Preparation and Properties of Flexible Multilayered Transparent Conductive Films on Substrate with High Surface Roughness
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of the Surface Morphology for the Substrate and Sublayers in the TCFs
3.2. Crystalline Phase Analysis of the Multilayered Film
3.3. The Optical Transmittance of Multilayered TCFs
3.4. The Sheet Resistance of Multilayered TCFs
3.5. Figure of Merit of the TCFs
4. Discussion
4.1. The Optical Transmittance Comparison of the Simulation and Experimental Test
4.2. The Compatibility Between the Substrate and Sublayers of the Multilayered TCF
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rabizadeh, M.; Ehsani, M.H. Effect of heat treatment on optical, electrical and thermal properties of ZnO/Cu/ZnO thin films for energy-saving application. Ceram. Int. 2022, 48, 16108–16113. [Google Scholar] [CrossRef]
- Wu, J.; Qian, X.; Liu, C.; Ji, Y.; Yu, S. Design and realization of neutral-tinted low-E film. Vacuum 2022, 203, 111228. [Google Scholar] [CrossRef]
- WanBing, L.; ShuGang, J.; Pei, W.; Wei, Y.; XiaoYu, L.; LiPing, W.; WenGe, D.; GuangSheng, F. Recent progress of multilayer composite transparent conductive film. Chin. Sci. Bull. 2017, 62, 372–384. [Google Scholar] [CrossRef]
- Girtan, M.; Negulescu, B. A review on oxide/metal/oxide thin films on flexible substrates as electrodes for organic and perovskite solar cells. Opt. Mater. X 2022, 13, 100122. [Google Scholar] [CrossRef]
- Guillén, C.; Herrero, J. TCO/metal/TCO structures for energy and flexible electronics. Thin Solid Films 2011, 520, 1–17. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, N.; Wang, L.; Li, Y.; Yan, Y.; Li, X.; Xie, A.; Sun, D.; Han, J. Atomic Layer-deposited flexible ZnO transparent electrodes with Zn-Al-O interface for electrochromic devices. Ceram. Int. 2025, 51, 13018–13027. [Google Scholar] [CrossRef]
- Gerlein, L.F.; Benavides-Guerrero, J.A.; Cloutier, S.G. Photonic post-processing of a multi-material transparent conductive electrode architecture for optoelectronic device integration. RSC Adv. 2024, 14, 4748–4758. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.-H.; Lee, C.-C.; Shih, C.-J.; Kumar, G.; Biring, S.; Liu, S.-W. Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes. Org. Electron. 2018, 59, 266–271. [Google Scholar] [CrossRef]
- Shugang, J.; Yue, W.; Haixu, L.; Wanbing, L.; Wei, Y. Research Progress of Flexible Organic/Inorganic Hybrid Perovskite Solar Cells. Chin. J. Lumin. 2018, 39, 1687–1696. [Google Scholar]
- Zhang, J.; Zhang, W.; Cheng, H.-M.; Silva, S.R.P. Critical review of recent progress of flexible perovskite solar cells. Mater. Today 2020, 39, 66–88. [Google Scholar] [CrossRef]
- Lee, S.-M.; Koo, H.-W.; Kim, T.-W.; Kim, H.-K. Asymmetric ITO/Ag/ZTO and ZTO/Ag/ITO anodes prepared by roll-to-roll sputtering for flexible organic light-emitting diodes. Surf. Coat. Technol. 2018, 343, 115–120. [Google Scholar] [CrossRef]
- Jin, J.; Liu, C.; Yang, Z.-J.; Wang, L. The influence of AZO films on morphology and surface plasmon resonance properties of Ag particles. Surf. Coat. Technol. 2019, 363, 135–141. [Google Scholar] [CrossRef]
- Lee, K.-C.; Lin, S.-J.; Lin, C.-H.; Tsai, C.-S.; Lu, Y.-J. Size effect of Ag nanoparticles on surface plasmon resonance. Surf. Coat. Technol. 2008, 202, 5339–5342. [Google Scholar] [CrossRef]
- Maniyara, R.A.; Rodrigo, D.; Yu, R.; Canet-Ferrer, J.; Ghosh, D.S.; Yongsunthon, R.; Baker, D.E.; Rezikyan, A.; García de Abajo, F.J.; Pruneri, V. Tunable plasmons in ultrathin metal films. Nat. Photonics 2019, 13, 328–333. [Google Scholar] [CrossRef]
- Li, B.-J.; Yang, G.-Y.; Huang, L.-J.; Wang, T.-Y.; Ren, N.-F. Effects of BN layer on photoelectric properties and stability of flexible Al/Cu/ZnO multilayer thin film. Ceram. Int. 2020, 46 Pt A, 14686–14696. [Google Scholar] [CrossRef]
- Han, Y.C.; Lim, M.S.; Park, J.H.; Choi, K.C. ITO-free flexible organic light-emitting diode using ZnS/Ag/MoO3 anode incorporating a quasi-perfect Ag thin film. Org. Electron. 2013, 14, 3437–3443. [Google Scholar] [CrossRef]
- Cho, H.; Yun, C.; Park, J.-W.; Yoo, S. Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes. Org. Electron. 2009, 10, 1163–1169. [Google Scholar] [CrossRef]
- Uchihara, D.; Riki, T. Transparent Electroconductive Film and Manufacturing Method Therefor. Chinese Patent CN103282539A, 4 September 2013. [Google Scholar]
- Chen, Z.; Huang, J.; Chen, Z.; Hu, Y.; Li, H.; Zhang, R.; Tang, K.; Wang, L. Influence of Cu Thickness and Annealing on the Properties of ZnS/Cu/ZnS Multilayer Films. J. Electron. Mater. 2020, 49, 4498–4503. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Han, Y.C.; Kim, H.C.; Jeong, E.G.; Choi, K.C. Highly Transparent and Flexible Organic Light-Emitting Diodes with Structure Optimized for Anode/Cathode Multilayer Electrodes. Adv. Funct. Mater. 2015, 25, 7145–7153. [Google Scholar] [CrossRef]
- Huang, L.-J.; Zhang, G.-M.; Zhang, Y.; Li, B.-J.; Ren, N.-F.; Zhao, L.; Wang, Y.-L. Preparation and Photoelectric Properties of Patterned Ag Nanoparticles on FTO/Glass Substrate by Laser Etching and Driving Layer Strategy. Acta Metall. Sin. (Engl. Lett.) 2021, 34, 973–985. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Zhao, L.; Nie, L.; Liu, J. Preparation of Ag-based transparent conductive films with high figure-of-merit from dielectric layers’ combination. Opt. Quantum Electron. 2024, 57, 40. [Google Scholar] [CrossRef]
- Yun, J. Ultrathin Metal films for Transparent Electrodes of Flexible Optoelectronic Devices. Adv. Funct. Mater. 2017, 27, 1606641. [Google Scholar] [CrossRef]
- Mouchaal, Y.; Louarn, G.; Khelil, A.; Morsli, M.; Stephant, N.; Bou, A.; Abachi, T.; Cattin, L.; Makha, M.; Torchio, P.; et al. Broadening of the transmission range of dielectric/metal multilayer structures by using different metals. Vacuum 2015, 111, 32–41. [Google Scholar] [CrossRef]
- Guan, M.; Wang, L.; Zhang, Y.; Wang, D.; Wang, Q.; Liu, J. Effect of metal seed layer on the critical thickness and photoelectric properties of ultrathin Ag films. Mater. Today Commun. 2023, 37, 107540. [Google Scholar] [CrossRef]
- Meiss, J.; Riede, M.K.; Leo, K. Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes. Appl. Phys. Lett. 2009, 94, 013303. [Google Scholar] [CrossRef]
- Formica, N.; Ghosh, D.S.; Carrilero, A.; Chen, T.L.; Simpson, R.E.; Pruneri, V. Ultrastable and atomically smooth ultrathin silver films grown on a copper seed layer. ACS Appl. Mater. Interfaces 2013, 5, 3048–3053. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Qian, R.; Wang, G.; Chen, N.; Xu, S.; Hu, S.; Zhu, W.; Luo, G. High performances multilayer transparent conductive films with manipulated Ag growth and layer thickness. J. Mater. Sci. Mater. Electron. 2023, 34, 795. [Google Scholar] [CrossRef]
- Jian, L.; Yu, Z.; Wei, X.; Zhang, T.; Jiang, Y.; Zhang, J.; Zhang, D. Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition. J. Appl. Phys. 2010, 108, 073709. [Google Scholar]
- Zhu, M.-Q.; Jin, H.-D.; Bi, P.-Q.; Zong, F.-J.; Ma, J.; Hao, X.-T. Performance improvement of TiO2/Ag/TiO2 multilayer transparent conducting electrode films for application on photodetectors. J. Phys. D Appl. Phys. 2016, 49, 115108. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, D.-H.; Kim, S.-K.; Bae, D.; Yoo, Y.-Z.; Seong, T.-Y. Control of refractive index by annealing to achieve high figure of merit for TiO2/Ag/TiO2 multilayer films. Ceram. Int. 2016, 42, 14071–14076. [Google Scholar] [CrossRef]
- Dhar, A.; Alford, T.L. High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering. APL Mater. 2013, 1, 12102. [Google Scholar] [CrossRef]
- Ren, N.-F.; Wang, W.-Z.; Li, B.-J.; Huang, L.-J.; Zhang, Y. Preparation and property optimization of silver-embedded FTO transparent conductive thin films by laser etching and coating AZO layer. J. Mater. Sci. Mater. Electron. 2021, 32, 10644–10661. [Google Scholar] [CrossRef]
- Haacke, G. New figure of merit for transparent conductors. J. Appl. Phys. 1976, 47, 4086–4089. [Google Scholar] [CrossRef]
- Jiang, S.; Feng, L.; Zhang, W.; Liu, H.; Liu, H.; Liu, Y.; Li, B.; Wu, L.; Liu, X.; Wang, X.; et al. Indium-free flexible perovskite solar cells with AZO/Cu/Ag/AZO multilayer transparent electrodes. Sol. Energy Mater. Sol. Cells 2022, 246, 111895. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Zhang, X.; Qiu, J.; Zhao, J.; Li, X.; Liu, L. Complex refractive indices measurements of polymers in infrared bands. J. Quant. Spectrosc. Radiat. Transf. 2020, 252, 107063. [Google Scholar] [CrossRef]
- Kamptner, A.; Scharber, M.C.; Schiek, M. Accurate Determination of the Uniaxial Complex Refractive Index and the Optical Band Gap of Polymer Thin Films to Correlate their Absorption Strength and Onset of Absorption. ChemPhysChem 2024, 25, e202400233. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cai, X.; Qiao, J.; Mao, J.; Jiang, N. The design of ZnS/Ag/ZnS transparent conductive multilayer films. Thin Solid Films 2003, 441, 200–206. [Google Scholar] [CrossRef]
TCF | (Ω/sq) | (%) | (%) | (10−3 Ω−1) | (10−3 Ω−1) |
---|---|---|---|---|---|
TiO230 Cu0.25 Ag9.5 TiO230 | 7.35 | 86.43 | 83.12 | 31.64 | 21.42 |
TiO235 Cu0.25 Ag9.5 TiO235 | 8.58 | 86.00 | 84.65 | 25.79 | 22.02 |
TiO240 Cu0.25 Ag9.5 TiO240 | 9.10 | 88.18 | 85.11 | 31.23 | 21.91 |
TiO245 Cu0.25 Ag9.5 TiO245 | 8.64 | 89.29 | 82.88 | 37.30 | 17.70 |
ZnS40 Cu0.25 Ag8 ZnS40 | 11.42 | 81.54 | 79.98 | 11.37 | 9.37 |
ZnS40 Ag9.5 ZnS40 | 9.15 | 85.08 | 82.54 | 21.71 | 16.04 |
ZnS40 Cu0.25 Ag9.5 ZnS40 | 9.35 | 83.39 | 83.22 | 17.39 | 17.05 |
ZnS40 Cu0.25 Ag11 ZnS40 | 6.98 | 79.89 | 76.47 | 15.18 | 9.79 |
ZnS41 Cu0.25 Ag9.5 TiO231 | 6.25 | 91.11 | 85.12 | 63.03 | 31.93 |
ZnS41 Cu0.25 Ag9.5 TiO238 | 5.52 | 89.54 | 84.40 | 59.97 | 33.19 |
ZnS41 Cu0.25 Ag9.5 TiO245 | 8.13 | 86.10 | 83.15 | 27.52 | 19.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Tao, K.; Lu, J.; Xu, S.; Sun, Y.; Chen, Y.; Liu, Z. Preparation and Properties of Flexible Multilayered Transparent Conductive Films on Substrate with High Surface Roughness. Materials 2025, 18, 3389. https://doi.org/10.3390/ma18143389
Li M, Tao K, Lu J, Xu S, Sun Y, Chen Y, Liu Z. Preparation and Properties of Flexible Multilayered Transparent Conductive Films on Substrate with High Surface Roughness. Materials. 2025; 18(14):3389. https://doi.org/10.3390/ma18143389
Chicago/Turabian StyleLi, Mengfan, Kai Tao, Jinghan Lu, Shenyue Xu, Yuanyuan Sun, Yaman Chen, and Zhiyong Liu. 2025. "Preparation and Properties of Flexible Multilayered Transparent Conductive Films on Substrate with High Surface Roughness" Materials 18, no. 14: 3389. https://doi.org/10.3390/ma18143389
APA StyleLi, M., Tao, K., Lu, J., Xu, S., Sun, Y., Chen, Y., & Liu, Z. (2025). Preparation and Properties of Flexible Multilayered Transparent Conductive Films on Substrate with High Surface Roughness. Materials, 18(14), 3389. https://doi.org/10.3390/ma18143389