The Effects of a Cerebellar Transcranial Direct-Current Stimulation-Based Preventive Exercise Program on Physical Function and Fall Reduction Efficacy in Community-Dwelling Older Adults
Highlights
- Administration of cerebellar transcranial direct-current stimulation (c-tDCS) prior to an Otago Exercise Program (OEP)-based fall prevention exercise program significantly improved lower-extremity muscle strength (Five Times Sit to Stand Test, FTSST) and dynamic balance (Time Up to Go, TUG) in older adults.
- No significant changes were observed in static balance (Balancia) or fall efficacy (Falls Efficacy Scale—Korean ver., FES-K) following the short-term, 4-week intervention.
- c-tDCS may serve as an effective adjunct modality that enhances neuroplasticity and motor control, thereby amplifying the strength and dynamic balance benefits of fall prevention exercise programs.
- Longer intervention durations or multicomponent approaches may be required to improve static balance and reduce psychological fear of falling.
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Participants
2.3. Procedure
2.4. Intervention
2.4.1. Cerebellum Transcranial Direct-Current Stimulation (c-tDCS)
2.4.2. Modified Otago Exercise Program—Fall Prevention Exercise Program
2.4.3. Elastic Band
2.5. Outcome Measurements
2.5.1. Balancia Program—Static Balance
2.5.2. Timed up and Go—Dynamic Balance
2.5.3. Five Times Sit to Stand Test—Lower-Extremity Muscle Strength
2.5.4. Falls Efficacy Scale—Korean Version: Fall Efficacy Assessment
2.5.5. Statistical Analysis
3. Results
3.1. General Participant Characteristics
3.2. Changes in Static Balance (Vel Avg) Before and After the Experiment
3.3. Changes in TUG Before and After the Experiment
3.4. Changes in FTSST Before and After the Experiment
3.5. Changes in FES-K After the Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| tDCS | Transcranial direct-current stimulation |
| C-TDCS | cerebellum transcranial direct-current stimulation |
| OEP | Otago Exercise Program |
| TUG | Time Up to Go |
| FTSST | Five Times Sit to Stand Test |
| EO | Eyes open |
| EC | Eyes closed |
| FES-K | Falls Efficacy Scale—Korean |
References
- United Nations. World Population Ageing 2023; United Nations: New York, NY, USA, 2024. [Google Scholar]
- Statistics Korea. Population Projections for Korea, 2024–2072; Statistics Korea: Daejeon, Republic of Korea, 2024.
- Horak, F.B. Postural orientation and equilibrium: Neural control of balance and implications for falls. Age Ageing 2006, 35, ii7–ii11. [Google Scholar] [CrossRef] [PubMed]
- Lexell, J.; Taylor, C.C.; Sjöström, M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15-to 83-year-old men. J. Neurol. Sci. 1988, 84, 275–294. [Google Scholar] [CrossRef]
- Wang, J. Age-Related Dysfunction in Balance: A Comprehensive Review. Front. Aging Neurosci. 2024, 16, 714–737. [Google Scholar] [CrossRef]
- Wilkinson, D.J.; Piasecki, M.; Atherton, P. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res. Rev. 2018, 47, 123–132. [Google Scholar] [CrossRef]
- Mitchell, W.K.; Williams, J.; Atherton, P.; Larvin, M.; Lund, J.; Narici, M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front. Physiol. 2012, 3, 260. [Google Scholar] [CrossRef]
- Clark, B.C.; Manini, T.M. Sarcopenia≠ dynapenia. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2008, 63, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Lord, S.R.; Clark, R.D.; Webster, I.W. Physiological factors associated with falls in an elderly population. J. Am. Geriatr. Soc. 1991, 39, 1194–1200. [Google Scholar] [CrossRef]
- Osoba, M.Y.; Rao, A.K.; Agrawal, S.K.; Lalwani, A.K. Balance and gait in the elderly: A contemporary review. Laryngoscope Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef]
- World Health Organization. Step Safely: Strategies for Preventing and Managing Falls Across the Life-Course; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Downey, C.; Kelly, M.; Quinlan, J.F. Changing trends in the mortality rate at 1-year post hip fracture-a systematic review. World J. Orthop. 2019, 10, 166. [Google Scholar] [CrossRef]
- Gillespie, L.D.; Robertson, M.C.; Gillespie, W.J.; Sherrington, C.; Gates, S.; Clemson, L.; Lamb, S.E. Interventions for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2012, 2012, CD007146. [Google Scholar]
- Sherrington, C.; Michaleff, Z.A.; Fairhall, N.; Paul, S.S.; Tiedemann, A.; Whitney, J.; Cumming, R.G.; Herbert, R.D.; Close, J.C.; Lord, S.R. Exercise to prevent falls in older adults: An updated systematic review and meta-analysis. Br. J. Sports Med. 2017, 51, 1750–1758. [Google Scholar] [CrossRef]
- Liu-Ambrose, T.; Khan, K.M.; Eng, J.J.; Janssen, P.A.; Lord, S.R.; McKay, H.A. Clinical Investigations Resistance and Agility Training Reduce Fall Risk in Women Aged 75 to 85 with Low Bone Mass: A 6-Month Randomized, Controlled Trial. J. Am. Geriatr. Soc. 2004, 52, 657–665. [Google Scholar] [CrossRef]
- Stagg, C.; Jayaram, G.; Pastor, D.; Kincses, Z.; Matthews, P.; Johansen-Berg, H. Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia 2011, 49, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Meinzer, M.; Lindenberg, R.; Antonenko, D.; Flaisch, T.; Flöel, A. Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. J. Neurosci. 2013, 33, 12470–12478. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Li, D.; Zhang, S. The Effects of Transcranial Direct Current Stimulation on Balance in Older Adults: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2020, 12, 275. [Google Scholar] [CrossRef]
- Yosephi, M.H.; Ehsani, F.; Zoghi, M.; Jaberzadeh, S. Multi-session anodal tDCS enhances the effects of postural training on balance and postural stability in older adults with high fall risk: Primary motor cortex versus cerebellar stimulation. Brain Stimul. 2018, 11, 1239–1250. [Google Scholar] [CrossRef]
- Rezaee, Z.; Kaura, S.; Solanki, D.; Dash, A.; Srivastava, M.P.; Lahiri, U.; Dutta, A. Deep cerebellar transcranial direct current stimulation of the dentate nucleus to facilitate standing balance in chronic stroke survivors—A pilot study. Brain Sci. 2020, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Khanmohammadi, R. Effects of HD-tDCS targeting cerebellum, prefrontal cortex, and M1 on cognitive and motor performance in older adults. Sci. Rep. 2025, 15, 31899. [Google Scholar] [CrossRef]
- Campbell, A.J.; Robertson, M.C.; Gardner, M.M.; Norton, R.N.; Buchner, D.M. Randomised controlled trial of a home based exercise programme to prevent falls in elderly women. BMJ 1997, 315, 1065–1069. [Google Scholar] [CrossRef]
- Sherrington, C. Effective exercise for the prevention of falls: A systematic review and meta-analysis. J. Am. Geriatr. Soc. 2008, 56, 2234–2243. [Google Scholar] [CrossRef]
- Mgbeojedo, U. The Otago Exercise Programme: A scoping review of the effects on physical and psychosocial outcomes in older adults. J. Geriatr. Phys. Ther. 2023, 46, 195–207. [Google Scholar] [CrossRef]
- Hernandez-Martinez, J.; Guzmán-Muñoz, E.; Cid-Calfucura, I.; Villalobos-Fuentes, F.; Diaz-Saldaña, D.; Alvarez-Martinez, I.; Castillo-Cerda, M.; Herrera-Valenzuela, T.; Branco, B.H.M.; Valdés-Badilla, P. Elastic Band Training Versus Multicomponent Training and Group-Based Dance on Morphological Variables and Physical Performance in Older Women: A Randomized Controlled Trial. Life 2024, 14, 1362. [Google Scholar] [CrossRef]
- Gargallo, P.; Tamayo, E.; Jiménez-Martínez, P.; Juesas, A.; Casaña, J.; Benitez-Martinez, J.C.; Gene-Morales, J.; Fernandez-Garrido, J.; Saez, G.T.; Colado, J.C. Multicomponent and power training with elastic bands improve metabolic and inflammatory parameters, body composition and anthropometry, and physical function in older women with metabolic syndrome: A 20-week randomized, controlled trial. Exp. Gerontol. 2024, 185, 112340. [Google Scholar] [CrossRef]
- Saragih, I.D. Effects of resistance band exercise for frail older adults: A systematic review and meta-analysis. Clin. Interv. Aging 2022, 17, 1099–1113. [Google Scholar] [CrossRef]
- Benussi, A.; Koch, G.; Cotelli, M.; Padovani, A.; Borroni, B. Cerebellar transcranial direct current stimulation in patients with ataxia: A double-blind, randomized, sham-controlled study. Mov. Disord. 2015, 30, 1701–1705. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.; Schambra, H.M.; Cohen, L.G.; Buch, E.R.; Fritsch, B.; Zarahn, E.; Celnik, P.A.; Krakauer, J.W. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. USA 2009, 106, 1590–1595. [Google Scholar] [CrossRef]
- Celnik, P. Understanding and modulating motor learning with cerebellar stimulation. Cerebellum 2015, 14, 171–174. [Google Scholar] [CrossRef]
- Grimaldi, G.; Argyropoulos, G.P.; Boehringer, A.; Celnik, P.; Edwards, M.J.; Ferrucci, R.; Galea, J.M.; Groiss, S.J.; Hiraoka, K.; Kassavetis, P. Non-invasive cerebellar stimulation—A consensus paper. Cerebellum 2014, 13, 121–138. [Google Scholar] [CrossRef]
- Halsband, U.; Lange, R.K. Motor learning in man: A review of functional and clinical studies. J. Physiol.-Paris 2006, 99, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Parsaee, S.; Shohani, M.; Jalilian, M. The effect of cerebellar TDCS on static and dynamic balance of inactive elderly men. Gerontol. Geriatr. Med. 2023, 9, 23337214231159760. [Google Scholar] [CrossRef]
- Poortvliet, P.; Hsieh, B.; Cresswell, A.; Au, J.; Meinzer, M. Cerebellar transcranial direct current stimulation improves adaptive postural control. Clin. Neurophysiol. 2018, 129, 33–41. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Ferrucci, R.; Cortese, F.; Priori, A. Cerebellar tDCS: How to do it. Cerebellum 2015, 14, 27–30. [Google Scholar] [CrossRef]
- Vlietstra, L.; Bryant, K.P.; Hale, L.; Dando, M.; Waters, D. Physical activity to prevent older adult falls: An Aotearoa New Zealand approach. Rev. Bras. Atividade Física Saúde 2024, 29, 1–9. [Google Scholar] [CrossRef]
- Moritani, T.; DeVries, H.A. Neural factors versus hypertrophy in the time course of muscle strength gain. Am. J. Phys. Med. Rehabil. 1979, 58, 115–130. [Google Scholar]
- Gabriel, D.A.; Kamen, G.; Frost, G. Neural adaptations to resistive exercise: Mechanisms and recommendations for training practices. Sports Med. 2006, 36, 133–149. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Cohen, L.G.; Wassermann, E.M.; Priori, A.; Lang, N.; Antal, A.; Paulus, W.; Hummel, F.; Boggio, P.S.; Fregni, F. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008, 1, 206–223. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; An, C.; Kang, H. Effects of resistance exercise using thera-band on balance of elderly adults: A randomized controlled trial. J. Phys. Ther. Sci. 2013, 25, 1471–1473. [Google Scholar] [CrossRef]
- Valdés-Badilla, P.; Guzmán-Muñoz, E.; Hernandez-Martinez, J.; Núñez-Espinosa, C.; Delgado-Floody, P.; Herrera-Valenzuela, T.; Branco, B.H.M.; Zapata-Bastias, J.; Nobari, H. Effectiveness of elastic band training and group-based dance on physical-functional performance in older women with sarcopenia: A pilot study. BMC Public Health 2023, 23, 2113. [Google Scholar] [CrossRef] [PubMed]
- Park, D.-S.; Lee, D.-Y.; Choi, S.-J.; Shin, W.-S. Reliability and validity of the balancia using wii balance board for assessment of balance with stroke patients. J. Korea Acad. Ind. Coop. Soc. 2013, 14, 2767–2772. [Google Scholar]
- Kim, H.; Kum, D.-M.; Shin, W.-S. Reliability and Validity of Balancia 2.5 Program Using Wii Balance Board for Assessment of Static Balance Ability. Phys. Ther. Rehabil. Sci. 2022, 11, 488–492. [Google Scholar] [CrossRef]
- Medley, A.; Thompson, M. Usefulness of variations of the Timed Up and Go in apparently healthy individuals. Phys. Occup. Ther. Geriatr. 2005, 23, 1–23. [Google Scholar] [CrossRef]
- Bohannon, R.W. Reference values for the five-repetition sit-to-stand test: A descriptive meta-analysis of data from elders. Percept. Mot. Ski. 2006, 103, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.; Lim, S.; Lee, D. DongHuynLee Development of the Korean Falls Efficacy Scale(FES-K) for the Elderly Korean. J. Phys. Educ. 2010, 49, 193–201. [Google Scholar]
- Brooks, J.X.; Cullen, K.E. The primate cerebellum selectively encodes unexpected self-motion. Curr. Biol. 2013, 23, 947–955. [Google Scholar] [CrossRef]
- Morton, S.M.; Bastian, A.J. Cerebellar control of balance and locomotion. Neuroscientist 2004, 10, 247–259. [Google Scholar] [CrossRef]
- Sherrington, C.; Fairhall, N.; Wallbank, G.; Tiedemann, A.; Michaleff, Z.A.; Howard, K.; Clemson, L.; Hopewell, S.; Lamb, S. Exercise for preventing falls in older people living in the community: An abridged Cochrane systematic review. Br. J. Sports Med. 2020, 54, 885–891. [Google Scholar] [CrossRef]
- Clemson, L.; Singh, M.A.F.; Bundy, A.; Cumming, R.G.; Manollaras, K.; O’Loughlin, P.; Black, D. Integration of balance and strength training into daily life activity to reduce rate of falls in older people (the LiFE study): Randomised parallel trial. BMJ 2012, 345, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys. Ther. 2000, 80, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Gandiga, P.C.; Hummel, F.C.; Cohen, L.G. Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 2006, 117, 845–850. [Google Scholar] [CrossRef] [PubMed]

| Variable | Group | c-tDCS Group Median (IQR) | Control Group Median (IQR) | 95% CI for Median Diff. † | U (p) | Effect Size (r) |
|---|---|---|---|---|---|---|
| EO velocity (cm/s) | Pre | 2.98 (1.08) | 3.11 (0.52) | |||
| Post | 3.10 (0.86) | 2.87 (0.52) | ||||
| Pre-post | −0.06 (0.49) | 0.01 (0.41) | −0.23 to 0.32 | 68.00 (0.87) | 0.03 | |
| Z (p) | −0.31 (0.75) | 0.79 (0.79) | 0.06/0.05 | |||
| EC velocity (cm/s) | Pre | 3.54 (0.65) | 3.42 (0.79) | |||
| Post | 3.51 (0.87) | 3.72 (1.01) | ||||
| Pre-post | −0.07 (0.75) | 0.15 (0.36) | −0.62 to 0.19 | 52.00 (0.28) | 0.21 | |
| Z (p) | −0.04 (0.97) | −1.78 (0.08) | 0.01/0.35 | |||
| TUG (s) | Pre | 7.36 (2.04) | 7.19 (2.28) | |||
| Post | 5.56 (1.44) | 6.50 (1.38) | ||||
| Pre-post | −1.95 (1.80) | −0.47 (1.37) | −2.13 to −0.46 | 24.00 (0.01 *) | 0.51 | |
| Z (p) | −3.18 (0.00 *) | −2.05 (0.04 *) | 0.62/0.40 | |||
| FTSST (s) | Pre | 9.22 (4.41) | 10.22 (2.09) | |||
| Post | 7.59 (1.72) | 9.63 (1.22) | ||||
| Pre-post | −1.78 (4.20) | −0.44 (2.18) | −3.52 to –0.05 | 35.00 (0.04 *) | 0.41 | |
| Z (p) | −2.69 (0.01 *) | −0.89 (0.41) | 0.53/0.17 | |||
| FES-K | Pre | 100.00 (1.50) | 100.00 (0.00) | |||
| Post | 100.00 (0.50) | 100.00 (1.00) | ||||
| Pre-post | 0.00 (0.00) | 0.00 (0.00) | 0.00 to 0.00 | 66.50 (0.78) | 0.06 | |
| Z (p) | −0.54 (0.75) | −0.45 (1.00) | 0.11/0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kang, D.; Yim, J. The Effects of a Cerebellar Transcranial Direct-Current Stimulation-Based Preventive Exercise Program on Physical Function and Fall Reduction Efficacy in Community-Dwelling Older Adults. Healthcare 2026, 14, 241. https://doi.org/10.3390/healthcare14020241
Kang D, Yim J. The Effects of a Cerebellar Transcranial Direct-Current Stimulation-Based Preventive Exercise Program on Physical Function and Fall Reduction Efficacy in Community-Dwelling Older Adults. Healthcare. 2026; 14(2):241. https://doi.org/10.3390/healthcare14020241
Chicago/Turabian StyleKang, Deone, and JongEun Yim. 2026. "The Effects of a Cerebellar Transcranial Direct-Current Stimulation-Based Preventive Exercise Program on Physical Function and Fall Reduction Efficacy in Community-Dwelling Older Adults" Healthcare 14, no. 2: 241. https://doi.org/10.3390/healthcare14020241
APA StyleKang, D., & Yim, J. (2026). The Effects of a Cerebellar Transcranial Direct-Current Stimulation-Based Preventive Exercise Program on Physical Function and Fall Reduction Efficacy in Community-Dwelling Older Adults. Healthcare, 14(2), 241. https://doi.org/10.3390/healthcare14020241

