Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,363)

Search Parameters:
Keywords = DC currents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 702 KB  
Article
Modeling of Electromagnetic Fields Along the Route of a Gas-Insulated Line Feeding Traction Substations
by Andrey Kryukov, Hristo Beloev, Dmitry Seredkin, Ekaterina Voronina, Aleksandr Kryukov, Iliya Iliev, Ivan Beloev and Konstantin Suslov
Energies 2026, 19(3), 624; https://doi.org/10.3390/en19030624 (registering DOI) - 25 Jan 2026
Abstract
Power supply for traction substations (TSs) of AC railways has traditionally been provided by 110–220 kV overhead transmission lines (OHL). These OHLs can be damaged during strong winds and ice formation. Furthermore, these lines generate significant electromagnetic fields (EMFs), which adversely affect maintenance [...] Read more.
Power supply for traction substations (TSs) of AC railways has traditionally been provided by 110–220 kV overhead transmission lines (OHL). These OHLs can be damaged during strong winds and ice formation. Furthermore, these lines generate significant electromagnetic fields (EMFs), which adversely affect maintenance personnel, the public, and the environment. Mitigating the resulting damages requires the establishment of protection zones, necessitating significant land allocation. Enhancing the reliability of power supply to traction substations and reducing EMF levels can be achieved through the use of gas-insulated lines (GIL), whose application in the power industry of many countries is continuously increasing. The aim of the research presented in this article was to develop computer models for determining the EMF of a GIL supplying a group of traction substations, taking into account actual traction loads characterized by non-sinusoidal waveforms and asymmetry. To solve this problem, an approach implemented in the Fazonord AC-DC software package, based on the use of phase coordinates, was applied. This allowed for the correct accounting of the skin effect and proximity effect in the massive current-carrying parts of the GIL, as well as the influence of asymmetry and harmonic distortions. The simulation results showed that the use of GIL brings the voltage unbalance factors at the 110 kV busbars of the traction substations within the permissible range, with the maximum values of these coefficients not exceeding 2%. The results of the harmonic distortion assessment demonstrated a significant reduction in harmonic distortion factors in the 110 kV network for the GIL compared to the OHL. The performed electromagnetic field calculations confirmed that the GIL generates magnetic field strengths one order of magnitude lower than those of the OHL. The obtained results lead to the conclusion that the use of gas-insulated lines for powering traction substations is highly effective, ensuring increased reliability, improved power quality, and a reduced negative impact of EMF on personnel, the public, the environment, and electronic equipment. Full article
19 pages, 1924 KB  
Article
Thermal–Electrical Fusion for Real-Time Condition Monitoring of IGBT Modules in Transportation Systems
by Man Cui, Yun Liu, Zhen Hu and Tao Shi
Micromachines 2026, 17(2), 154; https://doi.org/10.3390/mi17020154 (registering DOI) - 25 Jan 2026
Abstract
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework [...] Read more.
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework that innovatively synergizes micro-scale spatial thermal analysis with microsecond electrical dynamics inversion. The method requires only non-invasive temperature measurements on the module baseplate and utilizes standard electrical signals (load current, duty cycle, switching frequency, DC-link voltage) readily available from the converter’s controller, enabling simultaneous diagnosis without dedicated voltage or high-bandwidth current sensors. First, a non-invasive assessment of solder layer fatigue is achieved by correlating the normalized thermal gradient (TP) on the baseplate with the underlying thermal impedance (ZJC). Second, for bond wire aging, a cost-effective inversion algorithm estimates the on-state voltage (Vce,on) by calculating the total power loss from temperature, isolating the conduction loss (Pcond) with the aid of a Foster-model-based junction temperature (TJ) estimate, and finally computing Vce,on at a unique current inflection point (IC,inf) to nullify TJ dependency. Third, the health states from both failure modes are fused for comprehensive condition evaluation. Experimental validation confirms the method’s accuracy in tracking both degradation modes. This work provides a practical and economical solution for online IGBT condition monitoring, enhancing the predictive maintenance and operational safety of transportation electrification systems. Full article
(This article belongs to the Special Issue Insulated Gate Bipolar Transistor (IGBT) Modules, 2nd Edition)
27 pages, 5100 KB  
Article
Hybrid Forecast-Enabled Adaptive Crowbar Coordination for LVRT Enhancement in DFIG Wind Turbines
by Xianlong Su, Hankil Kim, Changsu Kim, Mingxue Zhang and Hoekyung Jung
Entropy 2026, 28(2), 138; https://doi.org/10.3390/e28020138 (registering DOI) - 25 Jan 2026
Abstract
This study proposes a hybrid forecast-enabled adaptive crowbar coordination strategy to enhance low-voltage ride-through (LVRT) performance of doubly fed induction generator (DFIG) wind turbines. A unified electro-mechanical model in the αβ/dq frames with dual closed-loop control for rotor- and grid-side converters is built [...] Read more.
This study proposes a hybrid forecast-enabled adaptive crowbar coordination strategy to enhance low-voltage ride-through (LVRT) performance of doubly fed induction generator (DFIG) wind turbines. A unified electro-mechanical model in the αβ/dq frames with dual closed-loop control for rotor- and grid-side converters is built in MATLAB/Simulink (R2018b), and LVRT constraints on current safety and DC-link energy are explicitly formulated, yielding an engineering crowbar-resistance range of 0.4–0.8 p.u. On the forecasting side, a CEEMDAN-based decomposition–modeling–reconstruction pipeline is adopted: high- and mid-frequency components are predicted by a dual-stream Informer–LSTM, while low-frequency components are modeled by XGBoost. Using six months of wind-farm data, the hybrid forecaster achieves best or tied-best MSE, RMSE, MAE, and R2 compared with five representative baselines. Forecasted power, ramp rate, and residual-based uncertainty are mapped to overcurrent and DC-link overvoltage risk indices, which adapt crowbar triggering, holding, and release in coordination with converter control. In a 9 MW three-phase deep-sag scenario, the strategy confines DC-link voltage within ±3% of nominal, shortens re-synchronization from ≈0.35 s to ≈0.15 s, reduces rotor-current peaks by ≈5.1%, and raises the reactive-support peak to 1.7 Mvar, thereby improving LVRT safety margins and grid-friendliness without hardware modification. Full article
(This article belongs to the Section Multidisciplinary Applications)
19 pages, 1894 KB  
Article
Modeling the Characteristics of an Alkaline Electrolyzer When Powered by a Rectangular Pulse Train
by Krzysztof Górecki, Michał Lewandowski and Przemysław Ptak
Energies 2026, 19(3), 622; https://doi.org/10.3390/en19030622 (registering DOI) - 25 Jan 2026
Abstract
This paper presents the results of modeling the DC and dynamic characteristics of an alkaline electrolyzer. A model of such an electrolyzer is proposed as a subcircuit for the SPICE software. This model describes DC and dynamic current–voltage characteristics of the electrolyzer, taking [...] Read more.
This paper presents the results of modeling the DC and dynamic characteristics of an alkaline electrolyzer. A model of such an electrolyzer is proposed as a subcircuit for the SPICE software. This model describes DC and dynamic current–voltage characteristics of the electrolyzer, taking into account the effect of solution concentration on the electrolyzer internal resistance and electrolyte capacitance, as well as the resistance and inductance of the leads. Using this model, one can calculate the voltage and current waveforms across the electrolyzer, as well as the gas flow rate produced by the electrolyzer. The correctness of the developed model was experimentally verified by powering the electrolyzer using a DC source and by powering the device using a voltage source, generating a rectangular pulse train with an adjustable frequency and duty cycle. The measurement system is described, and the obtained calculation and measurement results are presented and discussed. It was shown that the obtained calculation results differed minimally from the measurement results across a wide range of frequencies (from 0 to 50 kHz), duty cycles (from 0.3 to 0.7) of the supply voltage, and concentrations of the electrolyte (from 0.1 to 10%). The mean square error, normalized to peak measured values of each considered quantity, does not exceed 4%. Full article
(This article belongs to the Section A5: Hydrogen Energy)
13 pages, 857 KB  
Article
Neurostimulation with Naming Therapy for Primary Progressive Aphasia: A Pilot Study Targeting Transcranial Direct Current (tDCS) Stimulation for the Individual
by Christopher Bernard Leahy, Jennifer C. Thompson, Matthew Jones and Anna Woollams
Brain Sci. 2026, 16(2), 128; https://doi.org/10.3390/brainsci16020128 (registering DOI) - 25 Jan 2026
Abstract
Background: Transcranial Direct Current Stimulation (tDCS) in conjunction with behavioural language therapy in PPA has previously been modified for variation at the group level, but not at the individual level. This pilot study used individualised tDCS targeting by identifying regions of peak [...] Read more.
Background: Transcranial Direct Current Stimulation (tDCS) in conjunction with behavioural language therapy in PPA has previously been modified for variation at the group level, but not at the individual level. This pilot study used individualised tDCS targeting by identifying regions of peak atrophy in the language system. Methods: Six PPA participants (four semantic and two non-fluent variant) were randomly allocated to receive tDCS or sham stimulation. The target electrode was selected for each based on their region of peak atrophy. Participants received naming therapy, individually calibrated according to baseline naming performance. Three sets of therapy were delivered in conjunction with tDCS (1 mA) or sham stimulation within participants’ homes. The study was not powered to demonstrate efficacy but to show proof-of-concept for an individualised, home-based tDCS targeting method. Results: All participants successfully completed the protocol. In one participant the region of peak atrophy differed from that predicted by clinical syndrome. Significant gains were observed at an individual level for treated items in both groups (2/3 tDCS and 2/3 Sham). No significant changes in untreated items were observed at an individual level. Significant naming improvement in untreated items was not observed for the tDCS group and was seen at one time point only for the Sham group. Conclusions: We have demonstrated the feasibility of a novel method for selecting neurostimulation targets for PPA at the individual level. A larger study would be required to determine the long-term therapeutic efficacy of this method. Full article
Show Figures

Figure 1

21 pages, 6164 KB  
Review
Insulation Design of Gas–Solid Interface at HVDC Condition-Part I: The Research Progress on Surface Charge Accumulation and Dissipation
by Bowen Tang, Yi Xu, Ran Zhuo, Jiaming Xiong and Ju Tang
Coatings 2026, 16(2), 154; https://doi.org/10.3390/coatings16020154 (registering DOI) - 24 Jan 2026
Abstract
High voltage direct current (HVDC) gas-insulated equipment (GIE) has become a critical component in long-distance power transmission projects, owing to its advantages such as compact structure and high reliability. However, the gas–solid interface insulation of DC GIE under long-term operation faces charge accumulation [...] Read more.
High voltage direct current (HVDC) gas-insulated equipment (GIE) has become a critical component in long-distance power transmission projects, owing to its advantages such as compact structure and high reliability. However, the gas–solid interface insulation of DC GIE under long-term operation faces charge accumulation phenomenon, which will distort the electric field distribution and cause insulation flashover. Due to the lack of technical guidelines for the insulation design of DC gas-insulated equipment, the method of insulation design usually adopts increasing the insulation structure size to ensure sufficient creepage along the surface, which greatly increases the dimensions and manufacturing costs of the final equipment, and fails to fully leverage the unique advantages of GIE in compactness and lightness. Therefore, it is of importance to clarify the mechanism of charge accumulation on the surface of insulators under HVDC, and to propose an insulation design method that can effectively inhibit the charge accumulation and adjust the electric field distribution at the gas–solid interface, which holds practical significance for the safe application of large-scale DC GIE projects. In view of this, this paper firstly summarizes the characteristics of surface charge accumulation at gas–solid interface, and then reviews the existing research progress from two perspectives: surface charge suppression of insulation structure and gas–solid interface electric field regulation, providing theoretical and technical support for optimizing the design of GIE insulation structure, formulating scientific operation and maintenance measures. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

16 pages, 2368 KB  
Article
PSCAD-Based Analysis of Short-Circuit Faults and Protection Characteristics in a Real BESS–PV Microgrid
by Byeong-Gug Kim, Chae-Joo Moon, Sung-Hyun Choi, Yong-Sung Choi and Kyung-Min Lee
Energies 2026, 19(3), 598; https://doi.org/10.3390/en19030598 (registering DOI) - 23 Jan 2026
Abstract
This paper presents a PSCAD-based analysis of short-circuit faults and protection characteristics in a real distribution-level microgrid that integrates a 1 MWh battery energy storage system (BESS) with a 500 kW power conversion system (PCS) and a 500 kW photovoltaic (PV) plant connected [...] Read more.
This paper presents a PSCAD-based analysis of short-circuit faults and protection characteristics in a real distribution-level microgrid that integrates a 1 MWh battery energy storage system (BESS) with a 500 kW power conversion system (PCS) and a 500 kW photovoltaic (PV) plant connected to a 22.9 kV feeder. While previous studies often rely on simplified inverter models, this paper addresses the critical gap by integrating actual manufacturer-defined control parameters and cable impedances. This allows for a precise analysis of sub-millisecond transient behaviors, which is essential for developing robust protection schemes in inverter-dominated microgrids. The PSCAD model is first verified under grid-connected steady-state operation by examining PV output, BESS power, and grid voltage at the point of common coupling. Based on the validated model, DC pole-to-pole faults at the PV and ESS DC links and a three-phase short-circuit fault at the low-voltage bus are simulated to characterize the fault current behavior of the grid, BESS and PV converters. The DC fault studies confirm that current peaks are dominated by DC-link capacitor discharge and are strongly limited by converter controls, while the AC three-phase fault is mainly supplied by the upstream grid. As an initial application of the model, an instantaneous current change rate (ICCR) algorithm is implemented as a dedicated DC-side protection function. For a pole-to-pole fault, the ICCR index exceeds the 100 A/ms threshold and issues a trip command within 0.342 ms, demonstrating the feasibility of sub-millisecond DC fault detection in converter-dominated systems. Beyond this example, the validated PSCAD model and associated data set provide a practical platform for future research on advanced DC/AC protection techniques and protection coordination schemes in real BESS–PV microgrids. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

32 pages, 12307 KB  
Article
An SST-Based Emergency Power Sharing Architecture Using a Common LVDC Feeder for Hybrid AC/DC Microgrid Clusters and Segmented MV Distribution Grids
by Sergio Coelho, Joao L. Afonso and Vitor Monteiro
Electronics 2026, 15(3), 496; https://doi.org/10.3390/electronics15030496 - 23 Jan 2026
Viewed by 34
Abstract
The growing incorporation of distributed energy resources (DER) in power distribution grids, although pivotal to the energy transition, increases operational variability and amplifies the exposure to disturbances that can compromise resilience and the continuity of service during contingencies. Addressing these challenges requires both [...] Read more.
The growing incorporation of distributed energy resources (DER) in power distribution grids, although pivotal to the energy transition, increases operational variability and amplifies the exposure to disturbances that can compromise resilience and the continuity of service during contingencies. Addressing these challenges requires both a shift toward flexible distribution architectures and the adoption of advanced power electronics interfacing systems. In this setting, this paper proposes a resilience-oriented strategy for medium-voltage (MV) distribution systems and clustered hybrid AC/DC microgrids interfaced through solid-state transformers (SSTs). When a fault occurs along an MV feeder segment, the affected microgrids naturally transition to islanded operation. However, once their local generation and storage become insufficient to sustain autonomous operation, the proposed framework reconfigures the power routing within the cluster by activating an emergency low-voltage DC (LVDC) power path that bypasses the faulted MV section. This mechanism enables controlled power sharing between microgrids during prolonged MV outages, ensuring the supply of priority loads without oversizing SSTs or reinforcing existing infrastructure. Experimental validation on a reduced-scale SST prototype demonstrates stable grid-forming and grid-following operation. The reliability of the proposed scheme is supported by both steady-state and transient experimental results, confirming accurate voltage regulation, balanced sinusoidal waveforms, and low current tracking errors. All tests were conducted at a switching frequency of 50 kHz, highlighting the robustness of the proposed architecture under dynamic operation. Full article
Show Figures

Figure 1

19 pages, 59529 KB  
Article
Hierarchical Control System for a Multi-Port, Bidirectional MMC-Based EV Charging Station: A Model-in-the-Loop Validation
by Tomas Ravet, Cristobal Rodriguez, Matias Diaz, Daniel Velasquez, Roberto Cárdenas and Pat Wheeler
Processes 2026, 14(2), 384; https://doi.org/10.3390/pr14020384 - 22 Jan 2026
Viewed by 16
Abstract
The increasing demand for high-power electric vehicle charging systems with Vehicle-to-Grid (V2G) capability highlights the need for modular, scalable power converters. This paper proposes a hierarchical control strategy for a high-power, multi-port electric vehicle charging station. The system, based on a Series-Parallel Modular [...] Read more.
The increasing demand for high-power electric vehicle charging systems with Vehicle-to-Grid (V2G) capability highlights the need for modular, scalable power converters. This paper proposes a hierarchical control strategy for a high-power, multi-port electric vehicle charging station. The system, based on a Series-Parallel Modular Multilevel Converter (SP-MMC) with isolated modules, is managed by a coordinated control strategy that integrates proportional-integral-resonant regulators, nearest-level control with voltage sorting, and single-phase-shifted modulation. The proposed system enables simultaneous, independent regulation of multiple bidirectional, isolated direct current ports while maintaining grid-side power quality and internal variables of the SP-MMC. The proposed control is validated using real-time Model-In-the-Loop (MIL) simulations that include sequential port activation, bidirectional power flow, and charging operation. MIL results demonstrate stable operation with controlled DC-link voltage ripple, accurate per-port current tracking, and near-unity grid power factor under multi-port operation. Full article
19 pages, 1516 KB  
Article
Energy-Dynamics Sensing for Health-Responsive Virtual Synchronous Generator in Battery Energy Storage Systems
by Yingying Chen, Xinghu Liu and Yongfeng Fu
Batteries 2026, 12(1), 36; https://doi.org/10.3390/batteries12010036 - 21 Jan 2026
Viewed by 68
Abstract
Battery energy storage systems (BESSs) are increasingly required to provide grid-support services under weak-grid conditions, where the stability of virtual synchronous generator (VSG) control largely depends on the health status and dynamic characteristics of the battery unit. However, existing VSG strategies typically assume [...] Read more.
Battery energy storage systems (BESSs) are increasingly required to provide grid-support services under weak-grid conditions, where the stability of virtual synchronous generator (VSG) control largely depends on the health status and dynamic characteristics of the battery unit. However, existing VSG strategies typically assume fixed parameters and neglect the intrinsic coupling between battery aging, DC-link energy variations, and converter dynamic performance, resulting in reduced damping, degraded transient regulation, and accelerated lifetime degradation. This paper proposes a health-responsive VSG control strategy enabled by real-time energy-dynamics sensing. By reconstructing the DC-link energy state from voltage and current measurements, an intrinsic indicator of battery health and instantaneous power capability is established. This energy-dynamics indicator is then embedded into the VSG inertia and damping loops, allowing the control parameters to adapt to battery health evolution and operating conditions. The proposed method achieves coordinated enhancement of transient stability, weak-grid robustness, and lifetime management. Simulation studies on a multi-unit BESS demonstrate that the proposed strategy effectively suppresses low-frequency oscillations, accelerates transient convergence, and maintains stability across different aging stages. Full article
Show Figures

Figure 1

35 pages, 1506 KB  
Review
Targeting Monocytes and Their Derivatives in Ovarian Cancer: Opportunities for Innovation in Prognosis and Therapy
by Dharvind Balan, Nirmala Chandralega Kampan, Mohamad Nasir Shafiee, Magdalena Plebanski and Nor Haslinda Abd Aziz
Cancers 2026, 18(2), 336; https://doi.org/10.3390/cancers18020336 - 21 Jan 2026
Viewed by 241
Abstract
Ovarian cancer remains the most lethal gynaecological malignancy primarily due to late-stage diagnosis, high recurrence rate, and limited treatment efficacy. Current diagnostic tools, including imaging and serum markers, lack sufficient sensitivity and specificity for early detection. Increasing evidence highlights the critical role of [...] Read more.
Ovarian cancer remains the most lethal gynaecological malignancy primarily due to late-stage diagnosis, high recurrence rate, and limited treatment efficacy. Current diagnostic tools, including imaging and serum markers, lack sufficient sensitivity and specificity for early detection. Increasing evidence highlights the critical role of myeloid-derived immune cells within the tumour microenvironment in shaping ovarian cancer progression and therapy response. Monocytes and their derivatives are central regulators of immune suppression, chemoresistance, and metastatic dissemination in ovarian tumours. Their recruitment and polarisation are governed by several signalling pathways offering promising therapeutic targets. Strategies including monocyte depletion, TAM reprogramming, MDSC maturation, DC vaccines, and their synergistic use with chemotherapy or immune checkpoint inhibitors are being explored to restore anti-tumour immunity in ovarian cancer. Parallel to therapeutic potential, the lymphocyte-to-monocyte ratio and its reciprocal monocyte-to-lymphocyte ratio have also emerged as potential accessible and cost-effective prognostic tools that predict disease aggressiveness and survival in ovarian cancer. This review features the diagnostic, prognostic, and therapeutic significance of monocytes and their derivatives in ovarian cancer management and highlighting new opportunities for next-generation immunomodulatory therapies. Full article
Show Figures

Figure 1

14 pages, 2483 KB  
Proceeding Paper
Fast Loss Estimation Framework for Current-Source Microinverters Using Hybrid Simulation Models
by Angel Marinov and Kaloyan Solenkov
Eng. Proc. 2026, 122(1), 23; https://doi.org/10.3390/engproc2026122023 - 19 Jan 2026
Viewed by 85
Abstract
A fast modelling framework is presented for loss estimation in current-source microinverters. The power stage is modelled with ideal switches and simplified magnetics to keep simulations lightweight, while dedicated estimators reconstruct core, conduction, and switching losses from simulated waveforms using Steinmetz-based and analytical [...] Read more.
A fast modelling framework is presented for loss estimation in current-source microinverters. The power stage is modelled with ideal switches and simplified magnetics to keep simulations lightweight, while dedicated estimators reconstruct core, conduction, and switching losses from simulated waveforms using Steinmetz-based and analytical models. The method is demonstrated on an interleaved active-clamp flyback with H-bridge unfolder but remains topology-agnostic and applicable to other current source (CS) DC/DC variants. Control includes maximum power point tracking (MPPT) with voltage-reference tracking, a PID loop, simplified grid synchronization, and peak-current regulation. Dynamic tests under irradiance and grid-voltage variations confirm stable operation and correct MPPT behaviour. A steady-state loss breakdown at 0.75 p.u. irradiance predicts ~97% overall efficiency, consistent with reported microinverter performance. The framework enables rapid design exploration and efficiency prediction without full device-level modelling, balancing accuracy and computational speed. Full article
Show Figures

Figure 1

15 pages, 613 KB  
Article
The Effects of a Cerebellar Transcranial Direct-Current Stimulation-Based Preventive Exercise Program on Physical Function and Fall Reduction Efficacy in Community-Dwelling Older Adults
by Deone Kang and JongEun Yim
Healthcare 2026, 14(2), 241; https://doi.org/10.3390/healthcare14020241 - 18 Jan 2026
Viewed by 142
Abstract
Background/Objectives: Falls are a major cause of injury in older adults, closely related to declines in muscle strength, balance control, and sensory integration. Although exercise-based fall prevention programs are well supported, evidence on combining such programs with cerebellar transcranial direct-current stimulation (c-tDCS) [...] Read more.
Background/Objectives: Falls are a major cause of injury in older adults, closely related to declines in muscle strength, balance control, and sensory integration. Although exercise-based fall prevention programs are well supported, evidence on combining such programs with cerebellar transcranial direct-current stimulation (c-tDCS) remains limited. This study investigated the effects of c-tDCS applied before a modified Otago Exercise Program (OEP) on lower-extremity strength, balance, and fall efficacy in older adults. Methods: In this randomized controlled study, twenty-six community-dwelling older adults (median age [IQR]: experimental, 74.00 [10] years; control, 71.00 [10] years) were randomly assigned to either a c-tDCS + exercise group (n = 13) or a sham + exercise group (n = 13). The intervention was administered twice weekly for four weeks. The experimental group received 15 min of c-tDCS followed by 30 min of OEP-based exercise; the control group received sham stimulation under identical conditions. The outcome measures included the Five Times Sit to Stand Test (FTSST), Timed Up and Go (TUG), Balancia-based static balance (velocity average), and Falls Efficacy Scale—Korea (FES-K). Assessments were performed pre- and post-intervention. Results: The experimental group demonstrated significantly greater improvements than the control group (p < 0.05) in the Five Times Sit to Stand Test (r = 0.44) and Timed Up and Go test (r = 0.56). No significant changes were observed in static balance or fall efficacy in either group (p > 0.05). Conclusions: The combined use of c-tDCS and an OEP-based fall prevention exercise program effectively improved lower-extremity strength and dynamic balance in older adults. However, short-term intervention did not influence static balance or fall efficacy. Further studies using longer intervention periods and larger samples are warranted to verify these findings and clarify the mechanisms underlying c-tDCS-enhanced motor performance. Full article
(This article belongs to the Section Clinical Care)
Show Figures

Figure 1

31 pages, 8880 KB  
Article
A Distributed Electric Vehicles Charging System Powered by Photovoltaic Solar Energy with Enhanced Voltage and Frequency Control in Isolated Microgrids
by Pedro Baltazar, João Dionísio Barros and Luís Gomes
Electronics 2026, 15(2), 418; https://doi.org/10.3390/electronics15020418 - 17 Jan 2026
Viewed by 233
Abstract
This study presents a photovoltaic (PV)-based electric vehicle (EV) charging system designed to optimize energy use and support isolated microgrid operations. The system integrates PV panels, DC/AC, AC/DC, and DC/DC converters, voltage and frequency droop control, and two energy management algorithms: Power Sharing [...] Read more.
This study presents a photovoltaic (PV)-based electric vehicle (EV) charging system designed to optimize energy use and support isolated microgrid operations. The system integrates PV panels, DC/AC, AC/DC, and DC/DC converters, voltage and frequency droop control, and two energy management algorithms: Power Sharing and SEWP (Spread Energy with Priority). The DC/AC converter demonstrated high efficiency, with stable AC output and Total Harmonic Distortion (THD) limited to 1%. The MPPT algorithm ensured optimal energy extraction under both gradual and abrupt irradiance variations. The DC/DC converter operated in constant current mode followed by constant voltage regulation, enabling stable power delivery and preserving battery integrity. The Power Sharing algorithm, which distributes PV energy equally, favored vehicles with a higher initial state of charge (SOC), while leaving low-SOC vehicles at modest levels, reducing satisfaction under limited irradiance. In contrast, SEWP prioritized low-SOC EVs, enabling them to achieve higher SOC values compared to the Power Sharing algorithm, reducing SOC dispersion and enhancing fairness. The integration of voltage and frequency droop controls allowed the station to support microgrid stability by limiting reactive power injection to 30% of apparent power and adjusting charging current in response to frequency deviation. Full article
(This article belongs to the Special Issue Recent Advances in Control and Optimization in Microgrids)
Show Figures

Figure 1

14 pages, 2202 KB  
Article
Brushless Wound-Field Synchronous Machine Topology with Excellent Rotor Flux Regulation Freedom
by Muhammad Ayub, Arsalan Arif, Atiq Ur Rehman, Azka Nadeem, Ghulam Jawad Sirewal, Mohamed A. Abido and Mudassir Raza Siddiqi
Machines 2026, 14(1), 110; https://doi.org/10.3390/machines14010110 - 17 Jan 2026
Viewed by 233
Abstract
This paper presents a nine-switch inverter for brushless operation of wound-field synchronous machines with excellent rotor flux regulation freedom. The manufacturing cost of permanent magnet machines is high due to the instability of rare-earth magnet prices in the global market. Moreover, conventional wound-field [...] Read more.
This paper presents a nine-switch inverter for brushless operation of wound-field synchronous machines with excellent rotor flux regulation freedom. The manufacturing cost of permanent magnet machines is high due to the instability of rare-earth magnet prices in the global market. Moreover, conventional wound-field synchronous machines (WFSMs) have problems with their rotor brushes and slip-ring assembly, wherein the assembly starts to malfunction in the long run. Furthermore, recently, some brushless WFSM topologies have been investigated to eliminate the problems associated with rotor brushes and slip rings, but they have either a high cost due to a double-inverter, or low flux regulation freedom due to a single inverter (−id). The proposed nine-switch topology achieves a low cost by using a single inverter with nine switches and excellent flux control through three variables (−id, iq, and if), making it highly suitable for wide-speed applications. In the proposed topology, the machine’s armature winding is divided into two sets of coils: ABC and XYZ. A 12-slot and 8-pole machine stator is wound with armature winding coils ABC and XYZ, creating six terminals for injecting currents and two neutrals from each ABC and XYZ coil set. The current to the ABC and XYZ coils is supplied by a nine-switch inverter. The inverter is specially designed to supply rated currents to the ABC winding coils and half of the rated current to the XYZ winding coils. The number of turns of the ABC and XYZ winding coils are kept the same so they produce the same winding function. However, the current in the XYZ winding coils is half compared to that of the ABC winding coils, which creates an asymmetrical airgap magnetomotive force (MMF). The asymmetrical airgap MMF contains two working harmonics, i.e., fundamental MMF for torque production and an additional sub-harmonic MMF component for rotor field brushless excitation. The rotor field is controlled by the difference in current of the two armature winding coils: ABC and XYZ. The proposed topology is validated through theoretical analysis and finite element simulations of electromagnetic and flux regulation. A 2D finite-element analysis is performed to verify the idea. The proposed topology is capable of establishing a 9.15 A dc current in the rotor field winding coil, which consequently generates a torque of 7.8 N·m with a 20.30% torque ripple. Rotor field flux regulation was analyzed from the stator ABC and XYZ coils current ratio ζ. The ratio ζ is analyzed as 2 to 1.3; subsequently, the inducted field currents were 9.15 A dc to 4.8 A dc, respectively. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

Back to TopTop