu, Y.S.; Choi, L.; Jung, Y.C.; Cho, K.H.; Yeo, K.H.; Kim, D.W.; Jin, G.Y.; et al. Subthreshold Degradation of Gate-All-around Silicon Nanowire Field-Effect Transistors: Effect of Interface Trap Charge. IEEE Electron. Device Lett. 2011, 32, 1179–1181. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, R.; Huang, Q.; Huang, R. A Comparative Study on the Impacts of Interface Traps on Tunneling FET and MOSFET. IEEE Trans. Electron. Devices 2014, 61, 1284–1291. [Google Scholar] [CrossRef]
- Cassé, M.; Garros, X.; Weber, O.; Andrieu, F.; Reimbold, G.; Boulanger, F. A Study of N-Induced Traps Due to a Nitrided Gate in High-κ/Metal Gate NMOSFETs and Their Impact on Electron Mobility. Solid. State. Electron. 2011, 65–66, 139–145. [Google Scholar] [CrossRef]
- Satter, M.M.; Haque, A. Modeling Effects of Interface Traps on the Gate C-V Characteristics of MOS Devices on Alternative High-Mobility Substrates. Solid. State. Electron. 2010, 54, 621–627. [Google Scholar] [CrossRef]
- Adamu-Lema, F.; Georgiev, V.; Asenov, A. Simulation of Statistical Nbti Degradation in 10nm Doped Channel Pfinfets. In Proceedings of the 2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Udine, Italy, 4–6 September 2019; pp. 8–11. [Google Scholar] [CrossRef]
- Ding, J.; Asenov, A. Reliability-Aware Statistical BSIM Compact Model Parameter Generation Methodology. IEEE Trans. Electron. Devices 2020, 67, 4777–4783. [Google Scholar] [CrossRef]
- Kola, S.R.; Li, Y.; Chen, C.; Chuang, M.H. Statistical 3D Device Simulation of Full Fluctuations of Gate-All-Around Silicon Nanosheet MOSFETs at Sub-3-Nm Technology Nodes. In Proceedings of the 2022 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Hsinchu, Taiwan, 18–21 April 2022; pp. 2021–2022. [Google Scholar] [CrossRef]
- Casś, M.; Tachi, K.; Thiele, S.; Ernst, T. Spectroscopic Charge Pumping in Si Nanowire Transistors with a High- κ /Metal Gate. Appl. Phys. Lett. 2010, 96, 123506. [Google Scholar] [CrossRef]
- Beckers, A.; Jazaeri, F.; Grill, A.; Narasimhamoorthy, S.; Parvais, B.; Enz, C. Physical Model of Low-Temperature to Cryogenic Threshold Voltage in MOSFETs. IEEE J. Electron. Devices Soc. 2020, 8, 780–788. [Google Scholar] [CrossRef]
- Kola, S.R.; Li, Y.; Thoti, N. Effects of Spacer and Single-Charge Trap on Voltage Transfer Characteristics of Gate-All-around Silicon Nanowire CMOS Devices and Circuits. In Proceedings of the 2020 IEEE 20th International Conference on Nanotechnology (IEEE-NANO), Montreal, QC, Canada, 29–31 July 2020; pp. 217–220. [Google Scholar] [CrossRef]
- Andricciola, P.; Tuinhout, H.P.; De Vries, B.; Wils, N.A.H.; Scholten, A.J.; Klaassen, D.B.M. Impact of Interface States on MOS Transistor Mismatch. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009; pp. 711–714. [Google Scholar] [CrossRef]
- Ioannidis, E.G.; Theodorou, C.G.; Haendler, S.; Josse, E.; Dimitriadis, C.A.; Ghibaudo, G. Impact of Source-Drain Series Resistance on Drain Current Mismatch in Advanced Fully Depleted SOI n-MOSFETs. IEEE Electron. Device Lett. 2015, 36, 433–435. [Google Scholar] [CrossRef]
- Karatsori, T.A.; Theodorou, C.G.; Josse, E.; Dimitriadis, C.A.; Ghibaudo, G. All Operation Region Characterization and Modeling of Drain and Gate Current Mismatch in 14-Nm Fully Depleted SOI MOSFETs. IEEE Trans. Electron. Devices 2017, 64, 2080–2085. [Google Scholar] [CrossRef]
- Ghibaudo, G.; Boutchacha, T. Electrical Noise and RTS Fluctuations in Advanced CMOS Devices. Microelectron. Reliab. 2002, 42, 573–582. [Google Scholar] [CrossRef]
- Li, Y.; Hwang, C.H. High-Frequency Characteristic Fluctuations of Nano-MOSFET Circuit Induced by Random Dopants. IEEE Trans. Microw. Theory Tech. 2008, 56, 2726–2733. [Google Scholar] [CrossRef]
- Singh, J.; Ciavatti, J.; Sundaram, K.; Wong, J.S.; Bandyopadhyay, A.; Zhang, X.; Li, S.; Bellaouar, A.; Watts, J.; Lee, J.G.; et al. 14-Nm FinFET Technology for Analog and RF Applications. In Proceedings of the 2017 Symposium on VLSI Technology, Kyoto, Japan, 5–8 June 2018; Volume 65, pp. 31–37. [Google Scholar] [CrossRef]
- Lee, K.F.; Li, Y.; Hwang, C.H. Asymmetric Gate Capacitance and Dynamic Characteristic Fluctuations in 16 Nm Bulk MOSFETs Due to Random Distribution of Discrete Dopants. Semicond. Sci. Technol. 2010, 25, 045006. [Google Scholar] [CrossRef]
- Li, Y. Random Nanosized Metal Grains and Interface-Trap Fluctuations in Emerging CMOS Technologies; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 5, ISBN 9780128122952. [Google Scholar]
Device Parameter | Value |
---|---|
Channel length (nm) (LG) | 16 |
Channel doping (cm−3) | 5 × 1017 |
S/D extension (nm) | 5 |
S/D length | 12 |
Fin height (nm) (HFIN) | 32 |
Fin width (nm) (WFIN) | 8 |
Aspect ratio (HFIN/WFIN) | 4 |
Work function (eV) | 4.52 |
S/D doping (cm−3) | 1 × 1020 |
Density of RITs (cm−2) | 1.5 × 1012 |
Interface trap energy (eV) | 0.35–0.55 |
S/D extension doping (cm−3) | 4.8 × 1018 |
The achieved characteristics of the fresh device and intrinsic RF parameters of a common source amplifier | |
Threshold voltage (Vth) (mV) | 250 |
Off-state current (Ioff) (A) | 2.86 × 10−12 |
On-state current (Ion) (A) | 6.43 × 10−6 |
Gate capacitance (CG) (aF) | 33.37 |
Voltage gain (dB) | 11.82 |
3-dB frequency (f3dB) (GHz) | 35.5 |
Cut-off frequency (fT) (GHz) | 168 |
Source | CG Variation(%) | ||
---|---|---|---|
VG = 0 V | VG = 0.3 V | VG = 0.6 V | |
Low Dit | 0.33 | 0.31 | 0.2 |
Medium Dit | 0.45 | 2.6 | 1.9 |
High Dit | 0.85 | 7 | 10.6 |
6σ/μ | Vth (%) | Ioff (%) | Ion (%) | gm (%) | gd (%) | Gain (%) | fT (%) | f3dB (%) | Ron (%) | Rout (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Dit | |||||||||||
Low Dit | 0.7 | 6.4 | 0.5 | 0.5 | 0.36 | 1.1 | 1.7 | 0.7 | 0.4 | 1.9 | |
Medium Dit | 6.4 | 52.9 | 6.6 | 2.6 | 5.2 | 13.4 | 21.0 | 4.9 | 5.2 | 24.7 | |
High Dit | 25.6 | 145.7 | 40.1 | 18.8 | 31.1 | 106.8 | 130.4 | 9.13 | 31.8 | 99.7 |
Source | Gain (dB) | fT (GHz) | f3dB (GHz) | ||||||
---|---|---|---|---|---|---|---|---|---|
Average (μ) | Standard Deviation (σ) | 6σ/μ (%) | Average (μ) | Standard Deviation (σ) | 6σ/μ (%) | Average (μ) | Standard Deviation (σ) | 6σ/μ (%) | |
Full random | 8.25 | 1.42 | 103.27 | 99.6 | 21.2 | 127.7 | 34.86 | 0.52 | 8.95 |
Near source | 7.23 | 2.04 | 169.3 | 83.4 | 25.6 | 184.2 | 34.2 | 0.65 | 11.4 |
Middle | 7.82 | 1.64 | 125.8 | 95.4 | 23.2 | 145.9 | 35.6 | 0.41 | 6.91 |
Near drain | 8.92 | 1.16 | 78.1 | 115.3 | 19.5 | 101.47 | 36.4 | 0.66 | 10.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kola, S.R.; Li, Y. DC/AC/RF Characteristic Fluctuation of N-Type Bulk FinFETs Induced by Random Interface Traps. Processes 2025, 13, 3103. https://doi.org/10.3390/pr13103103
Kola SR, Li Y. DC/AC/RF Characteristic Fluctuation of N-Type Bulk FinFETs Induced by Random Interface Traps. Processes. 2025; 13(10):3103. https://doi.org/10.3390/pr13103103
Chicago/Turabian StyleKola, Sekhar Reddy, and Yiming Li. 2025. "DC/AC/RF Characteristic Fluctuation of N-Type Bulk FinFETs Induced by Random Interface Traps" Processes 13, no. 10: 3103. https://doi.org/10.3390/pr13103103
APA StyleKola, S. R., & Li, Y. (2025). DC/AC/RF Characteristic Fluctuation of N-Type Bulk FinFETs Induced by Random Interface Traps. Processes, 13(10), 3103. https://doi.org/10.3390/pr13103103