Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,836)

Search Parameters:
Keywords = D-amino acids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1307 KiB  
Article
Unveiling a Shift in the Rotavirus Strains in Benin: Emergence of Reassortment Intergenogroup and Equine-like G3P[8] Strains in the Post-Vaccination Era
by Jijoho M. Agbla, Milton T. Mogotsi, Alban G. Zohoun, Nkosazana D. Shange, Annick Capochichi, Ayodeji E. Ogunbayo, Rolande Assogba, Shainey Khakha, Aristide Sossou, Hlengiwe Sondlane, Jason M. Mwenda, Mathew D. Esona and Martin M. Nyaga
Viruses 2025, 17(8), 1091; https://doi.org/10.3390/v17081091 (registering DOI) - 7 Aug 2025
Abstract
While a global downward trend in rotavirus diarrhea cases has been observed following vaccine introduction, reassortment, genetic drift, and vaccine-escaping strains remain a concern, particularly in Sub-Saharan Africa. Here, we provide genomic insights into three equine-like G3P[8] rotavirus strains detected in Benin during [...] Read more.
While a global downward trend in rotavirus diarrhea cases has been observed following vaccine introduction, reassortment, genetic drift, and vaccine-escaping strains remain a concern, particularly in Sub-Saharan Africa. Here, we provide genomic insights into three equine-like G3P[8] rotavirus strains detected in Benin during the post-vaccine era. Whole-genome sequencing was performed using the Illumina MiSeq platform, and genomic analysis was conducted using bioinformatics tools. The G3 of the study strains clustered within the recently described lineage IX, alongside the human-derived equine-like strain D388. The P[8] is grouped within the lineage III, along with cognate strains from the GenBank database. Both the structural and non-structural gene segments of these study strains exhibited genetic diversity, highlighting the ongoing evolution of circulating strains. Notably, we identified a novel NSP2 lineage, designated NSP2-lineage VI. Amino acid comparisons of the G3 gene showed two conservative substitutions at positions 156 (A156V) and 260 (I260V) and one radical substitution at position 250 (K250E) relative to the prototype equine-like strain D388, the equine strain Erv105, and other non-equine-like strains. In the P[8] gene, three conservative (N195G, N195D, N113D) and one radical (D133N) substitutions were observed when compared with vaccine strains Rotarix and RotaTeq. These findings suggest continuous viral evolution, potentially driven by vaccine pressure. Ongoing genomic surveillance is essential to monitor genotype shifts as part of the efforts to evaluate the impact of emerging strains and to assess vaccine effectiveness in Sub-Saharan Africa. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

16 pages, 2855 KiB  
Article
Cysteine Surface Engineering of Green-Synthesized Gold Nanoparticles for Enhanced Antimicrobial and Antifungal Activity
by Karen M. Soto, Angelica Gódinez-Oviedo, Adriana Romo-Pérez, Sandra Mendoza, José Mauricio López-Romero, Gerardo Torres-Delgado, Jorge Pineda-Piñón, Luis M. Apátiga-Castro, José de Jesús Pérez Bueno and Alejandro Manzano-Ramírez
Int. J. Mol. Sci. 2025, 26(15), 7645; https://doi.org/10.3390/ijms26157645 - 7 Aug 2025
Abstract
Green synthesis of gold nanoparticles (AuNPs) provides a significantly eco-friendly and low-impact counterpart to conventional chemical methods. In the present study, we synthesized gold nanoparticles using Schinus molle (P-AuNPs) aqueous extract as a reducing and stabilizing agent. The obtained nanoparticles were then stabilized [...] Read more.
Green synthesis of gold nanoparticles (AuNPs) provides a significantly eco-friendly and low-impact counterpart to conventional chemical methods. In the present study, we synthesized gold nanoparticles using Schinus molle (P-AuNPs) aqueous extract as a reducing and stabilizing agent. The obtained nanoparticles were then stabilized by another biocompatible agent, the chiral amino acids L-cysteine (L-Cys-AuNPs) and D-cysteine (D-Cys-AuNPs), to estimate the potential of the surface modification for enhancing AuNPs surface chemistry and antimicrobial action. The synthesized gold nanoparticles were confirmed by UV-Vis spectroscopy, FTIR, XRD, and circular dichroism to validate their formation, crystalline structure, surface properties, and chirality. Physicochemical characterization confirmed the formation of crystalline AuNPs with size and morphology modulated by chiral functionalization. TEM and DLS analyses showed that L-cysteine-functionalized AuNPs were smaller and more uniform, while FTIR and circular dichroism spectroscopy confirmed surface binding and the induction of optical activity, respectively. L-Cys-AuNPs exhibited the highest antimicrobial efficacy against a broad spectrum of microorganisms, including Escherichia coli, Salmonella enterica, Listeria monocytogenes, Staphylococcus aureus, Staphylococcus epidermidis, and, notably, Candida albicans. L-Cys-AuNPs showed the lowest MIC and MBC values, highlighting the synergistic effect of chirality on biological performance. These findings suggest that L-cysteine surface engineering significantly enhances the therapeutic potential of AuNPs, particularly in combating drug-resistant fungal pathogens such as C. albicans. This research paves the way for the development of next-generation antimicrobial agents, reinforcing the relevance of green nanotechnology in the field of materials science and nanotechnology. Full article
(This article belongs to the Special Issue Antimicrobial Nanomaterials: Approaches, Strategies and Applications)
Show Figures

Figure 1

16 pages, 10690 KiB  
Article
Clade-Specific Recombination and Mutations Define the Emergence of Porcine Epidemic Diarrhea Virus S-INDEL Lineages
by Yang-Yang Li, Ke-Fan Chen, Chuan-Hao Fan, Hai-Xia Li, Hui-Qiang Zhen, Ye-Qing Zhu, Bin Wang, Yao-Wei Huang and Gairu Li
Animals 2025, 15(15), 2312; https://doi.org/10.3390/ani15152312 - 7 Aug 2025
Abstract
 Porcine epidemic diarrhea virus (PEDV) continues to circulate globally, causing substantial economic losses to the swine industry. Historically, PEDV strains are classified into the classical G1, epidemic G2, and S-INDEL genotypes. Among these genotypes, the highly virulent and prevalent G2 genotype has been [...] Read more.
 Porcine epidemic diarrhea virus (PEDV) continues to circulate globally, causing substantial economic losses to the swine industry. Historically, PEDV strains are classified into the classical G1, epidemic G2, and S-INDEL genotypes. Among these genotypes, the highly virulent and prevalent G2 genotype has been extensively studied. However, recent clinical outbreaks in China necessitate a reevaluation of the epidemiological and evolutionary dynamics of circulating strains. This study analyzed 37 newly sequenced S genes and public sequences to characterize the genetic variations of S-INDEL strains. Our analysis revealed that S-INDEL strains are endemic throughout China, with a phylogenetic analysis identifying two distinct clades: clade 1, comprising early endemic strains, and clade 2, representing a recently dominant, geographically restricted lineage in China. While inter-genotypic recombination has been documented, our findings also demonstrate that intra-genotypic and intra-clade recombination events contributed significantly to the emergence of clade 2, distinguishing its evolutionary pattern from clade 1. A comparative analysis identified 22 clade-specific amino acid changes, 11 of which occurred in the D0 domain. Notably, mutations at positively selected sites—113 and 114 within the D0 domain, a domain associated with pathogenicity—were specific to clade 2. A phylodynamic analysis indicated Germany as the epicenter of S-INDEL dispersal, with China acting as a sink population characterized by localized transmission networks and frequent recombination events. These results demonstrate that contemporary S-INDEL strains, specifically clade 2, exhibit unique recombination patterns and mutations potentially impacting virulence. Continuous surveillance is essential to assess the pathogenic potential of these evolving recombinant variants and the efficacy of vaccines against them.  Full article
Show Figures

Figure 1

14 pages, 632 KiB  
Article
Protein Polarimetry, Perfected: Specific Rotation Measurement for the Refracto-Polarimetric Detection of Cryptic Protein Denaturation
by Lisa Riedlsperger, Heinz Anderle, Andreas Schwaighofer and Martin Lemmerer
Biophysica 2025, 5(3), 34; https://doi.org/10.3390/biophysica5030034 - 7 Aug 2025
Abstract
Protein polarimetry has been evaluated as a simple and straightforward technique to detect the cryptic denaturation of exemplary proteins. The general rules of rotation vs. amino acid and structural composition and the respective knowledge gaps were reviewed, and the specific rotation of cystine [...] Read more.
Protein polarimetry has been evaluated as a simple and straightforward technique to detect the cryptic denaturation of exemplary proteins. The general rules of rotation vs. amino acid and structural composition and the respective knowledge gaps were reviewed, and the specific rotation of cystine was determined in 4 M NaCl solution as [α]D20 = –302.5°. The specific rotations at 589 nm and 436 nm and the ratio were measured for several model proteins, some purified plasma-derived proteins and for three monoclonal antibodies. The immunoglobulin G concentrates all showed a narrow ratio range likely characteristic for this protein class. Heat denaturation experiments were conducted at temperatures between 50 and 85 °C both for short-time (10 min) and for prolonged periods of heat exposure (up to 210 min). Denaturation by heat resulted not only in the known levorotatory shift, but also in a shift in the specific rotation ratio. The stabilizing effect of fatty acids in bovine serum could be demonstrated by this parameter. Polarimetry thus appears to be a particularly sensitive and simple method for the characterization of the identity and the thermal stability of proteins and should therefore be added again as a complimentary method to the toolbox of protein chemistry. Full article
(This article belongs to the Special Issue Investigations into Protein Structure)
Show Figures

Figure 1

29 pages, 13705 KiB  
Article
Stabilization of Zwitterionic Versus Canonical Glycine by DMSO Molecules
by Verónica Martín, Alejandro Colón, Carmen Barrientos and Iker León
Pharmaceuticals 2025, 18(8), 1168; https://doi.org/10.3390/ph18081168 - 6 Aug 2025
Abstract
Background/Objectives: Understanding the stabilization mechanisms of amino acid conformations in different solvent environments is crucial for elucidating biomolecular interactions and crystallization processes. This study presents a comprehensive computational investigation of glycine, the simplest amino acid, in both its canonical and zwitterionic forms [...] Read more.
Background/Objectives: Understanding the stabilization mechanisms of amino acid conformations in different solvent environments is crucial for elucidating biomolecular interactions and crystallization processes. This study presents a comprehensive computational investigation of glycine, the simplest amino acid, in both its canonical and zwitterionic forms when interacting with dimethyl sulfoxide (DMSO) molecules. Methods: Using density functional theory (DFT) calculations at the B3LYP/6-311++G(d,p) level with empirical dispersion corrections, we examined the conformational landscape of glycine–DMSO clusters with one and two DMSO molecules, as well as implicit solvent calculations, and compared them with analogous water clusters. Results: Our results demonstrate that while a single water molecule is insufficient to stabilize the zwitterionic form of glycine, one DMSO molecule successfully stabilizes this form through specific interactions between the S=O and the methyl groups of DMSO and the NH3+ and the oxoanion group of zwitterionic glycine, respectively. Topological analysis of the electron density using QTAIM and NCI methods reveals the nature of these interactions. When comparing the relative stability between canonical and zwitterionic forms, we found that two DMSO molecules significantly reduce the energy gap to approximately 12 kJ mol−1, suggesting that increasing DMSO coordination could potentially invert this stability. Implicit solvent calculations indicate that in pure DMSO medium, the zwitterionic form becomes more stable below 150 K, while remaining less stable at room temperature, contrasting with aqueous environments where the zwitterionic form predominates. Conclusions: These findings provide valuable insights into DMSO’s unique role in biomolecular stabilization and have implications for protein crystallization protocols where DMSO is commonly used as a co-solvent. Full article
(This article belongs to the Special Issue Classical and Quantum Molecular Simulations in Drug Design)
Show Figures

Graphical abstract

17 pages, 822 KiB  
Article
From Forest to Fork: Antioxidant and Antimicrobial Potential of Laetiporus sulphureus (Bull.) Murrill in Cooked Sausages
by Aleksandra Novaković, Maja Karaman, Branislav Šojić, Predrag Ikonić, Tatjana Peulić, Jelena Tomić and Mirjana Šipovac
Microorganisms 2025, 13(8), 1832; https://doi.org/10.3390/microorganisms13081832 - 6 Aug 2025
Abstract
In response to the growing demand for clean-label preservatives, this study investigates the potential of Laetiporus sulphureus, an edible polypore mushroom, as a multifunctional additive in cooked sausages. The ethanolic extract of L. sulphureus (LsEtOH) was evaluated for its chemical composition, antioxidant [...] Read more.
In response to the growing demand for clean-label preservatives, this study investigates the potential of Laetiporus sulphureus, an edible polypore mushroom, as a multifunctional additive in cooked sausages. The ethanolic extract of L. sulphureus (LsEtOH) was evaluated for its chemical composition, antioxidant capacity, and antimicrobial activity. Leucine (12.4 ± 0.31 mg/g d.w.) and linoleic acid (68.6%) were identified as the dominant essential amino acid and fatty acid. LsEtOH exhibited strong antioxidant activity, with IC50 values of 215 ± 0.05 µg/mL (DPPH•), 182 ± 0.40 µg/mL (NO•), and 11.4 ± 0.01 µg/mL (OH•), and showed a selective inhibition of Gram-positive bacteria, particularly Staphylococcus aureus (MIC/MBC: 0.31/0.62 mg/mL). In cooked sausages treated with 0.05 mg/kg of LsEtOH, lipid peroxidation was reduced (TBARS: 0.26 mg MDA/kg compared to 0.36 mg MDA/kg in the control), microbial growth was suppressed (33.3 ± 15.2 CFU/g in the treated sample compared to 43.3 ± 5.7 CFU/g in the control group), and color and pH were stabilized over 30 days. A sensory evaluation revealed minor flavor deviations due to the extract’s inherent aroma. Encapsulation and consumer education are recommended to enhance acceptance. This is the first study to demonstrate the efficacy of L. sulphureus extract as a natural preservative in a meat matrix, supporting its application as a clean-label additive for shelf life and safety improvement. Full article
(This article belongs to the Special Issue Microbial Biocontrol in the Agri-Food Industry, 2nd Edition)
Show Figures

Figure 1

20 pages, 690 KiB  
Review
Diabetes and Sarcopenia: Metabolomic Signature of Pathogenic Pathways and Targeted Therapies
by Anamaria Andreea Danciu, Cornelia Bala, Georgeta Inceu, Camelia Larisa Vonica, Adriana Rusu, Gabriela Roman and Dana Mihaela Ciobanu
Int. J. Mol. Sci. 2025, 26(15), 7574; https://doi.org/10.3390/ijms26157574 - 5 Aug 2025
Abstract
Diabetes mellites (DM) is a chronic disease with increasing prevalence worldwide and multiple health implications. Among them, sarcopenia is a metabolic disorder characterized by loss of muscle mass and function. The two age-related diseases, DM and sarcopenia, share underlying pathophysiological pathways. This narrative [...] Read more.
Diabetes mellites (DM) is a chronic disease with increasing prevalence worldwide and multiple health implications. Among them, sarcopenia is a metabolic disorder characterized by loss of muscle mass and function. The two age-related diseases, DM and sarcopenia, share underlying pathophysiological pathways. This narrative literature review aims to provide an overview of the existing evidence on metabolomic studies evaluating DM associated with sarcopenia. Advancements in targeted and untargeted metabolomics techniques could provide better insight into the pathogenesis of sarcopenia in DM and describe their entangled and fluctuating interrelationship. Recent evidence showed that sarcopenia in DM induced significant changes in protein, lipid, carbohydrate, and in energy metabolisms in humans, animal models of DM, and cell cultures. Newer metabolites were reported, known metabolites were also found significantly modified, while few amino acids and lipids displayed a dual behavior. In addition, several therapeutic approaches proved to be promising interventions for slowing the progression of sarcopenia in DM, including physical activity, newer antihyperglycemic classes, D-pinitol, and genetic USP21 ablation, although none of them were yet validated for clinical use. Conversely, ceramides had a negative impact. Further research is needed to confirm the utility of these findings and to provide potential metabolomic biomarkers that might be relevant for the pathogenesis and treatment of sarcopenia in DM. Full article
Show Figures

Figure 1

18 pages, 3342 KiB  
Article
Sphingolipid Metabolism Remodels Immunity and Metabolic Network in the Muscle of Female Chinese Mitten Crab (Eriocheir sinensis)
by Miaomiao Xue, Changyou Song, Hongxia Li, Jiyan He, Jianxiang Chen, Changxin Kong, Xiaowei Li, Hang Wang, Jie He and Pao Xu
Int. J. Mol. Sci. 2025, 26(15), 7562; https://doi.org/10.3390/ijms26157562 - 5 Aug 2025
Abstract
Numerous studies have demonstrated the positive effects of formulated feeds on gonadal and hepatopancreatic development of Eriocheir sinensis. However, there are limited studies on the effects of formulated feeds on the immune homeostasis and metabolism of muscle tissue in E. sinensis during [...] Read more.
Numerous studies have demonstrated the positive effects of formulated feeds on gonadal and hepatopancreatic development of Eriocheir sinensis. However, there are limited studies on the effects of formulated feeds on the immune homeostasis and metabolism of muscle tissue in E. sinensis during the fattening period. Therefore, this study used metabolomic and lipidomic to systematically analyze the effects of formulated diets on muscle metabolism in female E. sinensis. The results indicate that the formulated feeds improved immune performance by inhibiting inflammatory responses, apoptosis and autophagy. In addition, the feed promoted amino acid metabolism and protein synthesis while decreasing muscle fatty acid metabolism. Metabolomic analysis reveal that pyrimidine metabolism is involved in the regulation of muscle physiological health in fattening female crabs. Lipidomic analysis revealed that the formulated feeds play a role in muscle immune homeostasis, amino acid and fatty acid metabolism by regulating the level of ceramide (Cer (d18:1/22:0)) in sphingolipid metabolism. Through subnetwork analysis, the functional interactions of sphingolipid metabolism with the pathways of sphingolipid signaling, apoptosis regulation, inflammatory response and lipid dynamic homeostasis were identified, which further defined the important role of sphingolipid metabolism in the regulation of muscle physiological health and metabolic homeostasis was further identified. In summary, the formulated feeds effectively promote immune homeostasis and metabolism in the muscle of female E. sinensis during the fattening period. These findings provide a solid theoretical foundation for feed formulation optimization and application in fattening practices. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

18 pages, 6860 KiB  
Article
Molecular Characterization and Antiviral Function Against GCRV of Complement Factor D in Barbel Chub (Squaliobarbus curriculus)
by Yu Xiao, Zhao Lv, Yuling Wei, Mengyuan Zhang, Hong Yang, Chao Huang, Tiaoyi Xiao and Yilin Li
Fishes 2025, 10(8), 370; https://doi.org/10.3390/fishes10080370 - 2 Aug 2025
Viewed by 171
Abstract
The barbel chub (Squaliobarbus curriculus) exhibits remarkable resistance to grass carp reovirus (GCRV), a devastating pathogen in aquaculture. To reveal the molecular basis of this resistance, we investigated complement factor D (DF)—a rate-limiting serine protease governing alternative complement pathway activation. Molecular [...] Read more.
The barbel chub (Squaliobarbus curriculus) exhibits remarkable resistance to grass carp reovirus (GCRV), a devastating pathogen in aquaculture. To reveal the molecular basis of this resistance, we investigated complement factor D (DF)—a rate-limiting serine protease governing alternative complement pathway activation. Molecular cloning revealed that the barbel chub DF (ScDF) gene encodes a 1251-bp cDNA sequence translating into a 250-amino acid protein. Crucially, bioinformatic characterization identified a unique N-glycosylation site at Asn139 in ScDF, representing a structural divergence absent in grass carp (Ctenopharyngodon idella) DF (CiDF). While retaining a conserved Tryp_SPc domain harboring the catalytic triad (His61, Asp109, and Ser204) and substrate-binding residues (Asp198, Ser219, and Gly221), sequence and phylogenetic analyses confirmed ScDF’s evolutionary conservation, displaying 94.4% amino acid identity with CiDF and clustering within the Cyprinidae. Expression profiling revealed constitutive ScDF dominance in the liver, and secondary prominence was observed in the heart. Upon GCRV challenge in S. curriculus kidney (SCK) cells, ScDF transcription surged to a 438-fold increase versus uninfected controls at 6 h post-infection (hpi; p < 0.001)—significantly preceding the 168-hpi response peak documented for CiDF in grass carp. Functional validation showed that ScDF overexpression suppressed key viral capsid genes (VP2, VP5, and VP7) and upregulated the interferon regulator IRF9. Moreover, recombinant ScDF protein incubation induced interferon pathway genes and complement C3 expression. Collectively, ScDF’s rapid early induction (peaking at 6 hpi) and multi-pathway coordination may contribute to barbel chub’s GCRV resistance. These findings may provide molecular insights into the barbel chub’s high GCRV resistance compared to grass carp and novel perspectives for anti-GCRV breeding strategies in fish. Full article
(This article belongs to the Special Issue Molecular Design Breeding in Aquaculture)
Show Figures

Figure 1

18 pages, 2188 KiB  
Article
Rational Engineering of a Brevinin-2 Peptide: Decoupling Potency from Toxicity Through C-Terminal Truncation and N-Terminal Chiral Substitution
by Aifang Yao, Zeyu Zhang, Zhengmin Song, Yi Yuan, Xiaoling Chen, Chengbang Ma, Tianbao Chen, Chris Shaw, Mei Zhou and Lei Wang
Antibiotics 2025, 14(8), 784; https://doi.org/10.3390/antibiotics14080784 - 1 Aug 2025
Viewed by 116
Abstract
Background/Objectives: The clinical potential of antimicrobial peptides (AMPs) against dual threats like antimicrobial resistance (AMR) and cancer is often limited by their high host cell toxicity. Here, we focused on brevinin-2OS (B2OS), a novel peptide from the skin of Odorrana schmackeri with [...] Read more.
Background/Objectives: The clinical potential of antimicrobial peptides (AMPs) against dual threats like antimicrobial resistance (AMR) and cancer is often limited by their high host cell toxicity. Here, we focused on brevinin-2OS (B2OS), a novel peptide from the skin of Odorrana schmackeri with potent haemolytic activity. The objective was to study the structure–activity relationship and optimise the safety via targeted modifications. Methods: A dual-modification strategy involving C-terminal truncation and subsequent N-terminal D-amino acid substitution was employed. The bioactivities and safety profiles of the resulting analogues were evaluated using antimicrobial, haemolysis, and cytotoxicity assays. Result: Removal of the rana box in B2OS(1-22)-NH2 substantially reduced haemolysis while maintaining bioactivities. Remarkably, the D-leucine substitution in [D-Leu2]B2OS(1-22)-NH2 displayed a superior HC50 value of 118.1 µM, representing a more than ten-fold improvement compared to its parent peptide (HC50 of 10.44 µM). This optimised analogue also demonstrated faster bactericidal kinetics and enhanced membrane permeabilisation, leading to a greater than 22-fold improvement in its therapeutic index against Gram-positive bacteria. Conclusions: The C-terminal rana box is a primary determinant of toxicity rather than a requirement for activity in the B2OS scaffold. The engineered peptide [D-Leu2]B2OS(1-22)-NH2 emerges as a promising lead compound, and this dual-modification strategy provides a powerful design principle for developing safer, more effective peptide-based therapeutics. Full article
(This article belongs to the Section Antimicrobial Peptides)
Show Figures

Figure 1

29 pages, 3012 KiB  
Article
Investigating Multi-Omic Signatures of Ethnicity and Dysglycaemia in Asian Chinese and European Caucasian Adults: Cross-Sectional Analysis of the TOFI_Asia Study at 4-Year Follow-Up
by Saif Faraj, Aidan Joblin-Mills, Ivana R. Sequeira-Bisson, Kok Hong Leiu, Tommy Tung, Jessica A. Wallbank, Karl Fraser, Jennifer L. Miles-Chan, Sally D. Poppitt and Michael W. Taylor
Metabolites 2025, 15(8), 522; https://doi.org/10.3390/metabo15080522 - 1 Aug 2025
Viewed by 326
Abstract
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers [...] Read more.
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers and mechanistic insight into metabolic dysregulation. However, multi-omics datasets across ethnicities remain limited. Methods: We performed cross-sectional multi-omics analyses on 171 adults (99 Asian Chinese, 72 European Caucasian) from the New Zealand-based TOFI_Asia cohort at 4-years follow-up. Paired plasma and faecal samples were analysed using untargeted metabolomic profiling (polar/lipid fractions) and shotgun metagenomic sequencing, respectively. Sparse multi-block partial least squares regression and discriminant analysis (DIABLO) unveiled signatures associated with ethnicity, glycaemic status, and sex. Results: Ethnicity-based DIABLO modelling achieved a balanced error rate of 0.22, correctly classifying 76.54% of test samples. Polar metabolites had the highest discriminatory power (AUC = 0.96), with trigonelline enriched in European Caucasians and carnitine in Asian Chinese. Lipid profiles highlighted ethnicity-specific signatures: Asian Chinese showed enrichment of polyunsaturated triglycerides (TG.16:0_18:2_22:6, TG.18:1_18:2_22:6) and ether-linked phospholipids, while European Caucasians exhibited higher levels of saturated species (TG.16:0_16:0_14:1, TG.15:0_15:0_17:1). The bacteria Bifidobacterium pseudocatenulatum, Erysipelatoclostridium ramosum, and Enterocloster bolteae characterised Asian Chinese participants, while Oscillibacter sp. and Clostridium innocuum characterised European Caucasians. Cross-omic correlations highlighted negative correlations of Phocaeicola vulgatus with amino acids (r = −0.84 to −0.76), while E. ramosum and C. innocuum positively correlated with long-chain triglycerides (r = 0.55–0.62). Conclusions: Ethnicity drove robust multi-omic differentiation, revealing distinctive metabolic and microbial profiles potentially underlying the differential T2D risk between Asian Chinese and European Caucasians. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

25 pages, 1206 KiB  
Article
Application of Protein Structure Encodings and Sequence Embeddings for Transporter Substrate Prediction
by Andreas Denger and Volkhard Helms
Molecules 2025, 30(15), 3226; https://doi.org/10.3390/molecules30153226 - 1 Aug 2025
Viewed by 282
Abstract
Membrane transporters play a crucial role in any cell. Identifying the substrates they translocate across membranes is important for many fields of research, such as metabolomics, pharmacology, and biotechnology. In this study, we leverage recent advances in deep learning, such as amino acid [...] Read more.
Membrane transporters play a crucial role in any cell. Identifying the substrates they translocate across membranes is important for many fields of research, such as metabolomics, pharmacology, and biotechnology. In this study, we leverage recent advances in deep learning, such as amino acid sequence embeddings with protein language models (pLMs), highly accurate 3D structure predictions with AlphaFold 2, and structure-encoding 3Di sequences from FoldSeek, for predicting substrates of membrane transporters. We test new deep learning features derived from both sequence and structure, and compare them to the previously best-performing protein encodings, which were made up of amino acid k-mer frequencies and evolutionary information from PSSMs. Furthermore, we compare the performance of these features either using a previously developed SVM model, or with a regularized feedforward neural network (FNN). When evaluating these models on sugar and amino acid carriers in A. thaliana, as well as on three types of ion channels in human, we found that both the DL-based features and the FNN model led to a better and more consistent classification performance compared to previous methods. Direct encodings of 3D structures with Foldseek, as well as structural embeddings with ProstT5, matched the performance of state-of-the-art amino acid sequence embeddings calculated with the ProtT5-XL model when used as input for the FNN classifier. Full article
Show Figures

Figure 1

17 pages, 482 KiB  
Article
Branched-Chain Amino Acids Combined with Exercise Improves Physical Function and Quality of Life in Older Adults: Results from a Pilot Randomized Controlled Trial
by Ronna Robbins, Jason C. O’Connor, Tiffany M. Cortes and Monica C. Serra
Dietetics 2025, 4(3), 32; https://doi.org/10.3390/dietetics4030032 - 1 Aug 2025
Viewed by 245
Abstract
This pilot, randomized, double-blind, placebo-controlled trial investigated the effects of branched-chain amino acids (BCAAs)—provided in a 2:1:1 ratio of leucine:isoleucine:valine—combined with exercise on fatigue, physical performance, and quality of life in older adults. Twenty participants (63% female; BMI: 35 ± 2 kg/m2 [...] Read more.
This pilot, randomized, double-blind, placebo-controlled trial investigated the effects of branched-chain amino acids (BCAAs)—provided in a 2:1:1 ratio of leucine:isoleucine:valine—combined with exercise on fatigue, physical performance, and quality of life in older adults. Twenty participants (63% female; BMI: 35 ± 2 kg/m2; age: 70.5 ± 1.2 years) were randomized to 8 weeks of either exercise + BCAAs (100 mg/kg body weight/d) or exercise + placebo. The program included moderate aerobic and resistance training three times weekly. Physical function was assessed using handgrip strength, chair stands, gait speed, VO2 max, and a 400 m walk. Psychological health was evaluated using the CES-D, Fatigue Assessment Scale (FAS), Insomnia Severity Index (ISI), and global pain, fatigue, and quality of life using a visual analog scale (VAS). Significant group x time interactions were found for handgrip strength (p = 0.03), chair stands (p < 0.01), and 400 m walk time (p < 0.01). Compared to exercise + placebo, exercise + BCAAs showed greater improvements in strength, mobility, and endurance, along with reductions in fatigue (−45% vs. +92%) and depressive symptoms (−29% vs. +5%). Time effects were also observed for ISI (−30%), FAS (−21%), and VAS quality of life (16%) following exercise + BCAA supplementation. These preliminary results suggest that BCAAs combined with exercise may be an effective way to improve physical performance and reduce fatigue and depressive symptoms in older adults. Full article
Show Figures

Figure 1

23 pages, 3835 KiB  
Article
Computational Saturation Mutagenesis Reveals Pathogenic and Structural Impacts of Missense Mutations in Adducin Proteins
by Lennon Meléndez-Aranda, Jazmin Moreno Pereyda and Marina M. J. Romero-Prado
Genes 2025, 16(8), 916; https://doi.org/10.3390/genes16080916 - 30 Jul 2025
Viewed by 343
Abstract
Background and objectives: Adducins are cytoskeletal proteins essential for membrane stability, actin–spectrin network organization, and cell signaling. Mutations in the genes ADD1, ADD2, and ADD3 have been linked to hypertension, neurodevelopmental disorders, and cancer. However, no comprehensive in silico saturation [...] Read more.
Background and objectives: Adducins are cytoskeletal proteins essential for membrane stability, actin–spectrin network organization, and cell signaling. Mutations in the genes ADD1, ADD2, and ADD3 have been linked to hypertension, neurodevelopmental disorders, and cancer. However, no comprehensive in silico saturation mutagenesis study has systematically evaluated the pathogenic potential and structural consequences of all possible missense mutations in adducins. This study aimed to identify high-risk variants and their potential impact on protein stability and function. Methods: We performed computational saturation mutagenesis for all possible single amino acid substitutions across the adducin proteins family. Pathogenicity predictions were conducted using four independent tools: AlphaMissense, Rhapsody, PolyPhen-2, and PMut. Predictions were validated against UniProt-annotated pathogenic variants. Predictive performance was assessed using Cohen’s Kappa, sensitivity, and precision. Mutations with a prediction probability ≥ 0.8 were further analyzed for structural stability using mCSM, DynaMut2, MutPred2, and Missense3D, with particular focus on functionally relevant domains such as phosphorylation and calmodulin-binding sites. Results: PMut identified the highest number of pathogenic mutations, while PolyPhen-2 yielded more conservative predictions. Several high-risk mutations clustered in known regulatory and binding regions. Substitutions involving glycine were consistently among the most destabilizing due to increased backbone flexibility. Validated variants showed strong agreement across multiple tools, supporting the robustness of the analysis. Conclusions: This study highlights the utility of multi-tool bioinformatic strategies for comprehensive mutation profiling. The results provide a prioritized list of high-impact adducin variants for future experimental validation and offer insights into potential therapeutic targets for disorders involving ADD1, ADD2, and ADD3 mutations. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Graphical abstract

23 pages, 1789 KiB  
Review
Multi-Enzyme Synergy and Allosteric Regulation in the Shikimate Pathway: Biocatalytic Platforms for Industrial Applications
by Sara Khan and David D. Boehr
Catalysts 2025, 15(8), 718; https://doi.org/10.3390/catal15080718 - 28 Jul 2025
Viewed by 422
Abstract
The shikimate pathway is the fundamental metabolic route for aromatic amino acid biosynthesis in bacteria, plants, and fungi, but is absent in mammals. This review explores how multi-enzyme synergy and allosteric regulation coordinate metabolic flux through this pathway by focusing on three key [...] Read more.
The shikimate pathway is the fundamental metabolic route for aromatic amino acid biosynthesis in bacteria, plants, and fungi, but is absent in mammals. This review explores how multi-enzyme synergy and allosteric regulation coordinate metabolic flux through this pathway by focusing on three key enzymes: 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase, chorismate mutase, and tryptophan synthase. We examine the structural diversity and distribution of these enzymes across evolutionary domains, highlighting conserved catalytic mechanisms alongside species-specific regulatory adaptations. The review covers directed evolution strategies that have transformed naturally regulated enzymes into standalone biocatalysts with enhanced activity and expanded substrate scope, enabling synthesis of non-canonical amino acids and complex organic molecules. Industrial applications demonstrate the pathway’s potential for sustainable production of pharmaceuticals, polymer precursors, and specialty chemicals through engineered microbial platforms. Additionally, we discuss the therapeutic potential of inhibitors targeting pathogenic organisms, particularly their mechanisms of action and antimicrobial efficacy. This comprehensive review establishes the shikimate pathway as a paradigmatic system where understanding allosteric networks enables the rational design of biocatalytic platforms, providing blueprints for biotechnological innovation and demonstrating how evolutionary constraints can be overcome through protein engineering to create superior industrial biocatalysts. Full article
Show Figures

Graphical abstract

Back to TopTop