Evaluation of Intracochlear Pressure and Fluid Distribution in 3D-Printed Artificial Cochlear Models and Human Petrous Bones †
Abstract
1. Introduction
2. Materials and Methods
2.1. 3D-Printed Artificial Cochlear Models and Human Petrous Bone
2.2. Cochlear Catheter
2.3. Pressure Sensor
2.4. Experimental Setup and Procedure
2.4.1. Specimen Preparation and Catheter Placement
2.4.2. Sealing and Leak Prevention
2.4.3. Second-Hole Creation
2.4.4. Dye Injection and Flow Control
2.4.5. Measurement and Documentation
2.5. Analysis
3. Results
3.1. Dye Distribution With or Without a Second Hole in Models
3.2. Intracochlear Pressure in the Cochlear Model
3.3. Intracochlear Pressure in the Human Petrous Bone
4. Discussion
4.1. Dye Distribution and the Role of the Second Hole
4.2. Intracochlear Pressure Dynamics
4.3. Implications for Clinical Applications
4.4. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Deafness and Hearing Loss; World Health Organization: Geneva, Switzerland, 2025. [Google Scholar]
- Fletcher, M.D.; Thini, N.; Perry, S.W. Enhanced pitch discrimination for cochlear implant users with a new haptic neuroprosthetic. Sci. Rep. 2020, 10, 10354. [Google Scholar] [CrossRef] [PubMed]
- Malkoc, G.; Dalgic, A.; Koc, M.; Kandogan, T.; Korkmaz, S.; Ceylan, M.; Inan, S.; Olgun, L. Histopathological and audiological effects of mechanical trauma associated with the placement of an intracochlear electrode, and the benefit of corticosteroid infusion: Prospective animal study. J. Laryngol. Otol. 2014, 128, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Lye, J.; Delaney, D.S.; Leith, F.K.; Sardesai, V.S.; McLenachan, S.; Chen, F.K.; Atlas, M.D.; Wong, E.Y. Recent therapeutic progress and future perspectives for the treatment of hearing loss. Biomedicines 2023, 11, 3347. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Guo, Q.; Zhu, M.; Zhang, J.; Chen, B.; Wu, T.; Jiang, W.; Tang, W. Application of nanomedicine in inner ear diseases. Front. Bioeng. Biotechnol. 2022, 9, 809443. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Johnston, A.H.; Newman, T.A.; Glueckert, R.; Dudas, J.; Bitsche, M.; Corbacella, E.; Rieger, G.; Martini, A.; Schrott-Fischer, A. Cell-specific targeting in the mouse inner ear using nanoparticles conjugated with a neurotrophin-derived peptide ligand: Potential tool for drug delivery. Int. J. Pharm. 2010, 390, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Saidia, A.R.; Ruel, J.; Bahloul, A.; Chaix, B.; Venail, F.; Wang, J. Current advances in gene therapies of genetic auditory neuropathy Spectrum disorder. J. Clin. Med. 2023, 12, 738. [Google Scholar] [CrossRef] [PubMed]
- Warnecke, A.; Prenzler, N.; Harre, J.; Köhl, U.; Gärtner, L.; Lenarz, T.; Laner-Plamberger, S.; Wietzorrek, G.; Staecker, H.; Lassacher, T. First-in-human intracochlear application of human stromal cell-derived extracellular vesicles. J. Extracell. Vesicles 2021, 10, e12094. [Google Scholar] [CrossRef] [PubMed]
- Warnecke, A.; Staecker, H.; Rohde, E.; Gimona, M.; Giesemann, A.; Szczepek, A.J.; Di Stadio, A.; Hochmair, I.; Lenarz, T. Extracellular Vesicles in Inner Ear Therapies—Pathophysiological, Manufacturing, and Clinical Considerations. J. Clin. Med. 2022, 11, 7455. [Google Scholar] [CrossRef] [PubMed]
- Andres-Mateos, E.; Landegger, L.D.; Unzu, C.; Phillips, J.; Lin, B.M.; Dewyer, N.A.; Sanmiguel, J.; Nicolaou, F.; Valero, M.D.; Bourdeu, K.I. Choice of vector and surgical approach enables efficient cochlear gene transfer in nonhuman primate. Nat. Commun. 2022, 13, 1359. [Google Scholar] [CrossRef] [PubMed]
- Mathiesen, B.K.; Miyakoshi, L.M.; Cederroth, C.R.; Tserga, E.; Versteegh, C.; Bork, P.A.; Hauglund, N.L.; Gomolka, R.S.; Mori, Y.; Edvall, N.K. Delivery of gene therapy through a cerebrospinal fluid conduit to rescue hearing in adult mice. Sci. Transl. Med. 2023, 15, eabq3916. [Google Scholar] [CrossRef] [PubMed]
- Praetorius, M.; Knipper, M.; Schick, B.; Tan, J.; Limberger, A.; Carnicero, E.; Alonso, M.T.; Schimmang, T. A novel vestibular approach for gene transfer into the inner ear. Audiol. Neurotol. 2002, 7, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Barbosa Spinola, C.M.; Boutet de Monvel, J.; Safieddine, S.; Lahlou, G.; Etournay, R. In utero adeno-associated virus (AAV)-mediated gene delivery targeting sensory and supporting cells in the embryonic mouse inner ear. PLoS ONE 2024, 19, e0305742. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Wang, H.; Cheng, X.; Chen, Y.; Wang, D.; Zhang, L.; Cao, Q.; Tang, H.; Hu, S.; Gao, K. AAV1-hOTOF gene therapy for autosomal recessive deafness 9: A single-arm trial. Lancet 2024, 403, 2317–2325. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Tan, F.; Zhang, L.; Lu, L.; Zhang, S.; Zhai, Y.; Lu, Y.; Qian, X.; Dong, W.; Zhou, Y. AAV-Mediated Gene Therapy Restores Hearing in Patients with DFNB9 Deafness. Adv. Sci. 2024, 11, 2306788. [Google Scholar] [CrossRef] [PubMed]
- Pfannenstiel, S.C.; Praetorius, M.; Brough, D.E.; Staecker, H. Hearing preservation following repeated Adenovector delivery. Anat. Rec. 2020, 303, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Allen, G.W. Clinical implications of experiments on alteration of the labyrinthine fluid pressures. Otolaryngol. Clin. N. Am. 1983, 16, 3–19. [Google Scholar] [CrossRef]
- Böhmer, A. Hydrostatic pressure in the inner ear fluid compartments and its effects on inner ear function. Acta Oto-Laryngol. 1993, 113, 5–24. [Google Scholar] [CrossRef]
- Hartl, R.M.B.; Mattingly, J.K.; Greene, N.T.; Farrell, N.F.; Gubbels, S.P.; Tollin, D.J. Drill-induced cochlear injury during otologic surgery: Intracochlear pressure evidence of acoustic trauma. Otol. Neurotol. 2017, 38, 938–947. [Google Scholar] [CrossRef] [PubMed]
- Mittmann, P.; Ernst, A.; Todt, I. Intracochlear pressure changes due to round window opening: A model experiment. Sci. World J. 2014, 2014, 341075. [Google Scholar] [CrossRef] [PubMed]
- Greene, N.T.; Mattingly, J.K.; Hartl, R.M.B.; Tollin, D.J.; Cass, S.P. Intracochlear pressure transients during cochlear implant electrode insertion. Otol. Neurotol. 2016, 37, 1541–1548. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, K.A.; Guo, D.; Micucci, S.; De Gruttola, V.; Liberman, M.C.; Kujawa, S.G. Noise-induced cochlear synaptopathy with and without sensory cell loss. NeuroSci. 2020, 427, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Kirk, E.C.; Gosselin-Ildari, A.D. Cochlear labyrinth volume and hearing abilities in primates. Anat. Rec. Adv. Integr. Anat. Evol. Biol. Adv. Integr. Anat. Evol. Biol. 2009, 292, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Dhanasingh, A.; Hochmair, I. Drug delivery in cochlear implantation. Acta Oto-Laryngol. 2021, 141, 135–156. [Google Scholar] [CrossRef] [PubMed]
- Prenzler, N.K.; Salcher, R.; Lenarz, T.; Gaertner, L.; Warnecke, A. Dose-dependent transient decrease of impedances by deep intracochlear injection of triamcinolone with a cochlear catheter prior to cochlear implantation–1 year data. Front. Neurol. 2020, 11, 258. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, E.; Gadenstaetter, A.J.; Gerlitz, M.; Landegger, L.D.; Liepins, R.; Nieratschker, M.; Glueckert, R.; Staecker, H.; Honeder, C.; Arnoldner, C. Investigation of inner ear drug delivery with a cochlear catheter in piglets as a representative model for human cochlear pharmacokinetics. Front. Pharmacol. 2023, 14, 1062379. [Google Scholar] [CrossRef] [PubMed]
- Laurell, G.; Teixeira, M.; Sterkers, O.; Bagger-Sjöbäck, D.; Eksborg, S.; Lidman, O.; Ferrary, E. Local administration of antioxidants to the inner ear: Kinetics and distribution. Hear. Res. 2002, 173, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Plontke, S.K.; Hartsock, J.J.; Gill, R.M.; Salt, A.N. Intracochlear drug injections through the round window membrane: Measures to improve drug retention. Audiol. Neurotol. 2016, 21, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Talaei, S.; Schnee, M.E.; Aaron, K.A.; Ricci, A.J. Dye tracking following posterior semicircular canal or round window membrane injections suggests a role for the cochlea aqueduct in modulating distribution. Front. Cell. Neurosci. 2019, 13, 471. [Google Scholar] [CrossRef] [PubMed]
- Salt, A.N.; Hale, S.A.; Plonkte, S.K. Perilymph sampling from the cochlear apex: A reliable method to obtain higher purity perilymph samples from scala tympani. J. Neurosci. Methods 2006, 153, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Thorne, M.; Salt, A.N.; DeMott, J.E.; Henson, M.M.; Henson, O., Jr.; Gewalt, S.L. Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images. Laryngoscope 1999, 109, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, A.K.; Hartl, R.M.B.; Greene, N.T.; Benichoux, V.; Mattingly, J.K.; Cass, S.P.; Tollin, D.J. Semicircular canal pressure changes during high-intensity acoustic stimulation. Otol. Neurotol. 2017, 38, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Todt, I.; Mittmann, P.; Ernst, A. Hearing preservation with a midscalar electrode comparison of a regular and steroid/pressure optimized surgical approach in patients with residual hearing. Otol. Neurotol. 2016, 37, e349–e352. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, G.J.; Lalwani, A.K. The effect of cochleostomy and intracochlear infusion on auditory brain stem response threshold in the guinea pig. Otol. Neurotol. 1999, 20, 87–90. [Google Scholar]
- Kim, R.; Riemann, C.; Kilgué, A.; Pfeiffer, C.; Scholtz, L.-U.; Sudhoff, H.; Todt, I. Evaluation of intracochlear pressure during fluid application in the model and human petrous bone. In Proceedings of the German Society of Oto-Rhino-Laryngology, Head and Neck Surgery, Leipzig, Germany, 17–20 May 2023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, R.; Schürmann, M.; Scholtz, L.-U.; Todt, I. Evaluation of Intracochlear Pressure and Fluid Distribution in 3D-Printed Artificial Cochlear Models and Human Petrous Bones. Brain Sci. 2025, 15, 771. https://doi.org/10.3390/brainsci15070771
Kim R, Schürmann M, Scholtz L-U, Todt I. Evaluation of Intracochlear Pressure and Fluid Distribution in 3D-Printed Artificial Cochlear Models and Human Petrous Bones. Brain Sciences. 2025; 15(7):771. https://doi.org/10.3390/brainsci15070771
Chicago/Turabian StyleKim, Rayoung, Matthias Schürmann, Lars-Uwe Scholtz, and Ingo Todt. 2025. "Evaluation of Intracochlear Pressure and Fluid Distribution in 3D-Printed Artificial Cochlear Models and Human Petrous Bones" Brain Sciences 15, no. 7: 771. https://doi.org/10.3390/brainsci15070771
APA StyleKim, R., Schürmann, M., Scholtz, L.-U., & Todt, I. (2025). Evaluation of Intracochlear Pressure and Fluid Distribution in 3D-Printed Artificial Cochlear Models and Human Petrous Bones. Brain Sciences, 15(7), 771. https://doi.org/10.3390/brainsci15070771