Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (824)

Search Parameters:
Keywords = CuNP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
0 pages, 1981 KiB  
Article
Computational Design of Mineral-Based Materials: Iron Oxide Nanoparticle-Functionalized Polymeric Films for Enhanced Public Water Purification
by Iustina Popescu, Alina Ruxandra Caramitu, Adriana Mariana Borș, Mihaela-Amalia Diminescu and Liliana Irina Stoian
Polymers 2025, 17(15), 2106; https://doi.org/10.3390/polym17152106 - 31 Jul 2025
Viewed by 21
Abstract
Heavy metal contamination in natural waters and soils poses a significant environmental challenge, necessitating efficient and sustainable water treatment solutions. This study presents the computational design of low-density polyethylene (LDPE) films functionalized with iron oxide (Fe3O4) nanoparticles (NPs) for [...] Read more.
Heavy metal contamination in natural waters and soils poses a significant environmental challenge, necessitating efficient and sustainable water treatment solutions. This study presents the computational design of low-density polyethylene (LDPE) films functionalized with iron oxide (Fe3O4) nanoparticles (NPs) for enhanced water purification applications. Composite materials containing 5%, 10%, and 15% were synthesized and characterized in terms of adsorption efficiency, surface morphology, and reusability. Advanced molecular modeling using BIOVIA Pipeline was employed to investigate charge distribution, functional group behaviour, and atomic-scale interactions between polymer chains and metal ions. The computational results revealed structure–property relationships crucial for optimizing adsorption performance and understanding geochemically driven interaction mechanisms. The LDPE/Fe3O4 composites demonstrated significant removal efficiency of Cu2+ and Ni2+ ions, along with favourable mechanical properties and regeneration potential. These findings highlight the synergistic role of mineral–polymer interfaces in water remediation, presenting a scalable approach to designing multifunctional polymeric materials for environmental applications. This study contributes to the growing field of polymer-based adsorbents, reinforcing their value in sustainable water treatment technologies and environmental protection efforts. Full article
(This article belongs to the Special Issue Polymer-Based Coatings: Principles, Development and Applications)
Show Figures

Figure 1

12 pages, 1508 KiB  
Article
Impact of Copper Nanoparticles on Keratin 19 (KRT19) Gene Expression in Breast Cancer Subtypes: Integrating Experimental and Bioinformatics Approaches
by Safa Taha, Ameera Sultan, Muna Aljishi and Khaled Greish
Int. J. Mol. Sci. 2025, 26(15), 7269; https://doi.org/10.3390/ijms26157269 - 27 Jul 2025
Viewed by 402
Abstract
This study investigates the effects of copper nanoparticles (CuNPs) on KRT19 gene expression in four breast cancer cell lines (MDA-MB-231, MDA-MB-468, MCF7, and T47D), representing triple-negative and luminal subtypes. Using cytotoxicity assays, quantitative RT-PCR, and bioinformatics tools (STRING, g:Profiler), we demonstrate subtype-specific, dose-dependent [...] Read more.
This study investigates the effects of copper nanoparticles (CuNPs) on KRT19 gene expression in four breast cancer cell lines (MDA-MB-231, MDA-MB-468, MCF7, and T47D), representing triple-negative and luminal subtypes. Using cytotoxicity assays, quantitative RT-PCR, and bioinformatics tools (STRING, g:Profiler), we demonstrate subtype-specific, dose-dependent KRT19 suppression, with epithelial-like cell lines showing greater sensitivity. CuNPs, characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM) with a mean size of 179 ± 15 nm, exhibited dose-dependent cytotoxicity. Bioinformatics analyses suggest KRT19′s potential as a biomarker for CuNP-based therapies, pending in vivo and clinical validation. These findings highlight CuNPs’ therapeutic potential and the need for further studies to optimize their application in personalized breast cancer treatment. Full article
(This article belongs to the Special Issue Nanoparticles for Cancer Treatment)
Show Figures

Figure 1

17 pages, 4785 KiB  
Article
Green Synthesis of Copper Oxide Nanoparticles Using Camellia sinensis: Anticancer Potential and Apoptotic Mechanism in HT-29 and MCF-7 Cells
by Devanthiran Letchumanan, Suriani Ibrahim, Noor Hasima Nagoor and Norhafiza Mohd Arshad
Int. J. Mol. Sci. 2025, 26(15), 7267; https://doi.org/10.3390/ijms26157267 - 27 Jul 2025
Viewed by 216
Abstract
The increasing prevalence of cancer necessitates the development of novel and effective therapeutic agents. This study evaluates the anticancer potential of biosynthesized copper oxide nanoparticles (CuO NPs) using Camellia sinensis extract against human colon and breast cancer cells. The CuO NPs were characterized [...] Read more.
The increasing prevalence of cancer necessitates the development of novel and effective therapeutic agents. This study evaluates the anticancer potential of biosynthesized copper oxide nanoparticles (CuO NPs) using Camellia sinensis extract against human colon and breast cancer cells. The CuO NPs were characterized using various techniques to confirm their structure, size, morphology, and functional groups. The average size of CuO NPs synthesized was 20–60 nm, with spherical shape. The cytotoxic effects of these CuO NPs reveal a dose-dependent reduction in cell viability with 50% inhibitory concentration (IC50) at 58.53 ± 0.13 and 53.95 ± 1.1 μg/mL, respectively. Further investigation into the mechanism of action was conducted using flow cytometry and apoptosis assays, which indicated that CuO NPs induced cell cycle arrest and apoptosis in cancer cells. Reactive oxygen species (ROS) generation, caspase activity assay, and comet assay were also performed to elucidate the underlying pathways, suggesting that oxidative stress and DNA damage play pivotal roles in the cytotoxicity observed. Overall, our findings demonstrate that biosynthesized CuO NPs exhibit notable anticancer activity against colon and breast cancer cells, with moderate selectivity over normal cells, highlighting their potential as a therapeutic agent due to their biocompatibility. However, further studies are required to validate their selectivity and safety profile. Full article
(This article belongs to the Special Issue The Application of Nanoparticles in Biomedicine)
Show Figures

Figure 1

17 pages, 1473 KiB  
Article
Stimulation of Maize Growth and Development and Improvement of Soil Properties Using New Specialised Organic-Mineral Materials
by Marzena S. Brodowska, Mirosław Wyszkowski and Ryszard Grzesik
Molecules 2025, 30(14), 3050; https://doi.org/10.3390/molecules30143050 - 21 Jul 2025
Viewed by 196
Abstract
The use of mineral fertilisers has increased in recent years, but this has had a negative effect on the environment, including causing the water in rivers and lakes to become too rich in nutrients, a process known as eutrophication. Current research focuses on [...] Read more.
The use of mineral fertilisers has increased in recent years, but this has had a negative effect on the environment, including causing the water in rivers and lakes to become too rich in nutrients, a process known as eutrophication. Current research focuses on producing fertiliser materials that are environmentally friendly. The aim of this study was to examine the impact of novel specialised organic-mineral fertilisers (OMFs: NP 24-12, NP 10-10, and NP 10-10 Zn+) on the yield and chemical composition of maize. These fertilisers were compared with a control (no fertiliser) and with other fertilisers (mixture of commercial fertilisers (MCFs): NP 24-12 and NP 10-10) that were used as a reference. All fertilisers increased the SPAD index at the fifth leaf unfolded stage of maize, with the majority (apart from OMF NP 10-10) also increasing it at the panicle emergence stage. MCF NP 10-10 had the most positive effect on the plant height, while OMF NP 10-10 had the least positive effect. All fertilisers had a positive effect on maize growth and development, with MCFs NP 10-10 and NP 24-12 having by far the strongest effect on increasing crop yields. The yield of plants fertilised with OMFs NP 24-12, NP 10-10, and NP 10-10 Zn+ was lower than the yields of plants fertilised with MCF NP 24-12 and MCF NP 10-10. OMF NP 10-10 caused a greater increase in the contents of all elements, and OMF NP 24-12 caused a greater increase in most elements (except P and Ca) in maize than MCFs did at an identical NP ratio. OMF NP 10-10 Zn+ was found to have a significant impact on the mineral composition of maize, resulting in a decline in Ca and P levels, along with a notable increase in Mg, Zn, and Cu concentrations. The most significant differences were observed for Cu and Zn. The OMFs, notably NP 24-12 and NP 10-10, exhibited a comparatively diminished acidifying impact in comparison with the MCFs. The application of fertilisers resulted in a significant increase in soil nutrient levels, with most fertilisers increasing the soil N, P, and Zn contents. Additionally, the OMFs led to an increase in Cu. However, MCFs NP 24-12 and NP 10-10 reduced the soil Cu and Mn contents. Studies should include other species as they have different needs. Field experiments are also needed. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe)
Show Figures

Figure 1

14 pages, 3147 KiB  
Article
Regulation of MXene Membranes with β-Lactoglobulin Nanofiber-Templated CuS Nanoparticles for Photothermal Antibacterial Effect
by Zhuang Liu, Chenxi Du, Xin Zhou and Gang Wei
Polymers 2025, 17(14), 1960; https://doi.org/10.3390/polym17141960 - 17 Jul 2025
Viewed by 262
Abstract
Developing advanced antimicrobial agents is critically imperative to address antibiotic-resistant infection crises. MXenes have emerged as a potential nanomedicine for antibacterial applications, but they suffer from suboptimal photothermal conversion efficiency and inherent cytotoxicity. Herein, we report the synthesis of MXene (Ti3C [...] Read more.
Developing advanced antimicrobial agents is critically imperative to address antibiotic-resistant infection crises. MXenes have emerged as a potential nanomedicine for antibacterial applications, but they suffer from suboptimal photothermal conversion efficiency and inherent cytotoxicity. Herein, we report the synthesis of MXene (Ti3C2)-based nanohybrids and hybrid membranes through firstly interfacial conjugation of self-assembled β-lactoglobulin nanofibers (β-LGNFs)-inspired copper sulfide nanoparticles (CuS NPs) onto MXene nanosheets, and subsequent vacuum filtration of the created β-LGNF-CuS/MXene nanohybrids. The constructed β-LGNF-CuS/MXene nanohybrids exhibit excellent photothermal conversion performances and satisfactory biocompatibility and minimal cytotoxicity toward mammalian cells, ascribing to the introduction of highly biocompatible β-LGNFs into the hybrid system. In addition, the fabricated β-LGNF-CuS/MXene hybrid membranes demonstrate high efficiency in antibacterial application through the synergistic photothermal and material-related antibacterial effects of both MXene and CuS NPs. Therefore, the ideas and findings shown in this study are useful for inspiring researchers to design and fabricate functional and biocompatible 2D material-based hybrid membranes for antimicrobial applications. Full article
Show Figures

Figure 1

33 pages, 2309 KiB  
Review
Recent Progress of Nanomedicine for the Synergetic Treatment of Radiotherapy (RT) and Photothermal Treatment (PTT)
by Maria-Eleni Zachou, Ellas Spyratou, Nefeli Lagopati, Kalliopi Platoni and Efstathios P. Efstathopoulos
Cancers 2025, 17(14), 2295; https://doi.org/10.3390/cancers17142295 - 10 Jul 2025
Viewed by 448
Abstract
Nanotechnology has significantly advanced cancer therapy, particularly through the development of multifunctional nanoparticles (NPs) capable of acting as both therapeutic and diagnostic agents. This review focuses on the synergistic integration of radiotherapy (RT) and photothermal therapy (PTT) mediated by engineered NPs—a rapidly evolving [...] Read more.
Nanotechnology has significantly advanced cancer therapy, particularly through the development of multifunctional nanoparticles (NPs) capable of acting as both therapeutic and diagnostic agents. This review focuses on the synergistic integration of radiotherapy (RT) and photothermal therapy (PTT) mediated by engineered NPs—a rapidly evolving strategy that enhances tumor specificity, minimizes healthy tissue damage, and enables real-time imaging. By analyzing the recent literature, we highlight the dual role of NPs in amplifying radiation-induced DNA damage and converting near-infrared (NIR) light into localized thermal energy. The review classifies various metal-based and composite nanomaterials (e.g., Au, Pt, Bi, Cu, and Fe) and evaluates their performance in preclinical RT–PTT settings. We also discuss the physicochemical properties, targeting strategies, and theragnostic applications that contribute to treatment efficiency. Unlike conventional combinatorial therapies, NP-mediated RT–PTT enables high spatial–temporal control, immunogenic potential, and integration with multimodal imaging. We conclude with the current challenges, translational barriers, and outlooks for clinical implementation. This work provides a comprehensive, up-to-date synthesis of NP-assisted RT–PTT as a powerful approach within the emerging field of nano-oncology. Full article
(This article belongs to the Special Issue Nanomedicine’s Role in Oncology)
Show Figures

Figure 1

17 pages, 2572 KiB  
Article
Impact of Combined Exposure to Copper Nanoparticles, Copper Oxide Nanoparticles, and Pesticides on the Metabolic Activity of Nitrobacter winogradskyi
by Roberto Gajardo, Olga Rubilar, Edgar López-Mena, Gildardo Sanchez-Ante, Paola Fincheira, Miguel Martinez, Mauricio Schoebitz, Ricardo Tighe-Neira, Claudio Inostroza-Blancheteau, Leonardo Bardelhe and Gonzalo Tortella-Fuentes
Int. J. Mol. Sci. 2025, 26(13), 6391; https://doi.org/10.3390/ijms26136391 - 2 Jul 2025
Viewed by 386
Abstract
Copper nanoparticles (CuNPs) are increasingly used in agriculture either alone or in combination with pesticides. Recognizing the potential hazards of CuNPs in soil environments, our study evaluated their effects on the metabolic activity of Nitrobacter winogradskyi ATCC 2539, a chemolithoautotrophic bacterium crucial for [...] Read more.
Copper nanoparticles (CuNPs) are increasingly used in agriculture either alone or in combination with pesticides. Recognizing the potential hazards of CuNPs in soil environments, our study evaluated their effects on the metabolic activity of Nitrobacter winogradskyi ATCC 2539, a chemolithoautotrophic bacterium crucial for the nitrification process, which involves the oxidation of nitrite to nitrate in soil ecosystems. This study evaluated the effects of concentration ranges of CuNPs (2.5 to 162.7 mg L−1), CuONPs (3.2 to 203.6 mg L−1), and various pesticides (iprodione, carbendazim, and 2,4-D) and their derivatives (3,5-dichloroaniline, catechol, and 2,4-dichlorophenol) at concentrations ranging from 0.04 to 2.56 mM. CuSO4 was also used as a control for comparative purposes. Our findings indicated that the CuNPs significantly inhibited the metabolic activity of N. winogradskyi, resulting in a reduction of up to 95% at concentrations of ≥2.5 mg L−1. The CuONPs were less toxic, while the pesticides and their derivatives generally showed lower toxicity. Notably, combinations of CuNPs with pesticides or their derivatives maintained high toxicity levels comparable to those of the CuNPs alone. According to the Loewe additivity model, these effects were largely additive and primarily associated with CuNPs or CuONPs. Protein profiling using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF)/TOF mass spectrometry (MS) revealed that carbendazim induced noticeable changes in protein profiles. These findings underscore the detrimental impacts of CuNPs and CuONPs on the metabolic activity of N. winogradskyi, posing a considerable risk to the health of agricultural soils. Overall, this research provides crucial insights into the risks associated with using CuNPs in agriculture, particularly regarding their potential threat to nitrifying microorganisms in soils. Full article
(This article belongs to the Special Issue Toxicity of Nanoparticles: Second Edition)
Show Figures

Figure 1

13 pages, 2631 KiB  
Article
TEMPO-Oxidized Cellulose Hydrogels Loaded with Copper Nanoparticles as Highly Efficient and Reusable Catalysts for Organic Pollutant Reduction
by Yangyang Zhang, Yuanyuan Li and Xuejun Yu
Gels 2025, 11(7), 512; https://doi.org/10.3390/gels11070512 - 1 Jul 2025
Viewed by 296
Abstract
To successfully prepare cellulose hydrogels through a dissolution–regeneration process, 60 wt% LiBr aqueous solution was used as a green solvent. Carboxyl groups were precisely introduced onto the surface of the cellulose hydrogels through a TEMPO-mediated oxidation reaction, while the three-dimensional network structure and [...] Read more.
To successfully prepare cellulose hydrogels through a dissolution–regeneration process, 60 wt% LiBr aqueous solution was used as a green solvent. Carboxyl groups were precisely introduced onto the surface of the cellulose hydrogels through a TEMPO-mediated oxidation reaction, while the three-dimensional network structure and open pore morphology were completely retained. This modification strategy significantly enhanced the loading capacity of the hydrogels with copper nanoparticles (Cu NPs). The experimental results show that the LiBr aqueous solution can efficiently dissolve cellulose, and the TEMPO oxidation introduces carboxyl groups without destroying the stability of the hydrogels. Cu NPs are uniformly dispersed and highly loaded on the surface of the hydrogel because of the anchoring effect of the carboxyl groups. Cu NP-loaded hydrogels exhibit excellent catalytic activity in the NaBH4 reduction of 4-nitrophenol (4-NP). Cu NP-loaded hydrogels maintain their complete structure and good catalytic performance after five consecutive cycles. Moreover, Cu NP-loaded hydrogels demonstrate high efficiency in degrading organic dyes such as methyl orange and Congo red. This study successfully developed efficient, low-cost, and environmentally friendly Cu NP-loaded hydrogel catalysts through the synergistic effect of LiBr green solvent and TEMPO oxidation modification, providing a feasible alternative to noble metal catalysts. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels (3rd Edition))
Show Figures

Figure 1

19 pages, 1626 KiB  
Article
Origin of the Optimization of Photocatalytic Activities for Titanium Oxide Film Modified by an Oxidized Copper Layer
by Jian-An Chen, Shu-Min Tsai, Yi-You Hong, Pin-Jyun Shih and Day-Shan Liu
Materials 2025, 18(13), 2993; https://doi.org/10.3390/ma18132993 - 24 Jun 2025
Viewed by 392
Abstract
In this study, the surface photocatalytic activity of an anatase–titanium oxide (TiOx) film was modified by a thin copper (Cu) layer with the subsequential oxidation annealing process. Through this simple annealing process, the photocatalytic activity of the TiOx/Cu structure [...] Read more.
In this study, the surface photocatalytic activity of an anatase–titanium oxide (TiOx) film was modified by a thin copper (Cu) layer with the subsequential oxidation annealing process. Through this simple annealing process, the photocatalytic activity of the TiOx/Cu structure to decompose the methylene blue solution and inhibit the growth of Escherichia coli. could be optimized. With the help of a study on the conductive type required for the oxidation of a single Cu layer, an n/p nanocomposite heterojunction was realized, as this contact system anneals at temperatures of 350 °C and 450 °C. An extra electrical field at the contact interfaces that was be beneficial for separating the photo-generated electron–hole pairs (EHPs) under UV light irradiation was built. The built-in electrical field led to an increase in the structural photocatalytic activity. Moreover, as the p-type cuprous oxide (p-Cu2O) structure oxidized by the annealed Cu layer could provide a high conduction band that is offset when in contact with the TiOx film, the photogenerated EHPs on the TiOx surface could be separated more effectively. Accordingly, the 350 °C-annealed sample, abundant in the nanocomposite TiOx/Cu2O heterojunction which could significantly retard the recombination of photo-generated carriers, corresponded to an increase of about 38% in the photocatalytic activity as compared with the single TiOx film. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

22 pages, 389 KiB  
Review
Copper Nanoparticles in Aquatic Environment: Release Routes and Oxidative Stress-Mediated Mechanisms of Toxicity to Fish in Various Life Stages and Future Risks
by Anna Sielska and Lidia Skuza
Curr. Issues Mol. Biol. 2025, 47(6), 472; https://doi.org/10.3390/cimb47060472 - 19 Jun 2025
Viewed by 471
Abstract
The final recipient of nanoparticles, including various types of copper-based nanoparticles (Cu-based NPs), is the aquatic environment. Their increased production, especially as a component of antimicrobial agents, raises concerns about uncontrolled environmental release and subsequent ecological risks. The high reactivity of Cu-based NPs [...] Read more.
The final recipient of nanoparticles, including various types of copper-based nanoparticles (Cu-based NPs), is the aquatic environment. Their increased production, especially as a component of antimicrobial agents, raises concerns about uncontrolled environmental release and subsequent ecological risks. The high reactivity of Cu-based NPs enables interactions with biotic and abiotic environmental components, leading to bioaccumulation and disorders in living organisms, such as fish in various life stages, especially in embryos or hatchlings. Increasing concentration of Cu-based NPs causes various toxic effects, mainly through the induction of oxidative stress. These effects include impairment of antioxidant mechanisms, as well as damage to genetic material, cells and tissues, growth retardation, metabolic disorders, increased mortality, or hatching inhibition. The aim of this review is to describe the release routes of Cu-based NPs and their adverse effects on fish, while emphasizing the need for further research on their toxicity and measures to control their release to the environment. Given the limited data on the toxicity of Cu-based NPs, especially concerning sensitive fish developmental stages, further studies are required. Full article
(This article belongs to the Special Issue Innovations in Marine Biotechnology and Molecular Biology)
20 pages, 2272 KiB  
Article
Development of a Selective Agar for the Detection of Probiotic Strain Ligilactobacillus animalis NP51 and Other Lactic Acid Bacteria in Cattle Feed
by Kasey Thompson, Shamima Akter, Naola Ferguson-Noel, John J. Maurer and Margie D. Lee
Agriculture 2025, 15(12), 1284; https://doi.org/10.3390/agriculture15121284 - 13 Jun 2025
Viewed by 408
Abstract
The enormous potential of bacteriotherapy in disease treatment and prevention has created a large probiotic market. Significant challenges exist in assessing probiotic quality, efficacy and viability. Lactic acid bacteria (LAB) are commonly used probiotics and the most abundant of the vertebrate microbiota. The [...] Read more.
The enormous potential of bacteriotherapy in disease treatment and prevention has created a large probiotic market. Significant challenges exist in assessing probiotic quality, efficacy and viability. Lactic acid bacteria (LAB) are commonly used probiotics and the most abundant of the vertebrate microbiota. The goal of this study was to make MRS agar specific for probiotic Ligilactobacillus animalis NP51, since the current formulation is not sufficiently selective. Here, 53 chemicals were screened to identify compound(s) that reduced the growth of non-LAB and fungi on de Mann, Rogosa, and Sharpe (MRS) agar, and which were selective for LAB and specifically the probiotic strain NP51. Cattle feed was selected as the sample type, as it is commonly amended with Lactobacillus or yeast probiotics and often includes silage, a diverse microbial consortium of fungi and LAB. Modified MRS was evaluated for its effectiveness in determining probiotic viability and the detection of L. animalis NP51 in cattle feed, amended with this probiotic. qPCR was used to specifically detect and enumerate NP51 in commercial and experimental feed samples. For four selective agents, nystatin, guanidine hydrochloride, CuSO4, and ZnCl, it was identified that when used together, they reduced the growth of bacteria and fungi, but did not inhibit the Lactobacillus probiotic NP51 and other LAB. Metagenomic analysis revealed LAB as the major group cultivated on modified MRS agar from the plating of cattle feed amended with silage. As an enrichment, modified MRS broth improved the qPCR detection of probiotic strain NP51. This study illustrated that improvements can be made to existing bacteriological media for enumerating probiotic NP51 and determining the product’s viability. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

19 pages, 1240 KiB  
Article
Inulin Improves the Redox Response in Rats Fed a Diet Containing Recommended Copper Nanoparticle (CuNPs) Levels, While Pectin or Psyllium in Rats Receive Excessive CuNPs Levels in the Diet
by Aleksandra Marzec, Ewelina Cholewińska, Bartosz Fotschki, Jerzy Juśkiewicz and Katarzyna Ognik
Antioxidants 2025, 14(6), 695; https://doi.org/10.3390/antiox14060695 - 8 Jun 2025
Viewed by 487
Abstract
The study aimed to determine the effect of dietary inclusion of the recommended (6.5 mg Cu/kg diet) or double the recommended (13.0 mg Cu/kg diet) levels of copper nanoparticles (CuNPs) in combination with different types of dietary fibre on selected redox status indicators [...] Read more.
The study aimed to determine the effect of dietary inclusion of the recommended (6.5 mg Cu/kg diet) or double the recommended (13.0 mg Cu/kg diet) levels of copper nanoparticles (CuNPs) in combination with different types of dietary fibre on selected redox status indicators in the blood and tissues of male Wistar rats. Control groups were fed diets containing cellulose and a mineral mixture with standard or enhanced content of CuCO3. The experimental groups were fed a diet supplemented with CuNPs (6.5 or 13 mg/kg) and combined with various fibre types—cellulose, pectin, inulin, or psyllium. After the feeding period, rats’ organs were collected to assess selected indicators of redox status. The obtained results suggest that the addition of dietary fibre in the form of inulin may beneficially stimulate the response of the redox system in the conditions of CuNPs nutrition at the recommended dose, pectin, or psyllium in the case of an excessive supply of CuNPs in the diet. Thus, selecting the appropriate type of dietary fibre based on the CuNPs’ level in the diet may effectively protect the organism from the potentially harmful prooxidative effect of CuNPs, ultimately contributing to a favourable regulation of their metabolic impact in the body. Full article
(This article belongs to the Special Issue Recent Trends in Nanoantioxidants—2nd Edition)
Show Figures

Figure 1

15 pages, 1393 KiB  
Article
Comparative Analysis of Nano-Bactericides and Thiodiazole–Copper on Tomato Rhizosphere Microbiome
by Weimin Ning, Xiangwen Luo, Yu Zhang, Shijun Li, Xiao Yang, Xin Wang, Yueyue Chen, Yashuang Xu, Deyong Zhang, Songbai Zhang and Yong Liu
Microorganisms 2025, 13(6), 1327; https://doi.org/10.3390/microorganisms13061327 - 7 Jun 2025
Viewed by 542
Abstract
Vegetable crops such as tomato are highly susceptible to various pathogens. Nanoparticles (NPs) are emerging as effective nano-bactericides for managing plant pathogens. Communities of rhizosphere bacteria are essential for plant physiological health and also serve as a critical factor in evaluating the environmental [...] Read more.
Vegetable crops such as tomato are highly susceptible to various pathogens. Nanoparticles (NPs) are emerging as effective nano-bactericides for managing plant pathogens. Communities of rhizosphere bacteria are essential for plant physiological health and also serve as a critical factor in evaluating the environmental compatibility of NPs. We evaluated the effects of a nano-bactericide (Cu-Ag nanoparticles) and a commercial bactericide (thiodiazole–copper) on the rhizosphere microbiome of tomato. The results show that low and high doses of the two bactericides induced alterations in the bacterial community structure to differing extents. Cu-Ag nanoparticles increased the relative abundance of potentially beneficial bacteria, including Bacteroidota, Gemmatimonadota, Acidobacteriota, and Actinobacteriota. Functional prediction revealed that Cu-Ag nanoparticles may affect the metabolic pathways of tomato root rhizosphere microorganisms and regulate the lacI/galR family, which controls virulence factors and bacterial metabolism. This study provides insight into the influence of metal nanoparticles on plant rhizosphere microbiomes and may lay a foundation for the application of nano-bactericides for the environmentally friendly control of plant diseases. Full article
(This article belongs to the Special Issue Microbial Diversity Research in Different Environments)
Show Figures

Figure 1

12 pages, 9594 KiB  
Article
An Electrochemical Sensor Based on AuNPs@Cu-MOF/MWCNTs Integrated Microfluidic Device for Selective Monitoring of Hydroxychloroquine in Human Serum
by Xuanlin Feng, Jiaqi Zhao, Shiwei Wu, Ying Kan, Honemei Li and Weifei Zhang
Chemosensors 2025, 13(6), 200; https://doi.org/10.3390/chemosensors13060200 - 1 Jun 2025
Viewed by 714
Abstract
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their [...] Read more.
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their large chambers and high sample consumption hinder point-of-care use. To address these challenges, we developed a microfluidic electrochemical sensing platform based on a screen-printed carbon electrode (SPCE) modified with a hierarchical nanocomposite of gold nanoparticles (AuNPs), copper-based metal–organic frameworks (Cu-MOFs), and multi-walled carbon nanotubes (MWCNTs). The Cu-MOF provided high porosity and analyte enrichment, MWCNTs established a 3D conductive network to enhance electron transfer, and AuNPs further optimized catalytic activity through localized plasmonic effects. Structural characterization (SEM, XRD, FT-IR) confirmed the successful integration of these components via π-π stacking and metal–carboxylate coordination. Electrochemical analyses (CV, EIS, DPV) revealed exceptional performance, with a wide linear range (0.05–50 μM), a low detection limit (19 nM, S/N = 3), and a rapid response time (<5 min). The sensor exhibited outstanding selectivity against common interferents, high reproducibility (RSD = 3.15%), and long-term stability (98% signal retention after 15 days). By integrating the nanocomposite-modified SPCE into a microfluidic chip, we achieved accurate HCQ detection in 50 μL of serum, with recovery rates of 95.0–103.0%, meeting FDA validation criteria. This portable platform combines the synergistic advantages of nanomaterials with microfluidic miniaturization, offering a robust and practical tool for real-time therapeutic drug monitoring in clinical settings. Full article
(This article belongs to the Special Issue Feature Papers on Luminescent Sensing (Second Edition))
Show Figures

Figure 1

20 pages, 6287 KiB  
Article
Analysis of the Wear and Corrosion Resistance on Cu-Ni-Al Composites Reinforced with CeO2 Nanoparticles
by Carola Martínez, Bárbara Valverde, Aurora Del Valle-Rodríguez, Brennie Bustos-De La Fuente, Izabel Fernanda Machado and Francisco Briones
Materials 2025, 18(11), 2438; https://doi.org/10.3390/ma18112438 - 23 May 2025
Cited by 1 | Viewed by 466
Abstract
This study evaluates the wear and corrosion resistance of the Cu-50Ni-5Al alloy reinforced with CeO2 nanoparticles for potential use as anodes in molten carbonate fuel cells (MCFCs). Cu–50Ni–5Al alloys were synthesized, with and without the incorporation of 1% CeO2 nanoparticles, by [...] Read more.
This study evaluates the wear and corrosion resistance of the Cu-50Ni-5Al alloy reinforced with CeO2 nanoparticles for potential use as anodes in molten carbonate fuel cells (MCFCs). Cu–50Ni–5Al alloys were synthesized, with and without the incorporation of 1% CeO2 nanoparticles, by the mechanical alloying method and spark plasma sintering (SPS). The samples were evaluated using a single scratch test with a cone-spherical diamond indenter under progressive normal loading conditions. A non-contact 3D surface profiler characterized the scratched surfaces to support the analysis. Progressive loading tests indicated a reduction of up to 50% in COF with 1% NPs, with specific values drop-ping from 0.48 in the unreinforced alloy to 0.25 in the CeO2-doped composite at 15 N of applied load. Furthermore, the introduction of CeO2 decreased scratch depths by 25%, indicating enhanced wear resistance. The electrochemical behavior of the samples was evaluated by electrochemical impedance spectroscopy (EIS) in a molten carbonate medium under a H2/N2 atmosphere at 550 °C for 120 h. Subsequently, the corrosion products were characterized using X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the CeO2-reinforced alloy exhibits superior electro-chemical stability in molten carbonate environments (Li2CO3-K2CO3) under an H2/N2 atmosphere at 550 °C for 120 h. A marked reduction in polarization resistance and a pronounced re-passivation effect were observed, suggesting enhanced anodic protection. This effect is attributed to the formation of aluminum and copper oxides in both compositions, together with the appearance of NiO as the predominant phase in the materials reinforced with nanoparticles in a hydrogen-reducing atmosphere. The addition of CeO2 nanoparticles significantly improves wear resistance and corrosion performance. Recognizing this effect is vital for creating strategies to enhance the material’s durability in challenging environments like MCFC. Full article
Show Figures

Figure 1

Back to TopTop