Simple and High-Throughput Quantification of Mono- and Bivalent Foot-and-Mouth Disease Virus Vaccine Antigens by Differential Scanning Fluorimetry
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Purification and Characterization of Pure FMDV
2.2.1. Purification of FMDV
2.2.2. TEM and HPSEC Analyses
2.2.3. Tm Determination by DSF
2.3. Optimization of DSF Parameters
2.4. DSF Method Validation
2.4.1. Monovalent FMDV Quantification
2.4.2. Fitting and Quantification of A and O FMDV Mixtures
2.5. Application to Processing of Samples and Concordance Analysis with Ultracentrifugation
3. Results
3.1. Preparation and Characterization of Pure FMDV
3.2. Development of DSF Method
3.3. Method Validation for Quantification of Monovalent and Bivalent FMDV
3.4. Application to Processing of Samples and Concordance Analysis with Ultracentrifugation
4. Discussion
- •
- High-throughput capability: a single DSF run (~1 h) enables the simultaneous analysis of up to 96 samples, significantly surpassing the throughput of HPSEC (~30 min/sample) and ultracentrifugation (>4 h/sample).
- •
- Cost-effectiveness: this method eliminates the requirements for specialized columns, antibodies, or ultracentrifugation equipment, reducing the operational costs compared to CZE and HPSEC.
- •
- Serotype discrimination: Leveraging the intrinsic differences in the thermal stability between serotypes (e.g., ΔTm≈5.7 °C for A vs. O FMDV), DSF simultaneously quantifies multivalent antigens—a critical advancement over size-based separation methods. This allows for the more accurate evaluation of different serotype antigens in vaccines.
- •
- Simplified workflow: minimal sample pretreatment (e.g., benzonase digestion for crude samples) and automated data acquisition make DSF accessible for routine quality control across vaccine production stages.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DSF | Differential scanning fluorimetry |
FMDV | Foot-and-mouth disease virus |
ELISA | Enzyme-linked immunosorbent assay |
HPSEC | High-performance size-exclusion chromatography |
CZE | Capillary zone electrophoresis |
Tm | Melting temperature |
LOD | Lower limit of detection |
TEM | Transmission electron microscope |
RSD | Relative standard deviation |
References
- Schlingmann, B.; Castiglia, K.R.; Stobart, C.C.; Moore, M.L. Polyvalent vaccines: High-maintenance heroes. PLoS Pathog. 2018, 14, e1006904. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Fong Legaspi, S.L.; Schwartzman, L.M.; Gygli, S.M.; Sheng, Z.M.; Freeman, A.D.; Matthews, L.M.; Xiao, Y.L.; Ramuta, M.D.; Batchenkova, N.A.; et al. An inactivated multivalent influenza A virus vaccine is broadly protective in mice and ferrets. Sci. Transl. Med. 2022, 14, eabo2167. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.N.; Liu, X.L.; Wei, M.X.; Qian, C.Y.; Song, S.; Chen, J.; Wang, Z.P.; Xu, Q.; Yang, Y.R.; He, M.Z.; et al. Rational design of a multi-valent human papillomavirus vaccine by capsomere-hybrid co-assembly of virus-like particles. Nat. Commun. 2020, 11, 2841. [Google Scholar] [CrossRef] [PubMed]
- Peta, F.R.M.; Sirdar, M.M.; van Bavel, P.; Mutowembwa, P.B.; Visser, N.; Olowoyo, J.; Seheri, M.; Heath, L. Evaluation of potency and duration of immunity elicited by a multivalent FMD vaccine for use in South Africa. Front. Vet. Sci. 2021, 8, 750223. [Google Scholar] [CrossRef]
- Childs, K.; Harvey, Y.; Waters, R.; Woma, T.; Wilsden, G.; Sun, H.; Sun, P.; Seago, J. Development of a quadrivalent foot-and-mouth disease vaccine candidate for use in East Africa. Vaccine 2023, 41, 6572–6578. [Google Scholar] [CrossRef]
- Chang, S.; Shin, K.S.; Park, B.; Park, S.; Shin, J.; Park, H.; Jung, I.K.; Kim, J.H.; Bae, S.E.; Kim, J.O.; et al. Strategy to develop broadly effective multivalent COVID-19 vaccines against emerging variants based on Ad5/35 platform. Proc. Natl. Acad. Sci. USA 2024, 121, e2313681121. [Google Scholar] [CrossRef]
- Kamel, M.; El-Sayed, A.; Vazquez, H.C. Foot-and-mouth disease vaccines: Recent updates and future perspectives. Arch. Virol. 2019, 164, 1501–1513. [Google Scholar] [CrossRef]
- Diaz-San Segundo, F.; Medina, G.N.; Stenfeldt, C.; Arzt, J.; de los Santos, T. Foot-and-mouth disease vaccines. Vet. Microbiol. 2017, 206, 102–112. [Google Scholar] [CrossRef]
- Bachrach, H.L.; Moore, D.M.; McKercher, P.D.; Polatnick, J. Immune and antibody responses to an isolated capsid protein of foot-and-mouth disease virus. J. Immunol. 1975, 115, 1636–1641. [Google Scholar] [CrossRef]
- Harmsen, M.M.; Fijten, H.P.D.; Westra, D.F.; Dekker, A. Stabilizing effects of excipients on dissociation of intact (146S) foot-and-mouth disease virions into 12S particles during storage as oil-emulsion vaccine. Vaccine 2015, 33, 2477–2484. [Google Scholar] [CrossRef]
- Barteling, S.J.; Meloen, R.H. A simple method for the quantification of 140S particles of foot-and-mouth disease virus (FMDV). Arch. Gesamte Virusforsch. 1974, 45, 362–364. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.-Y.; Park, S.Y.; Park, S.H.; Kim, J.Y.; Jinm, J.S.; Kim, E.-S.; Park, J.H.; Ko, Y.J. Comparison of high-performance liquid chromatography with sucrose density gradient ultracentrifugation for the quantification of foot-and-mouth disease vaccine antigens. Vaccines 2022, 10, 667. [Google Scholar] [CrossRef]
- Harmsen, M.M.; Fijten, H.P.; Westra, D.F.; Coco-Martin, J.M. Effect of thiomersal on dissociation of intact (146S) foot-and-mouth disease virions into 12S particles as assessed by novel ELISAs specific for either 146S or 12S particles. Vaccine 2011, 29, 2682–2690. [Google Scholar] [CrossRef]
- Feng, X.; Ma, J.-W.; Sun, S.-Q.; Guo, H.-C.; Yang, Y.-M.; Jin, Y.; Zhou, G.-Q.; He, J.-J.; Guo, J.-H.; Qi, S.-Y.; et al. Quantitative detection of the foot-and-mouth disease virus serotype O 146S antigen for vaccine production using a double-antibody sandwich ELISA and nonlinear standard curves. PLoS ONE 2016, 11, e0149569. [Google Scholar] [CrossRef] [PubMed]
- Spitteler, M.A.; Romo, A.; Magi, N.; Seo, M.G.; Yun, S.J.; Barroumeres, F.; Régulier, E.G.; Bellinzoni, R. Validation of a high performance liquid chromatography method for quantitation of foot-and-mouth disease virus antigen in vaccines and vaccine manufacturing. Vaccine 2019, 37, 5288–5296. [Google Scholar] [CrossRef]
- Yang, Y.L.; Li, H.; Li, Z.J.; Zhang, Y.; Zhang, S.P.; Chen, Y.; Yu, M.R.; Ma, G.H.; Su, Z.G. Size-exclusion HPLC provides a simple, rapid, and versatile alternative method for quality control of vaccines by characterizing the assembly of antigens. Vaccine 2015, 33, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.M.; Yang, Y.L.; Lin, X.; Zhao, Q.Z.; Li, Z.J.; Ma, G.H.; Su, Z.G.; Zhang, S.P. On-line separation and quantification of virus antigens of different serotypes in multivalent vaccines by capillary zone electrophoresis: A case study for quality control of foot-and-mouth disease virus vaccines. J. Chromatogr. A 2021, 1637, 461834. [Google Scholar] [CrossRef]
- McClure, S.M.; Ahl, P.L.; Blue, J.T. High throughput differential scanning fluorimetry (DSF) formulation screening with complementary dyes to assess protein unfolding and aggregation in presence of surfactants. Pharm. Res. 2018, 35, 81. [Google Scholar] [CrossRef]
- Gooran, N.; Kopra, K. Fluorescence-based protein stability monitoring-A Review. Int. J. Mol. Sci. 2024, 25, 1764. [Google Scholar] [CrossRef]
- Bruce, D.; Cardew, E.; Freitag-Pohl, S.; Pohl, E. How to stabilize protein: Stability screens for thermal shift assays and nano differential scanning fluorimetry in the virus-X project. Jove-J. Vis. Exp. 2019, 144, e58666. [Google Scholar] [CrossRef]
- Senisterra, G.A.; Finerty, P.J. High throughput methods of assessing protein stability and aggregation. Mol. Biosyst. 2009, 5, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.M.; Yang, Y.L.; Lin, X.; Li, X.N.; Zhang, X.; Ma, G.H.; Su, Z.G.; Zhang, S.P. In-situ and sensitive stability study of emulsion and aluminum adjuvanted inactivated foot-and-mouth disease virus vaccine by differential scanning fluorimetry analysis. Vaccine 2020, 38, 2904–2912. [Google Scholar] [CrossRef]
- Li, H.; Liu, P.; Dong, H.; Dekker, A.; Harmsen, M.M.; Guo, H.; Wang, X.; Sun, S. Foot-and-mouth disease virus antigenic landscape and reduced immunogenicity elucidated in atomic detail. Nat. Commun. 2024, 15, 8774. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.-H.; Jung, J.-H.; Kim, H.-Y.; Park, C.-S. Direct and simple detection of recombinant proteins from cell lysates using differential scanning fluorimetry. Anal. Biochem. 2014, 444, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, Y.L.; Zhang, Y.; Zhang, S.P.; Zhao, Q.; Zhu, Y.Y.; Zou, X.Q.; Yu, M.R.; Ma, G.H.; Su, Z.G. A hydrophobic interaction chromatography strategy for purification of inactivated foot-and-mouth disease virus. Protein Expres Purif. 2015, 113, 23–29. [Google Scholar] [CrossRef]
- Song, Y.M.; Yang, Y.L.; Lin, X.; Zhao, Q.Z.; Su, Z.G.; Ma, G.H.; Zhang, S.P. Size exclusion chromatography using large pore size media induces adverse conformational changes of inactivated foot-and-mouth disease virus particles. J. Chromatogr. A 2022, 1677, 463301. [Google Scholar] [CrossRef]
- Jin, J.S.; Lee, G.; Kim, J.Y.; Lee, S.; Park, J.-H.; Park, S.Y.; Ko, Y.J. Calcium Chloride as a novel stabilizer for foot-and-mouth disease virus and its application in the vaccine formulation. Vaccines 2024, 12, 367. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Arthur, K.; Chemmalil, L.; Muzammil, S.; Gabrielson, J.; Jiang, Y. Applicationsof differential scanning calorimetry for thermal stability analysis of proteins:qualification of DSC. J. Pharm. Sci 2012, 101, 955–964. [Google Scholar] [CrossRef]
- Kim, D.-W.; Cho, G.; Kim, H.; Lee, G.; Lim, T.-G.; Kwak, H.-Y.; Park, J.-H.; Park, S.-H. Immunogenicity and protection against foot-and-mouth disease virus in swine intradermally vaccinated with a bivalent vaccine of foot-and-mouth disease virus type O and A. Vaccines 2023, 11, 815. [Google Scholar] [CrossRef]
- Charerntantanakul, W. Adjuvants for swine vaccines: Mechanisms of actions and adjuvant effects. Vaccine 2020, 38, 6659–6681. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Yang, L.; Xu, H.; Zhang, Y.; Wan, M.; Liu, G.; Zhao, L.; Wang, L.; Yu, Y. CpG oligodeoxynucleotide and montanide ISA 206 adjuvant combination augments the immune responses of a recombinant FMDV vaccine in cattle. Vaccine 2011, 29, 7960–7965. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, A.; Zhang, F.; Juleff, N.; Jackson, T.; Perez, E.; Stuart, D.; Fry, E.; Charleston, B.; Seago, J. Application of the thermofluor PaSTRy technique for improving foot-and-mouth disease virus vaccine formulation. J. Gen. Virol. 2016, 97, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
Group | Serotype | Theoretical Concentration (μg/mL) | DSF Quantification (n = 3) | ||
---|---|---|---|---|---|
Concentration (μg/mL) | RSD (%) | Recovery Rate (%) | |||
1 | A | 72.7 | 74.7 ± 4.2 | 5.6 | 102.8 |
O | 15.1 | 13.7 ± 0.6 | 4.4 | 90.6 | |
2 | A | 60.6 | 63.9 ± 3.3 | 5.2 | 105.5 |
O | 30.3 | 30.7 ± 0.8 | 2.5 | 101.2 | |
3 | A | 48.4 | 45.6 ± 0.6 | 1.3 | 94.1 |
O | 45.4 | 42.2 ± 0.2 | 0.6 | 92.9 | |
4 | A | 36.3 | 31.6 ± 0.9 | 2.9 | 87.3 |
O | 60.6 | 57.7 ± 0.6 | 1.1 | 95.2 | |
5 | A | 24.2 | 19.9 ± 0.2 | 1.2 | 82.4 |
O | 75.7 | 73.9 ± 2.0 | 2.7 | 97.6 | |
6 | A | 12.1 | 10.1 ± 1.3 | 13.1 | 83.6 |
O | 90.9 | 91.9 ± 0.9 | 9.8 | 101.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Chen, X.; Li, M.; Xin, F.; Zhao, Y.; Zhang, C.; Pan, Y.; He, C.; He, S. Simple and High-Throughput Quantification of Mono- and Bivalent Foot-and-Mouth Disease Virus Vaccine Antigens by Differential Scanning Fluorimetry. Vaccines 2025, 13, 721. https://doi.org/10.3390/vaccines13070721
Yang Y, Chen X, Li M, Xin F, Zhao Y, Zhang C, Pan Y, He C, He S. Simple and High-Throughput Quantification of Mono- and Bivalent Foot-and-Mouth Disease Virus Vaccine Antigens by Differential Scanning Fluorimetry. Vaccines. 2025; 13(7):721. https://doi.org/10.3390/vaccines13070721
Chicago/Turabian StyleYang, Yanli, Xiaojie Chen, Ming Li, Fei Xin, Yi Zhao, Chengfeng Zhang, Yiping Pan, Chuanyu He, and Sun He. 2025. "Simple and High-Throughput Quantification of Mono- and Bivalent Foot-and-Mouth Disease Virus Vaccine Antigens by Differential Scanning Fluorimetry" Vaccines 13, no. 7: 721. https://doi.org/10.3390/vaccines13070721
APA StyleYang, Y., Chen, X., Li, M., Xin, F., Zhao, Y., Zhang, C., Pan, Y., He, C., & He, S. (2025). Simple and High-Throughput Quantification of Mono- and Bivalent Foot-and-Mouth Disease Virus Vaccine Antigens by Differential Scanning Fluorimetry. Vaccines, 13(7), 721. https://doi.org/10.3390/vaccines13070721