Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (744)

Search Parameters:
Keywords = D-A-D dyes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1758 KiB  
Article
Nonlinear Absorption Properties of Phthalocyanine-like Squaraine Dyes
by Fan Zhang, Wuyang Shi, Xixiao Li, Yigang Wang, Leilei Si, Wentao Gao, Meng Qi, Minjie Zhou, Jiajun Ma, Ao Li, Zhiqiang Li, Hongming Wang and Bing Jin
Photonics 2025, 12(8), 779; https://doi.org/10.3390/photonics12080779 (registering DOI) - 1 Aug 2025
Abstract
This study synthesizes and comparatively investigates two squaric acid-based phthalocyanine-like dyes, SNF and its long-chain alkylated derivative LNF, to systematically elucidate the influence of peripheral hydrophobic groups on their third-order nonlinear optical (NLO) properties. The NLO characteristics were comprehensively characterized using femtosecond Z-scan [...] Read more.
This study synthesizes and comparatively investigates two squaric acid-based phthalocyanine-like dyes, SNF and its long-chain alkylated derivative LNF, to systematically elucidate the influence of peripheral hydrophobic groups on their third-order nonlinear optical (NLO) properties. The NLO characteristics were comprehensively characterized using femtosecond Z-scan and I-scan techniques at both 800 nm and 900 nm. Both dyes exhibited strong saturable absorption (SA), confirming their potential as saturable absorbers. Critically, the comparative analysis revealed that SNF exhibits a significantly greater nonlinear absorption coefficient (β) compared to LNF under identical conditions. For instance, at 800 nm, the β of SNF was approximately 3–5 times larger than that of LNF. This result conclusively demonstrates that the introduction of long hydrophobic alkyl chains attenuates the NLO response. Furthermore, I-scan measurements revealed excellent SA performance, with high modulation depths (e.g., LNF: 43.0% at 900 nm) and low saturation intensities. This work not only clarifies the structure–property relationship in these D-A-D dyes but also presents a clear strategy for modulating the NLO properties of organic chromophores for applications in near-infrared pulsed lasers. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

24 pages, 1396 KiB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 (registering DOI) - 1 Aug 2025
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
27 pages, 2690 KiB  
Article
Adsorption of Methylene Blue on Metakaolin-Based Geopolymers: A Kinetic and Thermodynamic Investigation
by Maryam Hmoudah, Rosanna Paparo, Michela De Luca, Michele Emanuele Fortunato, Olimpia Tammaro, Serena Esposito, Riccardo Tesser, Martino Di Serio, Claudio Ferone, Giuseppina Roviello, Oreste Tarallo and Vincenzo Russo
ChemEngineering 2025, 9(4), 79; https://doi.org/10.3390/chemengineering9040079 - 25 Jul 2025
Viewed by 133
Abstract
Metakaolin-based geopolymers with different molar ratios of Si/Al were synthesized and utilized as an efficient adsorbent for the removal of methylene blue (MB) as a model cationic dye from aqueous solution. Various analytical techniques were employed to characterize the synthesized geopolymers. The influence [...] Read more.
Metakaolin-based geopolymers with different molar ratios of Si/Al were synthesized and utilized as an efficient adsorbent for the removal of methylene blue (MB) as a model cationic dye from aqueous solution. Various analytical techniques were employed to characterize the synthesized geopolymers. The influence of the main operation conditions on the adsorption kinetics of MB onto the geopolymer was examined under various operating conditions. Results showed a significant maximum MB adsorption capacity at the temperature of 30 °C for all four types of geopolymers studied (designated as A, B, C, and D) up to 35.3, 23.6, 25.5, and 19.0 mg g−1, respectively. The corresponding order of Si/Al ratio was A < C < B < D. Adsorption kinetics was so fast and reached equilibrium in 10 min, and the experimental results were described using the adsorption dynamic intraparticle model (ADIM). The equilibrium data for MB removal was in agreement with the Langmuir isotherm. Full article
(This article belongs to the Special Issue New Advances in Chemical Engineering)
Show Figures

Figure 1

14 pages, 2929 KiB  
Article
Synthesis and Electronic Properties of Novel Donor–π–Acceptor-Type Functional Dyes with a Carbonyl-Bridged Bithiophene π-Spacer
by Miyu Ueda, Ryo Nagayama, Masaki Nagaoka, Naoya Suzuki, Shintaro Kodama, Takeshi Maeda, Shin-ichiro Kato and Shigeyuki Yagi
Molecules 2025, 30(15), 3084; https://doi.org/10.3390/molecules30153084 - 23 Jul 2025
Viewed by 245
Abstract
In this study, we synthesized novel donor–π–acceptor (D–π–A) functional dyes bearing a carbonyl-bridged bithiophene as a π-conjugated spacer and evaluated the absorption and fluorescence properties as well as the photostability. The developed dyes 1-CO3-CO possess an N,N-diphenylaminophenyl electron [...] Read more.
In this study, we synthesized novel donor–π–acceptor (D–π–A) functional dyes bearing a carbonyl-bridged bithiophene as a π-conjugated spacer and evaluated the absorption and fluorescence properties as well as the photostability. The developed dyes 1-CO3-CO possess an N,N-diphenylaminophenyl electron donor unit and an electron acceptor unit such as a formyl group (1-CO), an (N,N-diethylthiobarbituryl)methylene moiety (2-CO), or a (3-dicyanomethylidene-1-indanon-2-yl)methylene moiety (3-CO). The absorption spectra of 1-CO3-CO in dichloromethane at room temperature showed absorption maxima at 569 nm, 631 nm, and 667 nm, respectively, and the stronger acceptors in 2-CO and 3-CO led to enhancement of the ICT character. In addition, 2-CO and 3-CO had a second absorption band in the visible region, showing panchromatic absorption properties. Electrochemical analyses of the developed dyes revealed that the carbonyl bridging group in the π-spacer contributes to stabilization of the frontier orbitals such as the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO, respectively), in comparison with the referential dyes bearing a dibutylmethylene-bridged bithiophene spacer, 1-CBu23-CBu2. The HOMO/LUMO stabilization brought about high photostability in the doped poly(methyl methacrylate) film. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

12 pages, 1530 KiB  
Article
Evaluation of Intracochlear Pressure and Fluid Distribution in 3D-Printed Artificial Cochlear Models and Human Petrous Bones
by Rayoung Kim, Matthias Schürmann, Lars-Uwe Scholtz and Ingo Todt
Brain Sci. 2025, 15(7), 771; https://doi.org/10.3390/brainsci15070771 - 20 Jul 2025
Viewed by 383
Abstract
Introduction: The important factor in applying substances for inner ear therapy is the atraumatic execution, as well as effective concentration uniformly distributed in all regions of the cochlea within a reasonable time frame. This study investigates whether an additional cochlear opening (“second-hole technique”) [...] Read more.
Introduction: The important factor in applying substances for inner ear therapy is the atraumatic execution, as well as effective concentration uniformly distributed in all regions of the cochlea within a reasonable time frame. This study investigates whether an additional cochlear opening (“second-hole technique”) can improve fluid distribution and reduce intracochlear pressure during dye delivery into the cochlear models and human petrous bone. Material and Methods: Three experimental setups were used: an uncoiled scala tympani model, a full-scale 3D-printed cochlear model, and a human petrous bone. In all cases, 1% methylene blue-stained saline was infused using a cochlear catheter (MED-EL, Innsbruck, Austria) through the round window. Intracochlear pressure was measured via fiberoptic pressure sensors inserted through a burr hole (artificial cochlear models) or at the lateral semicircular canal (human petrous bone). A second hole was made on the helicotrema in the inner ear models or at the oval window of the human petrous bone to examine the effect of a second hole on intracochlear pressure and fluid distribution. Dye distribution and intracochlear pressure were measured in 3D artificial models at two flow rates (0.2 and 0.4 mL/h). The intracochlear pressure were measured in the human petrous bone at a fixed rate (0.4 mL/h). Results: The use of a second hole significantly improved dye distribution in 3D models at both flow rates (p < 0.05) and led to earlier saturation-level distribution. Intracochlear pressure remained significantly lower and more stable in models with a second hole (p < 0.05). In human petrous bones, pressure fluctuation was reduced by the second hole, though pressure still increased over time. Conclusions: Using a second-hole technique leads to a faster, uniform level of dye distribution throughout the cochlear models, as well as a lower intracochlear pressure, which can be assumed to be an essential factor for hearing preservation during dye application. Full article
(This article belongs to the Special Issue Recent Advances in Hearing Impairment: 2nd Edition)
Show Figures

Figure 1

25 pages, 5867 KiB  
Article
Color-Sensitive Sensor Array Combined with Machine Learning for Non-Destructive Detection of AFB1 in Corn Silage
by Daqian Wan, Haiqing Tian, Lina Guo, Kai Zhao, Yang Yu, Xinglu Zheng, Haijun Li and Jianying Sun
Agriculture 2025, 15(14), 1507; https://doi.org/10.3390/agriculture15141507 - 13 Jul 2025
Viewed by 263
Abstract
Aflatoxin B1 (AFB1) contamination in corn silage poses significant risks to livestock and human health. This study developed a non-destructive detection method for AFB1 using color-sensitive arrays (CSAs). Twenty self-developed CSAs were employed to react with samples, with reflectance [...] Read more.
Aflatoxin B1 (AFB1) contamination in corn silage poses significant risks to livestock and human health. This study developed a non-destructive detection method for AFB1 using color-sensitive arrays (CSAs). Twenty self-developed CSAs were employed to react with samples, with reflectance spectra collected using a portable spectrometer. Spectral data were optimized through seven preprocessing methods, including Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC), first-order derivative (1st D), second-order derivative (2nd D), wavelet denoising, and their combinations. Key variables were selected using five feature selection algorithms: Competitive Adaptive Reweighted Sampling (CARS), Principal Component Analysis (PCA), Random Forest (RF), Uninformative Variable Elimination (UVE), and eXtreme Gradient Boosting (XGBoost). Five machine learning models were constructed: Light Gradient Boosting Machine (LightGBM), XGBoost, Support Vector Regression (SVR), RF, and K-Nearest Neighbor (KNN). The results demonstrated significant AFB1-responsive characteristics in three dyes: (2,3,7,8,12,13,17,18-octaethylporphynato)chloromanganese(III) (Mn(OEP)Cl), Bromocresol Green, and Cresol Red. The combined 1st D-PCA-KNN model showed optimal prediction performance, with determination coefficient (Rp2 = 0.87), root mean square error (RMSEP = 0.057), and relative prediction deviation (RPD = 2.773). This method provides an efficient solution for silage AFB1 monitoring. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

26 pages, 1906 KiB  
Article
The Thermoelastic Component of the Photoacoustic Response in a 3D-Printed Polyamide Coated with Pigment Dye: A Two-Layer Model Incorporating Fractional Heat Conduction Theories
by Marica N. Popovic, Slobodanka P. Galovic, Ervin K. Lenzi and Aloisi Somer
Fractal Fract. 2025, 9(7), 456; https://doi.org/10.3390/fractalfract9070456 - 12 Jul 2025
Viewed by 215
Abstract
This study presents a theoretical model for the thermoelastic response in transmission-mode photoacoustic systems that feature a two-layer structure. The model incorporates volumetric optical absorption in both layers and is based on classical heat conduction theory, hyperbolic generalized heat conduction theory, and fractional [...] Read more.
This study presents a theoretical model for the thermoelastic response in transmission-mode photoacoustic systems that feature a two-layer structure. The model incorporates volumetric optical absorption in both layers and is based on classical heat conduction theory, hyperbolic generalized heat conduction theory, and fractional heat conduction models including inertial memory in Generalizations of the Cattaneo Equation (GCEI, GCEII, and GCEIII). To validate the model, comparisons were made with the existing literature models. Using the proposed model, the thermoelastic photoacoustic response of a two-layer system composed of a 3D-printed porous polyamide (PA12) substrate coated with a thin, highly absorptive protective dye layer is analyzed. We obtain that the thickness and thermal conduction in properties of the coating are very important in influencing the thermoelastic component and should not be overlooked. Furthermore, the thermoelastic component is affected by the selected fractional model—whether it is subdiffusion or superdiffusion—along with the value of the order of the fractional derivative, as well as the optical absorption coefficient of the layer being investigated. Additionally, it is concluded that the phase has a greater impact than the amplitude when selecting the appropriate theoretical heat conduction model. Full article
Show Figures

Figure 1

13 pages, 2944 KiB  
Article
Milking the Orchil: How the Presence of Goat Milk in the Orchil Dyebath May Affect the Color of Dyed Wool
by Isabella Whitworth, Victor J. Chen and Gregory D. Smith
Heritage 2025, 8(7), 272; https://doi.org/10.3390/heritage8070272 - 9 Jul 2025
Viewed by 296
Abstract
Among the craft recipes for artisans collected in the 4th-century Egyptian documents the Leyden and Stockholm papyri, there is one calling for adding animal milk to orchil for wool dyeing. To understand the rationale for this practice, wool yarns were dyed with and [...] Read more.
Among the craft recipes for artisans collected in the 4th-century Egyptian documents the Leyden and Stockholm papyri, there is one calling for adding animal milk to orchil for wool dyeing. To understand the rationale for this practice, wool yarns were dyed with and without goat milk added to orchil dyebaths, each made using lichens from three different sources. The results showed orchil containing milk dyed yarns a noticeably deeper red hue. The colorants extracted from the dyed yarns were analyzed by liquid chromatography-diode-array-detector-mass spectrometry to assess the relative amounts of nine identifiable orceins. The data showed that the yarns dyed with milk gave extracts exhibiting several fold more α-aminoorcein and α-hydroxyorcein, with only small differences in the other seven. Scanning electron microscopic analysis of a representative pair of dyed yarns showed that milk promoted surface changes in the fiber that may indicate increased cutaneous damage. Hypotheses for the milk’s effects on orchil dyeing were proposed that included the formation of milk–protein complexes with the two enriched orceins that possibly enhanced wool binding and/or better wool uptake of free and/or complexed orceins due to biodegradation of the wool’s surface cuticle caused by microbial growth promoted by the addition of milk. Full article
(This article belongs to the Special Issue Dyes in History and Archaeology 43)
Show Figures

Figure 1

26 pages, 60202 KiB  
Article
Use of Alkali in Traditional Dyeing Technologies with Plants
by Anete Karlsone and Jorens Kviesis
Heritage 2025, 8(7), 264; https://doi.org/10.3390/heritage8070264 - 4 Jul 2025
Viewed by 438
Abstract
Ethnographic sources provide information about several dye plants that produced reddish colors; however, there is no information on how this process is accomplished. Combining information from written sources with the results of dyeing experiments enables a deeper understanding of the dyeing methods employed [...] Read more.
Ethnographic sources provide information about several dye plants that produced reddish colors; however, there is no information on how this process is accomplished. Combining information from written sources with the results of dyeing experiments enables a deeper understanding of the dyeing methods employed in the past. This paper gives insight into the effect of using alkali on obtaining reddish tones in dyeing with Potentilla erecta and Rumex sp. In dyeing experiments, wool yarn was dyed with plant extracts, and the chemical compositions were studied both in plant extracts and in extracts obtained from wool after dyeing. As a result, the red/red-brown color is obtained only under the influence of alkali. Analytical studies of procyanidin (PC) extracts from rhizomes and yarns were performed using infrared spectroscopy (FTIR-ATR) and liquid chromatography coupled with mass spectrometric detection (LC-DAD-MS). Procyanidin extracts of P. erecta and R. acetosa contained monomers identified as (+)-catechin and (-)-epicatechin, as well as dimeric procyanidins of type-A (m/z 575 [M−H]) and type-B (m/z 577 [M−H]), along with various types of trimers (m/z 865 [M−H]; m/z 863 [M−H]), which were also isolated from dyed wool yarns with a similar composition. The conducted research on the use of alkali with tannin-containing plants contributes to deepening our understanding of the perception of color that existed in the ancient rural environment. Full article
(This article belongs to the Special Issue Dyes in History and Archaeology 43)
Show Figures

Figure 1

13 pages, 2729 KiB  
Article
Natural Colorants for a Bio-Based Economy—Recovering a Lost Knowledge for Novel Applications of Chrozophora tinctoria Extracts as Paints Through a Multi-Analytical Approach
by Imogen Cleveland, Andrew Beeby, Márcia Vieira, Fernando Pina, Paula S. Branco, Paula Nabais and Maria J. Melo
Molecules 2025, 30(13), 2860; https://doi.org/10.3390/molecules30132860 - 4 Jul 2025
Viewed by 371
Abstract
Natural colorants, with their sustainable origins, offer a promising alternative for various applications. Advanced studies have unveiled the remarkable properties, resilience, and durability of these ancient dyes, which our ancestors developed through sustainable material processing. This serves as a testament to the potential [...] Read more.
Natural colorants, with their sustainable origins, offer a promising alternative for various applications. Advanced studies have unveiled the remarkable properties, resilience, and durability of these ancient dyes, which our ancestors developed through sustainable material processing. This serves as a testament to the potential of sustainable solutions in our field. As part of our research, we prepared three medieval temperas using gum arabic, parchment glue, and casein glue. These tempera were explicitly designed to protect the purples obtained from Chrozophora tinctoria extracts. A comprehensive multi-analytical approach guides our research on natural colorants. Central to this approach is the use of molecular fluorescence by microspectrofluorimetry, a key tool in our study. By analyzing the emission and excitation spectra in the visible range, we can identify specific formulations. This method is further supported by fingerprinting techniques, including Fourier Transform Infrared Spectroscopy (FTIR) and High-Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD). These are further complemented by Fiber Optics Reflectance Spectroscopy (FORS) and colorimetry. Building on our understanding of orcein purples, we have extended our research to purples derived from Chrozophora tinctoria extracts. Our findings reveal the unique properties of Chrozophora tinctoria, which can be accurately distinguished from orcein purples, highlighting the distinctiveness of each. Full article
Show Figures

Figure 1

13 pages, 3523 KiB  
Article
Simple and High-Throughput Quantification of Mono- and Bivalent Foot-and-Mouth Disease Virus Vaccine Antigens by Differential Scanning Fluorimetry
by Yanli Yang, Xiaojie Chen, Ming Li, Fei Xin, Yi Zhao, Chengfeng Zhang, Yiping Pan, Chuanyu He and Sun He
Vaccines 2025, 13(7), 721; https://doi.org/10.3390/vaccines13070721 - 2 Jul 2025
Viewed by 429
Abstract
Background/Objectives: An accurate quantification of the effective antigens from different serotypes is essential for the quality control of multivalent vaccines, but it remains challenging. Herein, we developed a simple and high-throughput method using differential scanning fluorimetry (DSF) for quantifying foot-and-mouth disease virus (FMDV) [...] Read more.
Background/Objectives: An accurate quantification of the effective antigens from different serotypes is essential for the quality control of multivalent vaccines, but it remains challenging. Herein, we developed a simple and high-throughput method using differential scanning fluorimetry (DSF) for quantifying foot-and-mouth disease virus (FMDV) antigens in monovalent and bivalent vaccines. Methods: Purified serotypes A and O FMDV were used to establish and validate the method. The DSF parameters, including the dye concentration, thermal scanning velocity, and PCR tube material, were optimized at different FMDV concentrations. The established DSF method was validated for the quantification of monovalent and A/O bivalent FMDV, and was compared with the ultracentrifugation of 86 samples from different processing stages and serotypes. Results: The DSF showed that the melting temperature (Tm) of type A (56.2 °C) was significantly higher than that of type O FMDV (50.5 °C), indicating that their Tm can be distinguished in bivalent antigens. After optimizing the DSF parameters, a strong correlation (R2 > 0.998) was observed between the 146S concentration and the maximum of the first derivative of the DSF fluorescence (d(RFU)/dT) for both serotypes A and O FMDV. The method demonstrated good reproducibility (RSD < 10%) and high sensitivity (limit of detection: 0.7 μg/mL). Using a multiple linear regression analysis, the simultaneous quantification of A and O FMDV in the bivalent mixtures achieved recovery rates of 82.4–105.5%, with an RSD < 10% for most of the samples. Additionally, the DSF results correlated well with the ultracentrifugation data (Pearson ρ = 0.9789), validating its accuracy and broad applicability. Conclusions: In summary, DSF represents a simple, rapid, and high-throughput tool for the quality control of monovalent and bivalent FMDV vaccines. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

18 pages, 2688 KiB  
Article
Synergistic Effects of a Packed Bed Bipolar Electrolysis System Combined with Activated Carbon for Efficient Treatment of Dyeing Wastewater
by Hyung-kyu Lee, Go-eun Kim, Seong-ho Jang and Young-chae Song
Water 2025, 17(13), 1911; https://doi.org/10.3390/w17131911 - 27 Jun 2025
Viewed by 334
Abstract
Textile dyeing wastewater is one of the most challenging industrial effluents to treat due to its high concentrations of persistent organic compounds and nitrogenous substances. Conventional treatment methods often fall short in achieving both sufficient removal efficiency and environmental safety. In this study, [...] Read more.
Textile dyeing wastewater is one of the most challenging industrial effluents to treat due to its high concentrations of persistent organic compounds and nitrogenous substances. Conventional treatment methods often fall short in achieving both sufficient removal efficiency and environmental safety. In this study, we aimed to remove the total nitrogen (T-N) and total organic carbon (TOC) of dyeing wastewater from an industrial complex in D City, Korea, by applying bipolar and packed bipolar electrolysis using aluminum (Al) electrodes and activated carbon (AC). The system was operated for 60 min under varying conditions of applied voltage (5–15 V), electrolyte type and concentration (non-addition, NaCl 5 mM, NaCl 10 mM, Na2SO4 5 mM, Na2SO4 10 mM), and AC packing amount (non-addition or 100 g/L). The highest T-N and TOC removal efficiencies were observed at 15 V, reaching 69.53% and 63.68%, respectively. Electrolyte addition significantly improved initial treatment performance, with NaCl 10 mM showing the best results. However, Al leaching also increased, from 549.83 mg/L (non-addition) to 623.06 mg/L (NaCl 10 mM). When AC was used without electrolysis (control experiment), the T-N and TOC removal efficiencies were limited to 30.24% and 29.86%, respectively. In contrast, AC packing combined with 15 V electrolysis under non-addition achieved 86.04% T-N and 77.98% TOC removal, while also reducing Al leaching by 40.12%. These results suggested that electrochemical treatment with AC packing under non-addition conditions offers the best balance between high treatment efficiency and low environmental impact. These findings demonstrate that the synergistic use of packed activated carbon and electrochemical treatment under additive-free conditions can overcome the limitations of conventional methods. This study contributes to the development of more sustainable and effective technologies for treating high-strength industrial wastewater. Full article
(This article belongs to the Special Issue Adsorption Technologies in Wastewater Treatment Processes)
Show Figures

Figure 1

14 pages, 7989 KiB  
Article
Polyacrylonitrile/Silver Nanoparticles Composite for Catalytic Dye Reduction and Real-Time Monitoring
by Christian Narváez-Muñoz, Sebastián Ponce, Carlos Durán, Cristina Aguayo, Cesar Portero, Joseph Guamán, Alexis Debut, Magaly Granda, Frank Alexis, Ezequiel Zamora-Ledezma and Camilo Zamora-Ledezma
Polymers 2025, 17(13), 1762; https://doi.org/10.3390/polym17131762 - 26 Jun 2025
Viewed by 349
Abstract
This study presents a one-step electrospinning method to fabricate polyacrylonitrile (PAN) nanofibers embedded with green-synthesized silver nanoparticles (AgNPs) for efficient catalytic dye reduction and real-time monitoring. Utilizing avocado seed extract for AgNP synthesis, the resulting composite nanofibers exhibit uniform nanoparticle dispersion and enhanced [...] Read more.
This study presents a one-step electrospinning method to fabricate polyacrylonitrile (PAN) nanofibers embedded with green-synthesized silver nanoparticles (AgNPs) for efficient catalytic dye reduction and real-time monitoring. Utilizing avocado seed extract for AgNP synthesis, the resulting composite nanofibers exhibit uniform nanoparticle dispersion and enhanced surface area, significantly improving adsorption and catalytic properties. The membranes demonstrated outstanding catalytic activity, achieving over 95% degradation of methyl orange within 45 min when paired with sodium borohydride, and maintained structural integrity and performance over ten reuse cycles. The integration of a novel 3D-printed support enabled scalability, allowing a 60-fold increase in treatment volume without compromising efficiency. Additionally, the composite’s electrical conductivity changes enabled the real-time monitoring of the dye reduction process, highlighting its dual functionality as both catalyst and sensor. These results encourage the potential of PAN/AgNPs supported on a 3D-printed structure nanofiber membranes for scalable, sustainable wastewater treatment and in situ reaction monitoring. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

17 pages, 2272 KiB  
Article
The Manufacture of Lake Pigments from Artificial Colours: Investigating Chemistry and Recipes in the First Book on Synthetic Dyes-Based Lakes
by Eva Eis, Adele Ferretti, Francesca Sabatini, Valentina Corona, Stefano Legnaioli, Richard Laursen and Ilaria Degano
Heritage 2025, 8(7), 245; https://doi.org/10.3390/heritage8070245 - 24 Jun 2025
Viewed by 664
Abstract
In 1900, Francis Herbert Jennison’s book The Manufacture of Lake Pigments from Artificial Colours was published in London. In the early 20th century, the technical literature focussing on synthetic dyes mainly dealt with their use for dyeing. Conversely, the literature on lake pigment [...] Read more.
In 1900, Francis Herbert Jennison’s book The Manufacture of Lake Pigments from Artificial Colours was published in London. In the early 20th century, the technical literature focussing on synthetic dyes mainly dealt with their use for dyeing. Conversely, the literature on lake pigment manufacture is less comprehensive, and Jennison’s publication was the first monograph on this topic. His book comprises descriptions of the dyes, substrates, and various methods for lake making. Practical examples complete the work: sixteen colour plates with original samples of lake pigments showcase the practical effect on colour of the different dyes and preparation methods. Herein, we present an overview of the context of Jennison’s research and delve into a selection of formulations. Green lake pigment plates were sampled and analysed by liquid chromatography coupled with spectroscopic and spectrometric detectors and by X-ray fluorescence spectroscopy to correlate the chemical composition with the recipes reported in the book. Seldom or no longer used and unexplored historical dyes were detected, along with polyphenolic compounds possibly used as precipitating agents in lake pigment formulations. Moreover, the examination of two different editions of the Jennison manuscript (i.e., the English and German books) revealed different chemical profiles corresponding to the same lake pigment formulation. This emphasizes the significance of Jennison’s book, confirming how understanding of early formulations is needed to elucidate the later ones. Full article
(This article belongs to the Special Issue Dyes in History and Archaeology 43)
Show Figures

Figure 1

28 pages, 4548 KiB  
Article
New Tools in Heavy Metal Detection: Synthesis, Spectroscopic, and Quantum Chemical Characterization of Selected Water-Soluble Styryl Derivatives of Quinoline and 1,10-Phenanthroline
by Jacek E. Nycz, Jolanta Kolińska, Nataliya Karaush-Karmazin, Tieqiao Chen, Maria Książek and Joachim Kusz
Molecules 2025, 30(12), 2659; https://doi.org/10.3390/molecules30122659 - 19 Jun 2025
Viewed by 640
Abstract
A series of water-soluble molecules based on 8-isopropyl-2-methyl-5-nitroquinoline and 1,10-phenanthroline core were designed by introducing a π-conjugated bridge, vinyl unit –CH=CH–. We present the selective conversion of methyl groups located on the C2 and C9 positions in the constitution of selected quinoline or [...] Read more.
A series of water-soluble molecules based on 8-isopropyl-2-methyl-5-nitroquinoline and 1,10-phenanthroline core were designed by introducing a π-conjugated bridge, vinyl unit –CH=CH–. We present the selective conversion of methyl groups located on the C2 and C9 positions in the constitution of selected quinoline or 1,10-phenanthroline derivatives, respectively, into vinyl (or styryl) products by applying Perkin condensation. The two groups of ligands differ in the presence of one or two arms. The structure of the molecule ((1E,1′E)-(1,10-phenanthroline-2,9-diyl)bis(ethene-2,1-diyl))bis(benzene-4,1,3-triyl) tetraacetate was determined by single-crystal X-ray diffraction measurements. The X-ray, NMR, and DFT computational studies indicate the influence of rotation (rotamers) on the physical properties of studied styryl molecules. The results show that the styryl molecules with the vinyl unit –CH=CH– exhibit significant static and dynamic hyperpolarizabilities. Quantum chemical calculations using density functional theory and B3LYP/6-311++G(d,p) with Grimme’s dispersion correction approach predict the existence and relative stability of different spatial cis(Z)- and trans(E)-conformers of styryl derivatives of quinoline and 1,10-phenanthroline, which exhibit different electronic distribution and conjugation within the molecular skeleton, dipole moments, and steric interactions, leading to variations in their photophysical behavior and various applications. Our studies indicate that the rotation and isomerization of aryl groups can significantly influence the electronic and optical properties of π-conjugated systems, such as vinyl units (–CH=CH–). The rotation of aryl groups around the single bond that connects them to the vinyl unit can lead to changes in the effective π-conjugation between the aryl group and the rest of the π-conjugated system. The rotation and isomerization of aryl groups in π-conjugated systems significantly impact their electronic and optical properties. These changes can modify the efficiency of π-conjugation, affecting charge transfer processes, absorption properties, light emission, and electrical conductivity. In designing optoelectronic materials, such as organic dyes, organic semiconductors, or electrochromic materials, controlling the rotation and isomerization of aryl groups can be crucial for optimizing their functionality. Full article
Show Figures

Graphical abstract

Back to TopTop