Electrocoagulation Coupled with TiO2 Photocatalysis: An Advanced Strategy for Treating Leachates from the Degradation of Green Waste and Domestic WWTP Biosolids in Biocells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Methods for Biocell Leachate Characterization
2.2. Implementation of Biocells for Green Waste and Biosolid Degradation
2.3. Biocell Leachate Pre-Treatment Using Electrocoagulation
2.4. Optimization of Photocatalytic Treatment for Electrocoagulation Pre-Treated Leachate
2.5. Photocatalytic Treatment Using Sand-Immobilized TiO2
2.6. Scanning Electron Microscopy (SEM) and Elemental Surface Analysis (EDS) of TiO2-Coated Sand
3. Results and Discussion
3.1. Biocell Leachate Characterization
3.2. Biocell Leachate Decontamination Using Electrocoagulation
3.3. Optimization of Photocatalytic Decontamination for Electrocoagulation Pre-Treated Leachate
3.4. Continuous Photocatalytic Treatment Using Immobilized TiO2
3.5. Surface Characterization of TiO2-Coated Sand by Scanning Electron Microscopy and EDS Mapping
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WWTP | Wastewater treatment plant |
EC | Electrocoagulation |
UVC | Ultraviolet C |
COD | Chemical oxygen demand |
BOD | Biochemical oxygen demand |
POPs | Persistent organic pollutants |
PC | Photocatalysis |
SM | Standard Methods |
APHA | American Public Health Association |
TULSMA | Unified Text of Secondary Environmental Legislation (Ecuador) |
SEM | Scanning electron microscopy |
EDS | Energy-dispersive X-ray spectroscopy |
BSD | Backscattered Electron Detector |
TN | Total nitrogen |
ANOVA | Analysis of Variance |
%R | Percent Removal |
References
- Das, R.; Raj, D. Sources, distribution, and impacts of emerging contaminants—A critical review on contamination of landfill leachate. J. Hazard. Mater. Adv. 2025, 17, 100602. [Google Scholar] [CrossRef]
- Mor, S.; Ravindra, K.; Dahiya, R.P.; Chandra, A. Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ. Monit. Assess. 2006, 118, 435–456. [Google Scholar] [CrossRef]
- Ministerio del Ambiente y Agua del Ecuador. Manual de Aprovechamiento de Residuos Orgánicos Municipales. Quito; 2020. Available online: https://www.ambiente.gob.ec/wp-content/uploads/downloads/2020/07/MANUAL-DE-APROVECHAMIENTO-DE-RESIDUOS-ORGANICOS-MUNICIPAL.pdf (accessed on 3 February 2025).
- EPA. Bioreactor Landfills. 2023. Available online: https://www.epa.gov/landfills/bioreactor-landfills (accessed on 3 February 2025).
- Hettiaratchi, J.P.A. Landfill Bioreactors. In Encyclopedia of Sustainability Science and Technology; Springer: New York, NY, USA, 2012; pp. 5720–5732. [Google Scholar]
- Baun, A.; Ledin, A.; Reitzel, L.A.; Bjerg, P.L.; Christensen, T.H. Xenobiotic organic compounds in leachates from ten Danish MSW landfills—Chemical analysis and toxicity tests. Water Res. 2004, 38, 3845–3858. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and long-term composition of MSW landfill leachate: A review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336. [Google Scholar] [CrossRef]
- Jamrah, A.; AL-Zghoul, T.M.; Al-Qodah, Z. An Extensive Analysis of Combined Processes for Landfill Leachate Treatment. Water 2024, 16, 1640. [Google Scholar] [CrossRef]
- Mollah, Y.M.; Schennach, R.; Parga, J.R.; Cocke, D.L. Electrocoagulation (EC)-science and applications. J. Hazard. Mater. 2001, 84, 29–41. [Google Scholar] [CrossRef]
- Zailani, L.W.M.; Zin, N.S.M. Application of Electrocoagulation in Various Wastewater and Leachate Treatment-A Review. In IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bristol, UK, 2018. [Google Scholar]
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous photocatalysis: Recent advances and applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef]
- Li, X.; Wei, H.; Song, T.; Lu, H.; Wang, X. A review of the photocatalytic degradation of organic pollutants in water by modified TiO2. Water Sci. Technol. 2023, 88, 1495–1507. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X. Titanium dioxide photocatalysis: Present situation and future approaches. Comptes Rendus Chim. 2006, 9, 750–760. [Google Scholar] [CrossRef]
- Yarbay, R.Z.; Şimşek, V.; Bogdan, L.; Tomašić, V. Photocatalytic Degradation of Neonicotinoids—A Comparative Study of the Efficacy of Hybrid Photocatalysts. Processes 2024, 12, 489. [Google Scholar] [CrossRef]
- Anucha, C.B.; Bacaksiz, E.; Stathopoulos, V.N.; Pandis, P.K.; Argirusis, C.; Andreouli, C.D.; Tatoudi, Z.; Altin, I. Molybdenum Modified Sol–Gel Synthesized TiO2 for the Photocatalytic Degradation of Carbamazepine under UV Irradiation. Processes 2022, 10, 1113. [Google Scholar] [CrossRef]
- Ates, H.; Dizge, N.; Yatmaz, H.C. Combined process of electrocoagulation and photocatalytic degradation for the treatment of olive washing wastewater. Water Sci. Technol. 2017, 75, 141–154. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Ministerio del Ambiente del Ecuador. Texto Unificado de Legislación Secundaria del Ministerio del Ambiente: Libro VI, Anexo 1—Norma de Calidad Ambiental y de Descarga de Efluentes al Recurso Agua. Registro Oficial Suplemento 387. 2015. Available online: https://www.gob.ec/sites/default/files/regulations/2018-09/Documento_Registro-Oficial-No-387-04-noviembre-2015_0.pdf (accessed on 9 February 2025).
- Hettiaratchi, J.P.A.; Jayasinghe, P.A.; Bartholameuz, E.M.; Kumar, S. Waste degradation and gas production with enzymatic enhancement in anaerobic and aerobic landfill bioreactors. Bioresour. Technol. 2014, 159, 433–436. [Google Scholar] [CrossRef]
- Luo, H.; Zeng, Y.; Cheng, Y.; He, D.; Pan, X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Sci. Total Environ. 2020, 703, 135468. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qiao, Z. A comprehensive review of landfill leachate treatment technologies. Front. Environ. Sci. 2024, 12, 1439128. [Google Scholar] [CrossRef]
- Lacerda, J.A.; Macedo, A.M.; Teixeira, R.I.; Simões, G.; Ribeiro, E.S.; Forero, J.S.; Corrêa, R.J. TiO2 Decorated Sand Grains for Photodegradation of Pollutants: Methylene Blue and Ciprofloxacin Study. J. Braz. Chem. Soc. 2020, 31, 201–210. [Google Scholar] [CrossRef]
- Sulaiman, F.; Alwared, A. Ability of Response Surface Methodology to Optimize Photocatalytic Degradation of Amoxicillin from Aqueous Solutions Using Immobilized TiO2/Sand. J. Ecol. Eng. 2022, 23, 293–304. [Google Scholar] [CrossRef]
- Sancha, M. Caracterización y Tratamiento de Lixiviados Generados en Vertederos de Residuos Urbanos. Available online: http://www.unioviedo.es/MBTA (accessed on 9 February 2025).
- Del Moro, G.; Mancini, A.; Mascolo, G.; Di Iaconi, C. Comparison of UV/H2O2 based AOP as an end treatment or integrated with biological degradation for treating landfill leachates. Chem. Eng. J. 2013, 218, 133–137. [Google Scholar] [CrossRef]
- Manahan, S.E. Environmental Chemistry, 11th ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Ali, Z.; Yousafzai, A.M.; Sher, N.; Muhammad, I.; Nayab, G.E.; Aqeel, S.A.M.; Shah, S.T.; Aschner, M.; Khan, I.; Khan, H. Toxicity and bioaccumulation of manganese and chromium in different organs of common carp (Cyprinus carpio) fish. Toxicol. Rep. 2021, 8, 343–348. [Google Scholar] [CrossRef]
- Ingelsson, M.; Yasri, N.; Roberts, E.P.L. Electrode passivation, faradaic efficiency, and performance enhancement strategies in electrocoagulation—A review. Water Res. 2020, 187, 116433. [Google Scholar] [CrossRef] [PubMed]
- Jallouli, S.; Wali, A.; Buonerba, A.; Zarra, T.; Belgiorno, V.; Naddeo, V.; Ksibi, M. Efficient and sustainable treatment of tannery wastewater by a sequential electrocoagulation-UV photolytic process. J. Water Process Eng. 2020, 38, 101642. [Google Scholar] [CrossRef]
- Mollah, M.Y.A.; Morkovsky, P.; Gomes, J.A.G.; Kesmez, M.; Parga, J.; Cocke, D.L. Fundamentals, present and future perspectives of electrocoagulation. J. Hazard. Mater. 2004, 114, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Rookesh, T.; Samaei, M.R.; Yousefinejad, S.; Hashemi, H.; Derakhshan, Z.; Abbasi, F.; Jalili, M.; Giannakis, S.; Bilal, M. Investigating the Electrocoagulation Treatment of Landfill Leachate by Iron/Graphite Electrodes: Process Parameters and Efficacy Assessment. Water 2022, 14, 205. [Google Scholar] [CrossRef]
- Khan, S.U.; Khalid, M.; Hashim, K.; Jamadi, M.H.; Mousazadeh, M.; Basheer, F.; Farooqi, I.H. Efficacy of Electrocoagulation Treatment for the Abatement of Heavy Metals: An Overview of Critical Processing Factors, Kinetic Models and Cost Analysis. Sustainability 2023, 15, 1708. [Google Scholar] [CrossRef]
- Valencia, S.H.; Marín, J.M.; Restrepo, G.M. Efecto del pH en la Degradación Fotocatalítica de Materia Orgánica Natural. Inf. Tecnol. 2011, 22, 57–66. [Google Scholar] [CrossRef]
- Harun, N.; Sheng, C.K.; Sabri, M.G.M.; Dagang, A.N.; Salleh, H. Impact of TiO2 and H2O2 on Photocatalytic Degradation of Rhodamine B under Ultraviolet C (UV-C) Radiation for Efficient Polluted Wastewater Treatment. J. Optoelectron. Biomed. Mater. 2020, 12, 9–15. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, T.G.; Hwangbo, S.A.; Jeong, J.R. Effect of the TiO2 Colloidal Size Distribution on the Degradation of Methylene Blue. Nanomaterials 2023, 13, 302. [Google Scholar] [CrossRef]
- Poulopoulos, S.G.; Yerkinova, A.; Ulykbanova, G.; Inglezakis, V.J. Photocatalytic treatment of organic pollutants in a synthetic wastewater using UV light and combinations of TiO2, H2O2 and Fe(III). PLoS ONE 2019, 14, e0216745. [Google Scholar] [CrossRef]
- Ahmed, S.N.; Haider, W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review. Nanotechnology 2018, 29, 342001. [Google Scholar] [CrossRef]
- Colmenares, J.C.; Xu, Y.J. (Eds.) Heterogeneous Photocatalysis; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Hänel, A.; Zaleska, A.; Hupka, J. Photocatalytic activity of TiO2 immobilized on glass beads. Physicochem. Probl. Miner. Process. 2010, 45, 49–56. Available online: https://www.researchgate.net/publication/279628443 (accessed on 9 February 2025).
- Umar, M.; Abdul, H. Photocatalytic Degradation of Organic Pollutants in Water. In Organic Pollutants—Monitoring, Risk and Treatment; IntechOpen Limited: London, UK, 2013. [Google Scholar]
- Chairungsri, W.; Pholchan, P.; Sumitsawan, S.; Chimupala, Y.; Kijjanapanich, P. Photocatalytic Degradation of Textile Dyeing Wastewater Using Titanium Dioxide on a Fixed Substrate: Optimization of Process Parameters and Continuous Reactor Tests. Sustainability 2023, 15, 12418. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Electro-Fenton degradation of synthetic dyes. Water Res. 2009, 43, 339–344. [Google Scholar] [CrossRef]
- Rahimi, S.; Poormohammadi, A.; Salmani, B.; Ahmadian, M.; Rezaei, M. Comparing the photocatalytic process efficiency using batch and tubular reactors in removal of methylene blue dye and COD from simulated textile wastewater. J. Water Reuse Desalination 2016, 6, 574–582. [Google Scholar] [CrossRef]
- Colombo, E.; Ashokkumar, M. Comparison of the photocatalytic efficiencies of continuous stirred tank reactor (CSTR) and batch systems using a dispersed micron sized photocatalyst. RSC Adv. 2017, 7, 48222–48229. [Google Scholar] [CrossRef]
- Jadaa, W.; Prakash, A.; Ray, A.K. Photocatalytic Degradation of Diazo Dye over Suspended and Immobilized TiO2 Catalyst in Swirl Flow Reactor: Kinetic Modeling. Processes 2021, 9, 1741. [Google Scholar] [CrossRef]
- Bertagna Silva, D.; Buttiglieri, G.; Babić, S. State-of-the-art and current challenges for TiO2/UV-LED photocatalytic degradation of emerging organic micropollutants. Environ. Sci. Pollut. Res. 2021, 28, 103–120. [Google Scholar] [CrossRef]
- Enesca, A. The Influence of Photocatalytic Reactors Design and Operating Parameters on the Wastewater Organic Pollutants Removal—A Mini-Review. Catalysts 2021, 11, 556. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Sand Supported Mixed-Phase TiO2 Photocatalysts for Water Decontamination Applications Decontamination Applications. Adv. Eng. Mater. 2014, 16, 248–254. [Google Scholar] [CrossRef]
- Kim, M.G.; Kang, J.M.; Lee, J.E.; Kim, K.S.; Kim, K.H.; Cho, M.; Lee, S.G. Effects of Calcination Temperature on the Phase Composition, Photocatalytic Degradation, and Virucidal Activities of TiO2 Nanoparticles. ACS Omega 2021, 6, 10668–10678. [Google Scholar] [CrossRef]
Parameter | Units | Raw Biocell Leachate | Ecuadorian Freshwater Body Regulations | Typical Leachate Composition [22] |
---|---|---|---|---|
pH | 8.98 ± 0.01 | 6–9 | 4.5–9.0 | |
Color | PCU | 7733 ± 289 | - | 2–25 |
COD | mg/L | 1373 ± 55 | 200 | 500–30,000 |
BOD5 | mg/L | 378 ± 44 | 100 | 100–5000 |
Total Solids | mg/L | 12,835 ± 43 | 1600 | 1000–50,000 |
Total Suspended Solids | mg/L | 208 ± 7 | 130 | 200–5000 |
Total Nitrogen (TN) | mg/L | 393 ± 5 | - | 10–3000 |
Ammonia (NH3-N) | mg/L | 201 ± 0.6 | 30 | 10–2000 |
Nitrate (NO3−) | mg/L | n/d | - | 0.1–50 |
Total Phosphorus (TP) | mg/L | 90 ± 1 | 10 | 0.1–50 |
Parameter | Units | Raw Biocell Leachate | Ecuadorian Freshwater Body Regulations | Typical Leachate Composition [22] |
---|---|---|---|---|
Zn | mg/L | 2.6 ± 0.2 | 5 | 2.56 |
Fe | mg/L | 1.7 ± 0.17 | 10 | 0.019–38.73 |
Cd | mg/L | 0.043 ± 0.001 | 0.02 | <1 |
Ni | mg/L | 7.063 ± 0.022 | 2 | <1 |
Cr6+ | mg/L | 0.122 ± 0.002 | 0.5 | <1 |
CrTOTAL | mg/L | 0.956 ± 0.020 | - | <1 |
Pb | mg/L | 0.633 ± 0.012 | 0.2 | <1 |
As | mg/L | 0.031 ± 0.001 | 0.1 | <1 |
Mn | mg/L | 4.67 ± 0.58 | 2 | - |
Cu | mg/L | 0.97 ± 0.12 | 1 | <1 |
Parameter | Unit | Treated Leachate | % Removal | Freshwater Body Regulation |
---|---|---|---|---|
pH | 10.3 ± 0.04 | - | 6–9 | |
Color | PCU | 1068 ± 6 | 86.2 | - |
COD | mg/L | 513 ± 6 | 62.6 | 200 |
BOD5 | mg/L | 210 ± 3 | 44.4 | 100 |
Total Solids (TS) | mg/L | 11,953 ± 30 | 6.9 | 1600 |
Total Nitrogen (TN) | mg/L | 240 ± 1 | 38.9 | - |
Ammonia (N-NH3) | mg/L | 165 ± 1 | 17.9 | 30 |
Nitrate (NO3−) | mg/L | n/d | - | - |
Total Phosphorus (TP) | mg/L | 9.2 ± 0.1 | 89.8 | 10 |
Parameter | Unit | Treated Leachate | % Removal | Freshwater Body Regulation |
---|---|---|---|---|
Zn | mg/L | 0.04 ± 0.01 | 98.5 | 5 |
Fe | mg/L | 1.23 ± 0.02 | 27.7 | 10 |
Cd | mg/L | 0.0121 ± 0.001 | 71.9 | 0.02 |
Cr6+ | mg/L | 0.06 ± 0.001 | 50.8 | 0.5 |
CrTOTAL | mg/L | 0.5707 ± 0.004 | 40.3 | - |
Pb | mg/L | 0.0828 ± 0.004 | 86.9 | 0.2 |
Mn | mg/L | 1.67 ± 0.06 | 64.2 | 2 |
Cu | mg/L | 0.17 ± 0.01 | 82.5 | 1 |
pH | 5.6 | 8 | 10 | Analysis of Variance, p-Value | ||
---|---|---|---|---|---|---|
%R (color) | 83.2 | 54.4 | 30.5 | <0.05 | ||
H2O2 concentration, mg/L c(H2O2)/c(DQO) | 2 (0.016) | 20 (0.16) | 100 (0.08) | 200 (1.6) | 400 (3.2) | |
%R (color) | 69.5 | 74.2 | 76.2 | 88.5 | 86.3 | <0.05 |
TiO2 concentration, g/L | 2 | 4 | 8 | 12 | ||
%R (color) | 62.7 | 77.2 | 88.5 | 87.7 | <0.05 | |
Dilution | 1:4 | 1:3 | 1:2 | 1:1 | ||
%R (color) | 88.5 | 77.3 | 61.3 | 48.1 | <0.05 | |
UVC, μW/cm2 | 1554 | 2801 | ||||
%R (color) | 88.5 | 88.7 | <0.05 |
Parameter (%Removal) | Units | Leachate 130 mg H2O2/L (H2O2/COD Ratio of 0.27) (%Removal) | Leachate 800 mg H2O2/L (H2O2/COD Ratio of 1.6) (%Removal) | Ecuadorian Freshwater Body Regulations |
---|---|---|---|---|
pH | 8.04 | 8.20 | 6–9 | |
Color | PCU | 114.7 (98.5%) | 90.0 (98.8%) | - |
COD | mg/L | 310 (77.4%) | 230 (81.8%) | 200 |
BOD5 | mg/L | 250 (33.9%) | 250 (33.9%) | 100 |
Total Solids (TS) | mg/L | 20,321 (−58.3%) | 19,501 (−51.9%) | 1600 |
Total Nitrogen (TN) | mg/L | 69.5 (82.3%) | 69.0 (82.4%) | - |
Ammonia (NH3-N) | mg/L | 24.1 (88.0%) | 22.7 (88.7%) | 30 |
Total Phosphorus (TP) | mg/L | 5.1 (94.3%) | 5.0 (94.4%) | 10 |
CrTOTAL | mg/L | 0.0235 (97.5%) | 0.0519 (94.6%) | - |
Cr6+ | mg/L | n/d (100%) | 0.006 (95%) | 0.5 |
Zn | mg/L | 0.34 (86.9%) | 0.48 (81.5%) | 5 |
Fe | mg/L | 0.21 (87.6%) | 0.07 (95.9%) | 10 |
Pb | mg/L | 0.139 (78.0%) | 0.134 (78.8%) | 0.2 |
Mn | mg/L | 0.40 (99.6%) | 0.40 (99.6%) | 2 |
Cu | mg/L | 0.017 (98.3%) | 0.010 (99.0%) | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peñafiel, R.; Flores Tapia, N.E.; Mayacela Rojas, C.M.; Lema Chicaiza, F.R.; Pérez, L. Electrocoagulation Coupled with TiO2 Photocatalysis: An Advanced Strategy for Treating Leachates from the Degradation of Green Waste and Domestic WWTP Biosolids in Biocells. Processes 2025, 13, 1746. https://doi.org/10.3390/pr13061746
Peñafiel R, Flores Tapia NE, Mayacela Rojas CM, Lema Chicaiza FR, Pérez L. Electrocoagulation Coupled with TiO2 Photocatalysis: An Advanced Strategy for Treating Leachates from the Degradation of Green Waste and Domestic WWTP Biosolids in Biocells. Processes. 2025; 13(6):1746. https://doi.org/10.3390/pr13061746
Chicago/Turabian StylePeñafiel, Rodny, Nelly Esther Flores Tapia, Celia Margarita Mayacela Rojas, Freddy Roberto Lema Chicaiza, and Lander Pérez. 2025. "Electrocoagulation Coupled with TiO2 Photocatalysis: An Advanced Strategy for Treating Leachates from the Degradation of Green Waste and Domestic WWTP Biosolids in Biocells" Processes 13, no. 6: 1746. https://doi.org/10.3390/pr13061746
APA StylePeñafiel, R., Flores Tapia, N. E., Mayacela Rojas, C. M., Lema Chicaiza, F. R., & Pérez, L. (2025). Electrocoagulation Coupled with TiO2 Photocatalysis: An Advanced Strategy for Treating Leachates from the Degradation of Green Waste and Domestic WWTP Biosolids in Biocells. Processes, 13(6), 1746. https://doi.org/10.3390/pr13061746