Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (201)

Search Parameters:
Keywords = Cu-ZnO/TiO2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4562 KiB  
Article
Preparation and Properties of Flexible Multilayered Transparent Conductive Films on Substrate with High Surface Roughness
by Mengfan Li, Kai Tao, Jinghan Lu, Shenyue Xu, Yuanyuan Sun, Yaman Chen and Zhiyong Liu
Materials 2025, 18(14), 3389; https://doi.org/10.3390/ma18143389 - 19 Jul 2025
Viewed by 362
Abstract
The flexible transparent conductive films (TCFs) of a ZnS/Cu/Ag/TiO2 multilayered structure were deposited on a flexible PET substrate with high surface roughness using magnetic sputtering, and the effects of structural characteristics on the performance of the films were analyzed. The TCFs with [...] Read more.
The flexible transparent conductive films (TCFs) of a ZnS/Cu/Ag/TiO2 multilayered structure were deposited on a flexible PET substrate with high surface roughness using magnetic sputtering, and the effects of structural characteristics on the performance of the films were analyzed. The TCFs with TiO2/Cu/Ag/TiO2 and ZnS/Cu/Ag/ZnS symmetric structures were also prepared for comparison. The TCF samples were deposited using ZnS, TiO2, Cu and Ag targets, and they were analyzed using scanning electronic microscopy, atomic force microscopy, grazing incidence X-ray diffraction, spectrophotometry and a four-probe tester. The TCFs exhibit generally uniform surface morphology, excellent light transmittance and electrical conductivity with optimized structure. The optimal values are 84.40%, 5.52 Ω/sq and 33.19 × 10−3 Ω−1 for the transmittance, sheet resistance and figure of merit, respectively, in the visible spectrum. The satisfactory properties of the asymmetric multilayered TCF deposited on a rough-surface substrate should be mainly attributed to the optimized structure parameters and reasonable interfacial compatibilities. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

15 pages, 2469 KiB  
Review
Recent Developments of Nanomaterials in Crop Growth and Production: The Case of the Tomato (Solanum lycopersicum)
by Eric G. Echeverría-Pérez, Vianii Cruz-López, Rosario Herrera-Rivera, Mario J. Romellón-Cerino, Jesusita Rosas-Diaz and Heriberto Cruz-Martínez
Agronomy 2025, 15(7), 1716; https://doi.org/10.3390/agronomy15071716 - 16 Jul 2025
Viewed by 686
Abstract
Tomatoes are a fundamental part of the daily diet, rich in carbohydrates, vitamins, minerals, carotenoids, and polyphenols. Nonetheless, optimal fruit yield and quality typically depend on the application of synthetic agrochemicals. However, the irrational use of these agrochemicals has caused various environmental problems. [...] Read more.
Tomatoes are a fundamental part of the daily diet, rich in carbohydrates, vitamins, minerals, carotenoids, and polyphenols. Nonetheless, optimal fruit yield and quality typically depend on the application of synthetic agrochemicals. However, the irrational use of these agrochemicals has caused various environmental problems. Therefore, it is necessary to develop alternatives to conventional agrochemical products. Applying nanomaterials as fertilizers in tomato production is emerging as a promising approach, with documented improvements in germination, vegetative development, and fruit yield. Therefore, we present a comprehensive review of recent developments (2015–2024) in the application of nanomaterials in tomato crops, with a particular emphasis on the significance of nanomaterial characteristics in their role as fertilizers. Several types of nanomaterials, such as ZnO, Ag, TiO2, Si, hydroxyapatite, P, Zn, Se, CuO, Cu, Fe, Fe2O3, CaO, CaCO3, and S, have been evaluated as fertilizers for tomato crops, with ZnO nanoparticles being the most extensively studied. However, it is pertinent to conduct further research on the less-explored nanomaterials to gain a deeper understanding of their effects on seed germination, plant growth, and fruit quality and quantity. Full article
(This article belongs to the Special Issue Application of Nanotechnology in Agricultural Food Engineering)
Show Figures

Figure 1

17 pages, 7952 KiB  
Article
Achyrophanite, (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5, a New Mineral with the Novel Structure Type from Fumarolic Exhalations of the Tolbachik Volcano, Kamchatka, Russia
by Igor V. Pekov, Natalia V. Zubkova, Natalia N. Koshlyakova, Dmitry I. Belakovskiy, Marina F. Vigasina, Atali A. Agakhanov, Sergey N. Britvin, Anna G. Turchkova, Evgeny G. Sidorov, Pavel S. Zhegunov and Dmitry Yu. Pushcharovsky
Minerals 2025, 15(7), 706; https://doi.org/10.3390/min15070706 - 2 Jul 2025
Viewed by 351
Abstract
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, [...] Read more.
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with aphthitalite-group sulfates, hematite, alluaudite-group arsenates (badalovite, calciojohillerite, johillerite, nickenichite, hatertite, and khrenovite), ozerovaite, pansnerite, arsenatrotitanite, yurmarinite, svabite, tilasite, katiarsite, yurgensonite, As-bearing sanidine, anhydrite, rutile, cassiterite, and pseudobrookite. Achyrophanite occurs as long-prismatic to acicular or, rarer, tabular crystals up to 0.02 × 0.2 × 1.5 mm, which form parallel, radiating, bush-like, or chaotic aggregates up to 3 mm across. It is transparent, straw-yellow to golden yellow, with strong vitreous luster. The mineral is brittle, with (001) perfect cleavage. Dcalc is 3.814 g cm–3. Achyrophanite is optically biaxial (+), α = 1.823(7), β = 1.840(7), γ = 1.895(7) (589 nm), 2V (meas.) = 60(10)°. Chemical composition (wt.%, electron microprobe) is: Na2O 3.68, K2O 9.32, CaO 0.38, MgO 1.37, MnO 0.08, CuO 0.82, ZnO 0.48, Al2O3 2.09, Fe2O3 20.42, SiO2 0.12, TiO2 7.35, P2O5 0.14, V2O5 0.33, As2O5 51.88, SO3 1.04, and total 99.40. The empirical formula calculated based on 22 O apfu is Na1.29K2.15Ca0.07Mg0.34Mn0.01Cu0.11Zn0.06Al0.44Fe3+2.77Ti1.00Si0.02P0.02S0.14V0.04As4.90O22. Achyrophanite is orthorhombic, space group P2221, a = 6.5824(2), b = 13.2488(4), c = 10.7613(3) Å, V = 938.48(5) Å3 and Z = 2. The strongest reflections of the PXRD pattern [d,Å(I)(hkl)] are 5.615(59)(101), 4.174(42)(022), 3.669(31)(130), 3.148(33)(103), 2.852(43)(141), 2.814(100)(042, 202), 2.689(29)(004), and 2.237(28)(152). The crystal structure of achyrophanite (solved from single-crystal XRD data, R = 4.47%) is unique. It is based on the octahedral-tetrahedral M-T-O pseudo-framework (M = Fe3+ with admixed Ti, Al, Mg, Na; T = As5+). Large-cation A sites (A = K, Na) are located in the channels of the pseudo-framework. The achyrophanite structure can be described as stuffed, with the defect heteropolyhedral pseudo-framework derivative of the orthorhombic Fe3+AsO4 archetype. The mineral is named from the Greek άχυρον, straw, and φαίνομαι, to appear, in allusion to its typical straw-yellow color and long prismatic habit of crystals. Full article
Show Figures

Figure 1

20 pages, 4565 KiB  
Article
Electrocoagulation Coupled with TiO2 Photocatalysis: An Advanced Strategy for Treating Leachates from the Degradation of Green Waste and Domestic WWTP Biosolids in Biocells
by Rodny Peñafiel, Nelly Esther Flores Tapia, Celia Margarita Mayacela Rojas, Freddy Roberto Lema Chicaiza and Lander Pérez
Processes 2025, 13(6), 1746; https://doi.org/10.3390/pr13061746 - 2 Jun 2025
Viewed by 568
Abstract
Leachates generated from the degradation of green waste and biosolids from urban wastewater treatment plants (WWTPs) pose significant environmental concerns due to high concentrations of organic pollutants and heavy metals. This study proposes a hybrid treatment strategy combining electrocoagulation (EC) and UVC-activated TiO [...] Read more.
Leachates generated from the degradation of green waste and biosolids from urban wastewater treatment plants (WWTPs) pose significant environmental concerns due to high concentrations of organic pollutants and heavy metals. This study proposes a hybrid treatment strategy combining electrocoagulation (EC) and UVC-activated TiO2 photocatalysis to remediate leachates produced in laboratory-scale biocells. Initial characterization revealed critical pollutant levels: COD (1373 mg/L), BOD5 (378 mg/L), total phosphorus (90 mg/L), ammoniacal nitrogen (201 mg/L), and metals such as Ni, Pb, and Mn levels all exceeding those set out in the Ecuadorian discharge regulations. Optimized EC achieved removal efficiencies of 62.6% for COD, 44.4% for BOD5, 89.8% for phosphorus, and 86.2% for color. However, residual contamination necessitated a subsequent photocatalytic step. Suspended TiO2 under UVC irradiation removed up to 81.8% of the remaining COD, 88.7% of the ammoniacal nitrogen, and 94.4% of the phosphorus. Levels of heavy metals such as Zn, Fe, Pb, Mn, and Cu were reduced by over 80%, while Cr6⁺ was nearly eliminated. SEM–EDS analysis confirmed successful TiO2 immobilization on sand substrates, revealing a rough, porous morphology conducive to catalyst adhesion; however, heterogeneous titanium distribution suggests the need for improved coating uniformity. These findings confirm the potential of the EC–TiO2/UVC hybrid system as an effective and scalable approach for treating complex biocell leachates with reduced chemical consumption. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Water and Wastewater Treatment Processes)
Show Figures

Figure 1

24 pages, 70177 KiB  
Article
Geology, Structure, Geochemistry, and Origin of Iron Oxide Deposits in Dehbid, Southwest Iran
by Abdorrahman Rajabi, Reza Nozaem, Sara Momenipour, Shojaedin Niroomand, Shahrokh Rajabpour, Somaye Rezaei, Pura Alfonso, Carles Canet, Ahmad Kazemi Mehrnia, Pouria Mahmoodi, Amir Mahdavi, Mansoor Kazemirad, Omid Laghari Firouzjaei and Mohammad Amini
Minerals 2025, 15(6), 590; https://doi.org/10.3390/min15060590 - 30 May 2025
Viewed by 960
Abstract
The Dehbid region, located in the southern part of the Sanandaj–Sirjan Zone (SSZ), is a significant iron oxide mining district with over 20 iron oxide deposits (IODs) and reserves of up to 50 million tons of iron oxide ores. The region features a [...] Read more.
The Dehbid region, located in the southern part of the Sanandaj–Sirjan Zone (SSZ), is a significant iron oxide mining district with over 20 iron oxide deposits (IODs) and reserves of up to 50 million tons of iron oxide ores. The region features a NW–SE oriented ductile shear zone, parallel to the Zagros thrust zone, experienced significant deformation. Detailed structural studies indicate that the iron mineralization is primarily stratiform to stratabound and hosted in late Triassic to early Jurassic silicified dolomites and schists. These ore deposits consist of lenticular iron oxide orebodies and exhibit various structures and textures, including banded, laminated, folded, disseminated, and massive forms of magnetite and hematite. The Fe2O3 content in the mineralized layers varies from 30 to 91 wt%, whereas MnO has an average of 3.9 wt%. The trace elements are generally low, except for elevated concentrations of Cu (up to 4350 ppm) and Zn (up to 3270 ppm). Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) analysis of magnetite reveals high concentrations of Mg, Al, Si, Mn, Ti, Cu, and Zn, with significant depletion of elements such as Ga, Ge, As, and Nb. This study refutes the hypothesis of vein-like or hydrothermal genesis, providing evidence for a sedimentary origin based on the trace element geochemistry of magnetite and LA-ICP-MS geochemical data. The Dehbid banded iron ores (BIOs) are thought to have formed under geodynamic conditions similar to those of BIOs in back-arc tectonic settings. The combination of anoxic conditions, submarine hydrothermal iron fluxes, and redox fluctuations is essential for the formation of these deposits, suggesting that similar iron–manganese deposits can form during the Phanerozoic under specific geodynamic and oceanographic conditions, particularly in tectonically active back-arc environments. Full article
(This article belongs to the Special Issue Mineralogy and Geochemistry of Polymetallic Ore Deposits)
Show Figures

Figure 1

13 pages, 8814 KiB  
Article
Structural, Optical and Electrical Properties of the Flexible, Asymmetric TiO2/Cu/Ag/ZnS and ZnS/Cu/Ag/TiO2 Films Deposited via Magnetron Sputtering
by Qingping Li, Kai Tao, Jiayi Zhang, Yazhe Ren and Zhiyong Liu
Coatings 2025, 15(6), 650; https://doi.org/10.3390/coatings15060650 - 28 May 2025
Viewed by 465
Abstract
The structural, optical and electrical properties of the flexible, asymmetric TiO2/Cu/Ag/ZnS and ZnS/Cu/Ag/TiO2 transparent conductive films (TCFs) were studied. The multilayered TCFs were magnetron sputtered onto the flexible PET substrate layer-wise, with TiO2, ZnS, Cu and Ag targets. [...] Read more.
The structural, optical and electrical properties of the flexible, asymmetric TiO2/Cu/Ag/ZnS and ZnS/Cu/Ag/TiO2 transparent conductive films (TCFs) were studied. The multilayered TCFs were magnetron sputtered onto the flexible PET substrate layer-wise, with TiO2, ZnS, Cu and Ag targets. The atomic force microscope, scanning electronic microscope, X-ray diffractometer, ultraviolet-visible spectrophotometer and four-probe tester were utilized to characterize the samples. The photoelectric property of the multilayers varies with the adjustment in structural parameters. The ZnS/Cu/Ag/TiO2 samples demonstrate a more uniform surface morphology and better optical and electrical properties than the TiO2/Cu/Ag/ZnS counterparts. The optimal sheet resistance and average transmittance of the ZnS/Cu/Ag/TiO2 films are 5.56 Ω/sq and 88.46% in the visible spectrum, with the corresponding figure of merit reaching 52.76 × 10−3 Ω−1. The bottom ZnS layer reveals superior percolation function for the bimetallic layer, forming with good continuity and homogeneity, although the original surface roughness is higher than that of TiO2. The top TiO2 layer demonstrates a smooth morphology and dense structure, beneficial to the high transparency and stability of the multilayer. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

19 pages, 5224 KiB  
Article
Effect of Metal Oxides on the Pyrolytic Behavior and Combustion Performance of 5-Aminotetrazole/Sodium Periodate Gas Generators in Atmospheric Environment
by Chengkuan Shi, Zefeng Guo, Bohuai Zhou, Yichao Liu, Jun Huang and Hua Guan
Materials 2025, 18(10), 2249; https://doi.org/10.3390/ma18102249 - 13 May 2025
Viewed by 414
Abstract
5-aminotetrazole (5AT)-based gas generators, particularly the 5AT/NaIO4 system, have garnered interest for their high gas production and energy potential. This study investigates the impact of various metal oxides (MnO2, Al2O3, TiO2, CuO, Fe2 [...] Read more.
5-aminotetrazole (5AT)-based gas generators, particularly the 5AT/NaIO4 system, have garnered interest for their high gas production and energy potential. This study investigates the impact of various metal oxides (MnO2, Al2O3, TiO2, CuO, Fe2O3, MgO, ZnO, and MoO3) on the thermal decomposition and combustion performance of 5AT/NaIO4. The REAL calculation program was used to infer reaction products, which indicated that the gas products are almost all harmless, with negligibly low percentages of NO and CO. Thermogravimetric analysis revealed that metal oxides, especially MoO3, significantly advance the decomposition process above 400 °C, reducing the activation energy by 130 kJ/mol and lowering critical ignition and thermal explosion temperatures. Combustion performance tests and closed bomb tests confirmed MoO3’s positive effect, accelerating reaction rates and enhancing decomposition efficiency. The system’s high Gibbs free energy indicates non-spontaneous reactions. These findings provide valuable insights for designing environmentally friendly gas generators, highlighting MoO3’s potential as an effective catalyst. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

13 pages, 1074 KiB  
Article
Stage-Specific Effects of TiO2, ZnO, and CuO Nanoparticles on Green Microalga Haematococcus lacustris: Biomass and Astaxanthin Biosynthesis
by Ludmila Rudi, Tatiana Chiriac, Liliana Cepoi, Svetlana Djur and Ana Valuta
Mar. Drugs 2025, 23(5), 204; https://doi.org/10.3390/md23050204 - 11 May 2025
Viewed by 628
Abstract
Evaluating the effects of nanoparticles on biomass growth and astaxanthin accumulation in Haematococcus lacustris is crucial for optimizing the production of astaxanthin, a valuable carotenoid with numerous industrial applications. Identifying the life stages at which these nanoparticles exert stimulatory or toxic effects will [...] Read more.
Evaluating the effects of nanoparticles on biomass growth and astaxanthin accumulation in Haematococcus lacustris is crucial for optimizing the production of astaxanthin, a valuable carotenoid with numerous industrial applications. Identifying the life stages at which these nanoparticles exert stimulatory or toxic effects will aid in formulating effective production strategies. This study investigated the effects of titanium dioxide (TiO2), zinc oxide (ZnO), and copper oxide (CuO) nanoparticles on biomass growth, astaxanthin biosynthesis, and lipid accumulation in Haematococcus lacustris, with a focus on their stage-specific impact throughout the algal life cycle. The nanoparticles were added at the start of cultivation, and the microalgal cultures developed continuously in their presence. Sampling for biochemical analyses was performed at distinct life stages (green motile, palmella, and aplanospore), enabling the assessment of stage-dependent responses. TiO2NPs significantly stimulated biomass accumulation during the green motile stage. In the palmella stage, astaxanthin levels decreased in the presence of all nanoparticles, likely due to the absence of a stress signal required to activate pigment biosynthesis, despite ongoing biomass growth. In contrast, the aplanospore stage exhibited reactivation of astaxanthin biosynthesis and increased lipid accumulation, particularly under TiO2NPs. Astaxanthin content increased by 21.57%. This study highlights that TiO2, ZnO, and CuO nanoparticles modulate growth and astaxanthin biosynthesis in Haematococcus lacustris in a life cycle-dependent manner. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products, 2nd Edition)
Show Figures

Graphical abstract

12 pages, 6390 KiB  
Article
Exploring How Dopants Strengthen Metal-Ni/Ceramic-Al2O3 Interface Structures at the Atomic and Electronic Levels
by Fengqiao Sun, Xiaofeng Zhang, Long Li, Qicheng Chen, Dehao Kong, Haifeng Yang and Renwei Li
Molecules 2025, 30(9), 1990; https://doi.org/10.3390/molecules30091990 - 29 Apr 2025
Viewed by 415
Abstract
The metal-based/ceramic interface structure is a key research focus in science, and addressing the stability of the interface has significant scientific importance as well as economic value. In this project, the work of adhesion, heat of segregation, electronic structure, charge density, and density [...] Read more.
The metal-based/ceramic interface structure is a key research focus in science, and addressing the stability of the interface has significant scientific importance as well as economic value. In this project, the work of adhesion, heat of segregation, electronic structure, charge density, and density of states for doped-M (M = Ti, Mg, Cu, Zn, Si, Mn, or Al) Ni (111)/Al2O3 (0001) interface structures are studied using first-principle calculation methods. The calculation results demonstrate that doping Ti and Mg can increase the bonding strength of the Ni–Al2O3 interface by factors of 3.4 and 1.5, respectively. However, other dopants, such as Si, Mn, and Al, have a negative effect on the bonding of the Ni–Al2O3 interface. As a result, the alloying elements may be beneficial to the bonding of the Ni–Al2O3 interface, but they may also play an opposite role. Moreover, the Ti and Mg dopants segregate from the matrix and move to the middle position of the Ni–Al2O3 interface during relaxation, while other dopants exhibit a slight segregation and solid solution in the matrix. Most remarkably, the segregation behavior of Ti and Mg induced electron transfer to the middle of the interface, thereby increasing the charge density of the Ni–Al2O3 interface. For the optimal doped-Ti Ni–Al2O3 interface, bonds of Ti–O and Ti–Ni are found, which indicates that the dopant Ti generates stable compounds in the interface region, acting as a stabilizer for the interface. Consequently, selecting Ti as an additive in the fabrication of metal-based ceramic Ni–Al2O3 composites will contribute to prolonging the service lifetime of the composite. Full article
Show Figures

Graphical abstract

28 pages, 6012 KiB  
Review
Semiconductor-Based Photoelectrocatalysts in Water Splitting: From the Basics to Mechanistic Insights—A Brief Review
by W. J. Pech-Rodríguez, Nihat Ege Şahin, G. G. Suarez-Velázquez and P. C. Meléndez-González
Materials 2025, 18(9), 1952; https://doi.org/10.3390/ma18091952 - 25 Apr 2025
Cited by 1 | Viewed by 1303
Abstract
Hydrogen and oxygen serve as energy carriers that can ease the transition of energy due to their high energy densities. Nonetheless, their production processes entail the development of efficient and low-cost storage and conversion technologies. In this regard, photoelectrocatalysts are materials based on [...] Read more.
Hydrogen and oxygen serve as energy carriers that can ease the transition of energy due to their high energy densities. Nonetheless, their production processes entail the development of efficient and low-cost storage and conversion technologies. In this regard, photoelectrocatalysts are materials based on the photoelectronic effect where electrons and holes interact with H2O, producing H2 and O2, and in some cases, this is achieved with acceptable efficiency. Although there are several reviews on this topic, most of them focus on traditional semiconductors, such as TiO2 and ZnO, neglecting others, such as those based on non-noble metals and organic ones. Herein, semiconductors like CdSe, NiWO4, Fe2O3, and others have been investigated and compared in terms of photocurrent density, band gap, and charge transfer resistance. In addition, this brief review aims to discuss the mechanisms of overall water-splitting reactions from a photonic point of view and subsequently discusses the engineering of material synthesis. Advanced composites are also addressed, such as WO3/BiVO4/Cu2O and CN-FeNiOOH-CoOOH, which demonstrate high efficiency by delivering photocurrent densities of 5 mAcm−2 and 3.5 mA cm−2 at 1.23 vs. RHE, respectively. Finally, the authors offer their perspectives and list the main challenges based on their experience in developing semiconductor-based materials applied in several fields. In this manner, this brief review provides the main advances in these topics, used as references for new directions in designing active materials for photoelectrocatalytic water splitting. Full article
Show Figures

Figure 1

17 pages, 30807 KiB  
Article
Synthesis of High-Entropy Oxide Nanopowders with Different Crystal Structures by Electrical Explosion of Wires
by Shuai Liu, Kangqi Liu, Liangwen Qi and Lanjun Yang
Nanomaterials 2025, 15(8), 571; https://doi.org/10.3390/nano15080571 - 8 Apr 2025
Cited by 1 | Viewed by 836
Abstract
High-entropy oxides are a new type of material that consists of five or more principal elements in an equimolar or nearly equimolar ratio. They have many excellent properties and are rapidly becoming a hotspot for the development of new high-performance materials. In this [...] Read more.
High-entropy oxides are a new type of material that consists of five or more principal elements in an equimolar or nearly equimolar ratio. They have many excellent properties and are rapidly becoming a hotspot for the development of new high-performance materials. In this study, electrical explosion is used for the first time to synthesize high-entropy oxide nanopowders with different crystal structures. (FeCoNiCrCu)O is the rock salt structure, (FeCoNiCrTi)O is the spinel structure, and (CoNiTiCuZn)O contains the two phases. According to the TEM and EDS results, the distribution of the five metal elements in the electrical explosion products is comparatively homogeneous, and the particle size of the products is concentrated in 20–40 nm. Elements such as Ti are prone to the formation of spinel structure, and the element Cu is prone to the formation of rock salt structure. The study shows that the electrical explosion of wires is a new method for the synthesis of high-entropy oxide nanopowders. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

28 pages, 2617 KiB  
Review
Molecularly Imprinted Polymers for Pollutant Capture and Degradation: A Snapshot Review
by Lázaro Adrián González-Fernández, Boris Mizaikoff, Nahum Andrés Medellín-Castillo, Javier Ernesto Vilasó-Cadre, Iván A. Reyes-Domínguez, Lorena Díaz de León-Martínez, Amelie Huber and Manuel Sánchez-Polo
Processes 2025, 13(4), 1086; https://doi.org/10.3390/pr13041086 - 4 Apr 2025
Cited by 1 | Viewed by 1485
Abstract
Molecularly imprinted polymers (MIPs) are emerging as efficient materials for environmental remediation due to their dual functionality in selective pollutant adsorption and catalytic degradation. This review examines recent advances in MIP-based technologies, focusing on their role in photocatalysis and advanced oxidation processes. Experimental [...] Read more.
Molecularly imprinted polymers (MIPs) are emerging as efficient materials for environmental remediation due to their dual functionality in selective pollutant adsorption and catalytic degradation. This review examines recent advances in MIP-based technologies, focusing on their role in photocatalysis and advanced oxidation processes. Experimental findings highlight impressive degradation efficiencies, such as 95.8% methylene blue degradation using ZnO/CuFe2O4 MIPs and a 60% improvement in refractory organic degradation with TiO2-MIPs. Adsorption studies show high uptake capacities, including 273.65 mg/g for ciprofloxacin with MOF-supported MIPs and 2350.52 µg/g for rhodamine B using magnetic MIPs. Despite these advancements, several challenges remain, including issues with long-term stability, scalability, and economic feasibility. Future research should prioritize optimizing polymer synthesis, integrating MIPs with high-surface-area matrices like MOFs and COFs and enhancing recyclability to ensure sustained performance. MIPs hold significant potential for large-scale water treatment and pollution control, provided their stability and efficiency are further improved. Full article
Show Figures

Figure 1

20 pages, 5035 KiB  
Article
Study of Application of an Active Ultrasound by Use of Zn-Al-Mg-Ti-Based Solder on Selected Substrates
by Roman Koleňák, Tomáš Meluš, Jaromír Drapala, Peter Gogola and Matej Pašák
Materials 2025, 18(5), 1094; https://doi.org/10.3390/ma18051094 - 28 Feb 2025
Viewed by 557
Abstract
This study investigates the potential application of Zn5Al1.5Mg1.5Ti active solder in ultrasonic soldering of Al2O3 ceramics and Cu substrates. The research explores the microstructural characteristics, phase composition, and mechanical properties of the solder and the resulting joints. Particular attention is [...] Read more.
This study investigates the potential application of Zn5Al1.5Mg1.5Ti active solder in ultrasonic soldering of Al2O3 ceramics and Cu substrates. The research explores the microstructural characteristics, phase composition, and mechanical properties of the solder and the resulting joints. Particular attention is given to the formation mechanisms of the solder–substrate bond and the role of ultrasound activation in enhancing wettability and bond strength. The study aimed to provide a deeper understanding of active soldering processes and their suitability for high-temperature applications. The findings contribute to advancing lead-free soldering technologies for electronic and structural applications. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys (3rd Edition))
Show Figures

Figure 1

27 pages, 14359 KiB  
Article
Paleoenvironments and Paleoclimate Reconstructions of the Middle–Upper Eocene Rocks in the North–West Fayum Area (Western Desert, Egypt): Insights from Geochemical Data
by Mostafa M. Sayed, Petra Heinz, Ibrahim M. Abd El-Gaied, Susanne Gier, Ramadan M. El-Kahawy, Dina M. Sayed, Yasser F. Salama, Bassam A. Abuamarah and Michael Wagreich
Minerals 2025, 15(3), 227; https://doi.org/10.3390/min15030227 - 25 Feb 2025
Cited by 2 | Viewed by 1207
Abstract
This study deals with the reconstruction of the paleoenvironment and the paleoclimate situation of the middle–upper Eocene sediments in the northwest Fayum area. The reconstruction is based on comprehensive stratigraphical and geochemical analyses of major oxides and trace elements for selected sediment samples [...] Read more.
This study deals with the reconstruction of the paleoenvironment and the paleoclimate situation of the middle–upper Eocene sediments in the northwest Fayum area. The reconstruction is based on comprehensive stratigraphical and geochemical analyses of major oxides and trace elements for selected sediment samples from the Gehannam Formation (Bartonian–Priabonian), the Birket Qarun and the Qasr El Sagha formations (Priabonian). The sedimentological features coupled with paleo-redox trace elemental ratios (Ni/Co, V/Cr, U/Th, V/(V + Ni), and Cu/Zn), paleosalinity (Sr/Ba, Mg/Al ×100, Ca/Al), and paleowater depth (Fe/Mn) proxies, indicate that deposition took place in a shallow marine agitated environment with high oxygen levels. Paleoclimate indicators (Sr/Cu, Rb/Sr, K2O3/Al2O3, Ga/Rb, C-value, CIA, and CIW) suggest warm and prevailing arid climatic conditions, with minor humid periods at some intervals. The observed low values of the total organic carbon (TOC) are attributed to significant high sediment influx, predominant oxygenated conditions, and poor primary productivity, which is further confirmed by low values of paleoprimary productivity proxies (P, Ni/Al, Cu/Al, P/Al and P/Ti, and Babio ratios). These findings enhance our understanding of the Eocene environments and provide insights into sedimentation processes during this period. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

17 pages, 1955 KiB  
Article
Tattoo Ink Metal Nanoparticles: Assessment of Toxicity In Vitro and with a Novel Human Ex Vivo Model
by Beatrice Battistini, Daniela Lulli, Beatrice Bocca, Maria Luigia Carbone, Carmela Ramondino, Stefano Caimi, Alessio Capone, Ezio Maria Nicodemi, Elena Dellambra, Isabella De Angelis and Cristina Maria Failla
Nanomaterials 2025, 15(4), 270; https://doi.org/10.3390/nano15040270 - 11 Feb 2025
Cited by 1 | Viewed by 1697
Abstract
Tattoo inks contain varying amounts of metal nanoparticles (NPs) < 100 nm that, due to their unique physicochemical properties, may have specific biological uptake and cause skin or systemic toxicities. The toxic effects of certified reference standards of metal NPs and samples of [...] Read more.
Tattoo inks contain varying amounts of metal nanoparticles (NPs) < 100 nm that, due to their unique physicochemical properties, may have specific biological uptake and cause skin or systemic toxicities. The toxic effects of certified reference standards of metal NPs and samples of commercially available tattoo inks were investigated using an in vitro system and a novel human ex vivo model. In vitro toxicity was evaluated using vitality assays on human skin cells (HaCaT cell line, primary fibroblasts, and keratinocytes). No toxicity was observed for Al2O3, Cr2O3, Fe2O3, and TiO2 NPs, whereas CuO NPs showed dose-dependent toxicity on HaCaT and primary fibroblasts. Fibroblasts and keratinocytes were also sensitive to high concentrations of ZnO NPs. Reference standards and ink samples were then injected ex vivo into human skin explants using tattoo needles. Histological analysis showed pigment distribution deep in the dermis and close to dermal vessels, suggesting possible systemic diffusion. The presence of an inflammatory infiltrate was also observed. Immunohistochemical analysis showed increased apoptosis and expression of the inflammatory cytokine interleukin-8 in explants specifically tattooed with the reference standard or red ink. Taken together, the results suggest that the tattooing technique leads to exposure to toxic metal NPs and skin damage. Full article
(This article belongs to the Special Issue Nanosafety and Nanotoxicology: Current Opportunities and Challenges)
Show Figures

Figure 1

Back to TopTop