Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (554)

Search Parameters:
Keywords = Cu uptake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1722 KiB  
Article
Andean Pistacia vera L. Crops: Phytochemical Update and Influence of Soil-Growing Elemental Composition on Nutritional Properties of Nuts
by Daniela Zalazar-García, Mario J. Simirgiotis, Jessica Gómez, Alejandro Tapia and María Paula Fabani
Horticulturae 2025, 11(8), 925; https://doi.org/10.3390/horticulturae11080925 (registering DOI) - 5 Aug 2025
Abstract
Pistachio nuts are among the 50 best foods with the highest antioxidant potential. They have a balanced content of mono- (~70%) and polyunsaturated (~20%) fatty acids, minerals, and bioactive compounds such as tocopherols, phytosterols, and phenolic compounds, which have shown rapid accessibility in [...] Read more.
Pistachio nuts are among the 50 best foods with the highest antioxidant potential. They have a balanced content of mono- (~70%) and polyunsaturated (~20%) fatty acids, minerals, and bioactive compounds such as tocopherols, phytosterols, and phenolic compounds, which have shown rapid accessibility in the stomach. Pistachio consumption provides several health benefits, primarily due to its antioxidant properties and high content of essential nutrients. In this study, we analyzed the mineral composition, total phenolic content (TP), antioxidant activity (AA), and UHPLC/MS-MS polyphenolic profile of three Argentinian pistachio crops. Additionally, the physicochemical parameters and the elemental profiles of the growing soils were determined, as they influence mineral uptake and the synthesis of bioactive compounds in pistachio kernels. The TP was not significantly modified by the growing soils, with Crop3 presenting the highest TP content (276 ± 14 mg GA/100 g DW). Crop3 exhibited 18% higher TP content compared to Crop2. Similarly, FRAP values ranged from 28.0 to 36.5 mmol TE/100 g DW, with Crop1 showing a 30% increase compared to Crop2. DPPH values varied from 19.0 to 24.3 mmol TE/100 g DW, with Crop1 displaying 28% higher activity than Crop2. However, the polyphenolic profile was similar for all crops analyzed. Thirty compounds were identified; only Crop 1 contained the flavanone eriodyctiol and the isoflavone genistein, while the flavanone naringenin and the flavone luteolin were identified in Crop1 and Crop3. Regarding mineral content, the pistachio kernels mainly contained K, Ca, and Mg. Multivariate analyses revealed distinct elemental and antioxidant profiles among crops. LDA achieved classification accuracies of 77.7% for soils and 74.4% for kernels, with Pb, Zn, Cu, Rb, Sr, and Mn as key discriminants. CCA confirmed strong soil–kernel mineral correlations (r = 1), while GPA showed higher congruence between antioxidant traits and kernel composition than with soil geochemistry. These findings underscore the importance of soil composition in determining the nutritional quality of pistachio kernels, thereby supporting the beneficial health effects associated with pistachio consumption. Full article
Show Figures

Figure 1

20 pages, 1379 KiB  
Article
Combined Effects of Polyethylene and Bordeaux Mixture on the Soil–Plant System: Phytotoxicity, Copper Accumulation and Changes in Microbial Abundance
by Silvia Romeo-Río, Huguette Meta Foguieng, Antía Gómez-Armesto, Manuel Conde-Cid, David Fernández-Calviño and Andrés Rodríguez-Seijo
Agriculture 2025, 15(15), 1657; https://doi.org/10.3390/agriculture15151657 - 1 Aug 2025
Viewed by 288
Abstract
Greenhouses have positively impacted plant production by allowing the cultivation of different crops per year. However, the accumulation of agricultural plastics, potentially contaminated with agrochemicals, raises environmental concerns. This work evaluates the combined effect of Bordeaux mixture and low-density polyethylene (LDPE) microplastics (<5 [...] Read more.
Greenhouses have positively impacted plant production by allowing the cultivation of different crops per year. However, the accumulation of agricultural plastics, potentially contaminated with agrochemicals, raises environmental concerns. This work evaluates the combined effect of Bordeaux mixture and low-density polyethylene (LDPE) microplastics (<5 mm) on the growth of lettuce (Lactuca sativa L.) and soil microbial communities. Different levels of Bordeaux mixture (0, 100 and 500 mg kg−1), equivalent to Cu(II) concentrations (0, 17 and 83 mg kg−1), LDPE microplastics (0, 1% and 5%) and their combination were selected. After 28 days of growth, biometric and photosynthetic parameters, Cu uptake, and soil microbial responses were evaluated. Plant germination and growth were not significantly affected by the combination of Cu and plastics. However, individual Cu treatments influenced root and shoot length and biomass. Chlorophyll and carotenoid concentrations increased with Cu addition, although the differences were not statistically significant. Phospholipid fatty acid (PLFA) analysis revealed a reduction in microbial biomass at the highest Cu dose, whereas LDPE alone showed limited effects and may reduce Cu bioavailability. These results suggest that even at the highest concentration added, Cu can act as a plant nutrient, while the combination of Cu–plastics showed varying effects on plant growth and soil microbial communities. Full article
(This article belongs to the Special Issue Impacts of Emerging Agricultural Pollutants on Environmental Health)
Show Figures

Figure 1

17 pages, 1549 KiB  
Article
Mitigation of Cadmium and Copper Stress in Lettuce: The Role of Biochar on Metal Uptake, Oxidative Stress, and Yield
by Riccardo Fedeli, Zhanna Zhatkanbayeva, Rachele Marcelli, Yerlan Zhatkanbayev, Sara Desideri and Stefano Loppi
Plants 2025, 14(15), 2255; https://doi.org/10.3390/plants14152255 - 22 Jul 2025
Viewed by 324
Abstract
Biochar has emerged as a promising soil amendment for mitigating heavy metal contamination in agricultural systems. This study investigates the effects of biochar on cadmium (Cd) and copper (Cu) uptake, plant growth, oxidative stress, and physiological responses in lettuce (Lactuca sativa L.) [...] Read more.
Biochar has emerged as a promising soil amendment for mitigating heavy metal contamination in agricultural systems. This study investigates the effects of biochar on cadmium (Cd) and copper (Cu) uptake, plant growth, oxidative stress, and physiological responses in lettuce (Lactuca sativa L.) plants exposed to different metal concentrations. Results indicate that biochar significantly influenced Cd bioavailability, reducing its accumulation in plant tissues by up to 31.9% and alleviating oxidative stress, with malondialdehyde and proline levels decreasing by up to 51.0% and 60.2%, particularly at higher application rates (5%). Cd-exposed plants treated with biochar exhibited an improved fresh weight (+22.6%), lower malondialdehyde and proline levels, and enhanced the chlorophyll content (+14.9% to 24.1%) compared to untreated plants. The bioaccumulation factor for Cd decreased (up to 31.8%) while the immobilization index (II) increased, confirming the role of biochar in limiting Cd mobility in soil. In contrast, Cu uptake remained consistently low across all treatments, with a significant reduction observed only at higher contamination levels (up to −34.2%). Biochar contributed to Cu immobilization, reflected in increased II values, and enhanced the plant biomass and chlorophyll content under Cu exposure (+15.4% and up to +24.1%, respectively), suggesting a partial alleviation of Cu toxicity. These findings highlight biochar’s potential in heavy metal remediation, particularly for Cd, by reducing bioavailability and improving plant resilience. However, its role in Cu-contaminated soils is mainly through immobilization rather than uptake reduction. Full article
Show Figures

Figure 1

20 pages, 356 KiB  
Review
Soil Properties and Microelement Availability in Crops for Human Health: An Overview
by Lucija Galić, Vesna Vukadinović, Iva Nikolin and Zdenko Lončarić
Crops 2025, 5(4), 40; https://doi.org/10.3390/crops5040040 - 7 Jul 2025
Viewed by 419
Abstract
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). [...] Read more.
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). In recent years, there has been a growing focus on vitality and longevity, which are closely associated with the sufficient intake of essential microelements. This review focuses on these nine elements, whose bioavailability in the food chain is critically determined by their geochemical behavior in soils. There is a necessity for an understanding of the sources, soil–plant transfer, and plant uptake mechanisms of these microelements, with particular emphasis on the influence of key soil properties, including pH, redox potential, organic matter content, and mineral composition. There is a dual challenge of microelement deficiencies in agricultural soils, leading to inadequate crop accumulation, and the potential for localized toxicities arising from anthropogenic inputs or geogenic enrichment. A promising solution to microelement deficiencies in crops is biofortification, which enhances nutrient content in food by improving soil and plant uptake. This strategy includes agronomic methods (e.g., fertilization, soil amendments) and genetic approaches (e.g., marker-assisted selection, genetic engineering) to boost microelement density in edible tissues. Moreover, emphasizing the need for advanced predictive modeling techniques, such as ensemble learning-based digital soil mapping, enhances regional soil microelement management. Integrating machine learning with digital covariates improves spatial prediction accuracy, optimizes soil fertility management, and supports sustainable agriculture. Given the rising global population and the consequent pressures on agricultural production, a comprehensive understanding of microelement dynamics in the soil–plant system is essential for developing sustainable strategies to mitigate deficiencies and ensure food and nutritional security. This review specifically focuses on the bioavailability of these nine essential microelements (Se, Zn, Cu, B, Mn, Mo, Fe, Ni, and Cl), examining the soil–plant transfer mechanisms and their ultimate implications for human health within the soil–plant–human system. The selection of these nine microelements for this review is based on their recognized dual importance: they are not only essential for various plant metabolic functions, but also play a critical role in human nutrition, with widespread deficiencies reported globally in diverse populations and agricultural systems. While other elements, such as cobalt (Co) and iodine (I), are vital for health, Co is primarily required by nitrogen-fixing microorganisms rather than directly by all plants, and the main pathway for iodine intake is often marine-based rather than soil-to-crop. Full article
(This article belongs to the Topic Soil Health and Nutrient Management for Crop Productivity)
21 pages, 2754 KiB  
Article
Exploring Growth Phase Effect on Polysaccharide Composition and Metal Binding Properties in Parachlorella hussii
by Karima Guehaz, Zakaria Boual, Giulia Daly, Matilde Ciani, Hakim Belkhalfa and Alessandra Adessi
Polysaccharides 2025, 6(3), 58; https://doi.org/10.3390/polysaccharides6030058 - 2 Jul 2025
Viewed by 429
Abstract
Microalgae-based bioremediation is increasingly recognized as a sustainable, efficient, and straightforward technology. Despite this growing interest, the potential of Parachlorella hussii for metal biosorption remains underexplored. This study is the first report evaluating the metal biosorption activity in Parachlorella hussii ACOI 1508 (N9), [...] Read more.
Microalgae-based bioremediation is increasingly recognized as a sustainable, efficient, and straightforward technology. Despite this growing interest, the potential of Parachlorella hussii for metal biosorption remains underexplored. This study is the first report evaluating the metal biosorption activity in Parachlorella hussii ACOI 1508 (N9), highlighting the impact of the culture age on the monosaccharide composition and its correlation to the metal binding capacity. The capsular strain (N9) was isolated from the hypersaline ecosystem—Lake Chott Aïn El-Beida—in southeastern Algeria. Cultivated in Bold’s Basal medium, the strain produced 0.807 ± 0.059 g L−1 of RPSs and 1.975 ± 0.120 g L−1 of CPSs. Biochemical analysis of the extracts revealed a high total sugar content (% w/w) that ranged from 62.98 ± 4.87% to 95.60 ± 87% and a low protein content (% w/w) that ranged from 0.49 ± 0.08% to 1.35 ± 0.69%, with RPS-D7 and RPS-D14 having high molecular weight (≥2 MDa). HPLC-based monosaccharide characterization demonstrated compositional differences between the exponential and stationary phases, with rhamnose dominating (~55%) in RPS-D14 and with the presence of uronic acids comprising 7–11.3%. Metal removal efficiency was evaluated using the whole biomass in two growth phases. Copper uptake exhibited the highest capacity, reaching 18.55 ± 0.61 mg Cu g−1 DW at D14, followed by zinc removal with 6.52 ± 0.61 mg Zn g−1 DW. Interestingly, removal efficiencies increased to about twofold during the stationary phase, reaching 51.15 ± 1.14% for Cu, 51.08 ± 3.35% for Zn, and 36.55 ± 3.09% for Ni. The positive results obtained for copper/zinc removal highlight the biosorption potential of P. hussii, and notably, we found that the metal removal capacity significantly improved with culture age—a parameter that has been poorly investigated in prior studies. Furthermore, we observed a growth phase-dependent modulation in monosaccharide composition, which correlated with enhanced functional properties of the excreted biomolecules involved in biosorption. This metabolic adjustment suggests an adaptive response that may contribute to the species’ effectiveness in heavy metal uptake, underscoring its novelty and biotechnological relevance. Full article
Show Figures

Figure 1

14 pages, 1872 KiB  
Article
Insights into the Thriving of Bacillus megaterium and Rhodotorula mucilaginosa in Mining Areas: Their Adaptation and Tolerance Under Extreme Levels of Cu and Mn
by Alfonso Álvarez-Villa, Maribel Plascencia-Jatomea, Kadiya Calderón, Katiushka Arévalo-Niño, Guadalupe López-Avilés and Francisco Javier Almendariz-Tapia
Microbiol. Res. 2025, 16(7), 140; https://doi.org/10.3390/microbiolres16070140 - 1 Jul 2025
Viewed by 358
Abstract
Understanding microbial adaptation and tolerance based on the cellular concentration and biosorption capacity provides critical insights for evaluating microbial performance under heavy metal stress, which is essential for selecting efficient strains or consortia for bioremediation applications. In this study, the adaptation and tolerance [...] Read more.
Understanding microbial adaptation and tolerance based on the cellular concentration and biosorption capacity provides critical insights for evaluating microbial performance under heavy metal stress, which is essential for selecting efficient strains or consortia for bioremediation applications. In this study, the adaptation and tolerance of Bacillus megaterium and Rhodotorula mucilaginosa to elevated concentrations of copper (Cu) and manganese (Mn) were investigated by introducing the maximum adaptation concentration (MAC) alongside the maximum tolerable concentration (MTC) and the minimum inhibitory concentration (MIC). A Gaussian model was fitted to the relative growth responses to estimate the MACs, MTCs, and MICs. B. megaterium exhibited MACs of 4.6 ppm Cu and 393.9 ppm Mn, while R. mucilaginosa showed MACs of 59.6 ppm Cu and 64.4 ppm Mn, corresponding to concentrations that stimulated their maximum cell density. A biosorption analysis revealed average capacities of 6.3 ± 5.3 mg Cu/g biomass and 28.6 ± 17.2 mg Mn/g biomass, positively correlated with the MTCs, indicating enhanced metal uptake under sublethal stress. The co-culture assays demonstrated dynamic microbial interactions shaped by the type and concentration of metal, including coexistence, competitive substitution, and dominance by tolerance. These findings support the use of MACs as indicators of growth stimulation and MTCs as thresholds for enhanced metal uptake, providing a dual-parameter framework for selecting metallotolerant microorganisms for metal recovery strategies. Full article
Show Figures

Figure 1

17 pages, 2818 KiB  
Review
Metabolic Responses, Uptake, and Export of Copper in Cyanobacteria
by Jean Coutinho Oder, Thamires Emidio Sateles, Laila Barros de Souza, Adriano Nunes-Nesi, Wagner L. Araújo and Luna Alvarenga-Lucius
Biology 2025, 14(7), 798; https://doi.org/10.3390/biology14070798 - 1 Jul 2025
Viewed by 455
Abstract
Copper (Cu) is an essential micronutrient for cyanobacteria, where it functions as a cofactor in key proteins involved in photosynthesis and antioxidant defense. However, at elevated concentrations, Cu becomes toxic, exhibiting algicidal effects by disrupting metal homeostasis and competing for metal-binding sites on [...] Read more.
Copper (Cu) is an essential micronutrient for cyanobacteria, where it functions as a cofactor in key proteins involved in photosynthesis and antioxidant defense. However, at elevated concentrations, Cu becomes toxic, exhibiting algicidal effects by disrupting metal homeostasis and competing for metal-binding sites on critical cellular proteins. Due to the considerable morphological and physiological diversity within the phylum Cyanobacteria, the thresholds for Cu deficiency or toxicity vary considerably among strains. Maintaining Cu homeostasis in cyanobacterial cells is a complex process involving multiple layers of regulation. It begins at the extracellular polysaccharide layer, involves specialized membrane-bound proteins (in the outer, plasma, and thylakoid membranes), and results in transcriptional regulation in response to intracellular Cu status. This review summarizes the current understanding of Cu uptake and efflux pathways in cyanobacteria and explores how these mechanisms contribute to maintaining cellular Cu balance. The knowledge gained may contribute to the application of cyanobacteria in bioremediation strategies and/or the targeted use of Cu in the control of harmful cyanobacterial blooms. Full article
Show Figures

Figure 1

17 pages, 1726 KiB  
Article
Risk Assessment and Correlation Analysis of Potentially Toxic Element Pollution in Soil and Crops: A Case Study in a Typical Area
by Jiufen Liu, Cang Gong, Yinji Ba, Shuliang Liu, Huiyun Wan, Xiaofeng Zhao, Ziqi Li, Xiaohuang Liu and Zhongfang Yang
Toxics 2025, 13(7), 554; https://doi.org/10.3390/toxics13070554 - 30 Jun 2025
Viewed by 448
Abstract
Soil contamination with potentially toxic elements (PTEs) not only poses potential ecological risks (RI) but also leads to human health risks (HI) through the uptake of potentially toxic elements by crops. However, most studies primarily focus on potentially toxic element contamination in either [...] Read more.
Soil contamination with potentially toxic elements (PTEs) not only poses potential ecological risks (RI) but also leads to human health risks (HI) through the uptake of potentially toxic elements by crops. However, most studies primarily focus on potentially toxic element contamination in either soil or crops, often neglecting the intrinsic connections between soil and crop contamination risks. In reality, some regions may exhibit severe soil PTE exceedances, yet the PTE levels in crops may not necessarily exceed regulatory limits, resulting in human health risks that are not uniformly high. This study investigated a typical area with severe soil PTE pollution caused by wastewater from electroplating, smelting, and ore beneficiation industries, and conducted risk assessments on soil and crops. The research aims to elucidate the differences in soil and crop PTE contamination risks and the correlations between PTE concentrations in soil and crops. Results showed that Cd was the most severe PTE contaminant in the soil in the study area, with an average concentration of 1.11 mg/kg and a maximum concentration of 7.30 mg/kg. However, the average concentrations of eight PTEs in crops were all below the standard limits for cereal crops specified in the Food Safety National Standard for Pollutant Limits in Foods (GB 2726-2022). Cd was identified as the most severe PTE contaminant in the soil, resulting in the highest RI (836) in the MY sub-region of the study area. However, Cr in crops contributed the most to health risk (63.5%), leading to the highest HI (7.1) in sub-region MY. Despite Cd being the most severely polluting PTE in soil, its contribution to human health risk through crops was relatively low, ranging from 2.82% to 9.90%. This discrepancy in pollution risks indicates that a PTE causing severe soil contamination may not necessarily result in significant human health risks via crop uptake. Correlation and regression analyses revealed that soil PTEs had the greatest impact on Cd levels in crops. Soil Ni, Cd, Cu, As, and Zn exhibited different synergistic or antagonistic effects on crop PTE uptake. Notably, soil Cd content showed a highly significant positive regression relationship with Cd, Cr, and Ni concentrations in crops. Overall, the influence of soil PTEs on crop PTEs varied significantly, and the spatial differentiation characteristics of PTEs in soil and crops differed. For PTEs with high spatial differentiation, localized and precise management measures should be implemented. Conversely, for PTEs with low spatial differentiation, unified risk management and control measures can be adopted. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

16 pages, 1037 KiB  
Article
Assessing Nutrient Losses and Recycling in Sweet Cherry Orchards: A Yield-Based Approach
by Ilias Karampatzakis, Fotis Bilias, Chrysanthi Polychroniadou, Georgia Tanou, Panagiotis Kekelis, Aphrodite Theofilidou, Georgios Giannopoulos, Athina Pavlatou-Ve and Vassilis Aschonitis
Agriculture 2025, 15(12), 1312; https://doi.org/10.3390/agriculture15121312 - 18 Jun 2025
Viewed by 507
Abstract
Mineral nutrition management in sweet cherry orchards remains a critical challenge due to the lack of site-specific fertilization guidelines, particularly in Greece, a significant cherry-producing country. This study aimed to develop a predictive framework for total nutrient losses in sweet cherry orchards by [...] Read more.
Mineral nutrition management in sweet cherry orchards remains a critical challenge due to the lack of site-specific fertilization guidelines, particularly in Greece, a significant cherry-producing country. This study aimed to develop a predictive framework for total nutrient losses in sweet cherry orchards by proposing simplified estimations using fresh fruit yield as the sole input variable. Field experiments were conducted in two orchards with distinct rootstocks (MxM 14 and CAB-6P), analyzing soil properties, leaf nutrient status, and uptake patterns on different plant components. Results indicated that despite differences in soil texture and pH, nutrient availability was generally sufficient, with only Fe and Zn marginally below optimal levels in leaf tissue. Principal Component Analysis (PCA) revealed distinct nutrient distribution patterns, with N evenly distributed across fruits, peduncles, and prunings, while K was concentrated in fruits and peduncles, and Ca and Mg predominantly in fallen leaves. Notably, K was redistributed from leaves to fruits under high yields, evidenced by negative correlations between leaf biomass and K uptake. Strong relationships (r2 > 0.8) were found between fresh fruit yield and uptake of N, P, K, Mg, B, and Cu, enabling reliable predictions of total nutrient losses. Estimated annual nutrient removals were 85.6 kg ha−1 N, 8.94 kg ha−1 P, 42.7 kg ha−1 K, and 12.0 kg ha−1 Mg, with significant fractions retained in prunings and fallen leaves (e.g., 51.8 kg ha−1 N, 6.2 kg ha−1 P). The developed yield-based models provide a practical tool for optimizing fertilization strategies, while our findings highlight the potential for nutrient recycling through sustainable residue management. Full article
(This article belongs to the Special Issue Advanced Cultivation Technologies for Horticultural Crops Production)
Show Figures

Figure 1

12 pages, 4529 KiB  
Article
Somatostatin Receptor Expression of Gastroenteropancreatic Neuroendocrine Tumors: A Comprehensive Analysis in the Era of Somatostatin Receptor PET Imaging
by Maria Grazia Maratta, Taymeyah Al-Toubah, Jaime Montilla-Soler, Eleonora Pelle, Mintallah Haider, Ghassan El-Haddad and Jonathan Strosberg
Cancers 2025, 17(12), 1937; https://doi.org/10.3390/cancers17121937 - 11 Jun 2025
Cited by 1 | Viewed by 614
Abstract
Background: There is limited data on somatostatin receptor (SSTR) expression of metastatic gastroenteropancreatic neuroendocrine tumors (GEP-NETs) using modern imaging techniques and stratifying by primary site and tumor grade (G). Understanding patterns of SSTR expression and tumor heterogeneity is essential when determining the [...] Read more.
Background: There is limited data on somatostatin receptor (SSTR) expression of metastatic gastroenteropancreatic neuroendocrine tumors (GEP-NETs) using modern imaging techniques and stratifying by primary site and tumor grade (G). Understanding patterns of SSTR expression and tumor heterogeneity is essential when determining the relevance of cold and radiolabeled somatostatin analog treatments. Methods: A single-institutional retrospective analysis of metastatic well-differentiated G1-3 GEP-NET patients who underwent Gallium-68 ([68Ga])-DOTATATE or Copper-64 ([64Cu])-DOTATATE positron emission tomography (PET) imaging from September 2016 to June 2024 was performed. Results: A total of 1192 patients were considered eligible for this study. Among them, 26 (2.2%) were completely negative on SSTR PET/computed tomography (CT), and 27 (2.3%) had weak uptake (less or equal to the normal liver). Up to 40 (3.4%) had heterogeneous SSTR expression on PET/CT: 26 (2.2%) displayed the coexistence of strongly avid lesions with the absence or near absence of SSTR uptake in measurable tumors (heterogeneous strong), while 14 (1.2%) had a combination of absent and weakly expressing SSTR tumors (heterogeneous low). An additional nine cases with prior homogeneous expression (0.8%) developed new SSTR-negative tumors along with disease progression, potentially indicating dedifferentiation. The absent or heterogeneous SSTR expression rates were greater in NET G3 than G1/G2 and in tumors originating outside the small bowel (midgut). Most NETs with absent or heterogeneous SSTR expression were fluorodeoxyglucose-F-18 ([18F]FDG)-avid. Conclusions: The large majority of metastatic GEP-NETs demonstrate strong and relatively uniform SSTR expression, but approximately 8% are SSTR-negative, weak or heterogeneous on PET/CT. Higher than average rates of absent/heterogeneous/weak SSTR expression occur in G3 NETs and lower rates among small intestine primaries. Full article
(This article belongs to the Special Issue Updates in Neuroendocrine Neoplasms)
Show Figures

Figure 1

14 pages, 1141 KiB  
Article
A Novel Biostimulant–Biochar Strategy for Improving Soil Quality and Salinity Tolerance in Medicinal Mint (Mentha longifolia L.)
by Mamdouh A. Eissa, Modhi O. Alotaibi, Mashael M. Alotibi, Alya Aljuaid, Taghreed Hamad Aldayel and Adel M. Ghoneim
Soil Syst. 2025, 9(2), 58; https://doi.org/10.3390/soilsystems9020058 - 2 Jun 2025
Viewed by 591
Abstract
This study evaluated the combined application of biochar (BC) and Spirulina platensis (SP) as a sustainable strategy to improve soil quality and salinity tolerance in mint (Mentha longifolia L.) cultivated in sandy soils. A pot experiment was conducted using saline irrigation water [...] Read more.
This study evaluated the combined application of biochar (BC) and Spirulina platensis (SP) as a sustainable strategy to improve soil quality and salinity tolerance in mint (Mentha longifolia L.) cultivated in sandy soils. A pot experiment was conducted using saline irrigation water (5 dS m−1) with four treatments: control, BC alone, SP alone, and BC + SP applied at 1% (w/w), arranged in a randomized complete block design with three replicates. Salt stress reduced plant height and biomass yield by 16% and 27%, respectively, and increased sodium (Na+) in shoots by 74%, causing ionic imbalance and decreased soil microbial biomass carbon by 19%. The combined BC + SP treatment significantly improved soil microbial biomass carbon (SMBC) by 100%, reduced soil Na⁺ by 41%, and enhanced K+/Na+ and Ca2+/Na+ ratios by 138% and 133%, respectively. Under salinity, BC + SP increased nutrient concentrations in mint shoots, including N (120%), P (106%), K (88%), Ca (67%), Fe (70%), Mn (50%), Zn (44%), and Cu (70%), and improved leaf chlorophyll content. These results demonstrate that BC and SP synergistically mitigate salinity stress by improving soil properties, nutrient uptake, and ionic balance, making BC + SP a promising sustainable amendment for saline sandy soils. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

25 pages, 2348 KiB  
Article
Microplastic-Mediated Heavy Metal Uptake in Lettuce (Lactuca sativa L.): Implications for Food Safety and Agricultural Sustainability
by Bhakti Jadhav and Agnieszka Medyńska-Juraszek
Molecules 2025, 30(11), 2370; https://doi.org/10.3390/molecules30112370 - 29 May 2025
Viewed by 636
Abstract
This study investigates how different types of microplastics (MPs)—fibers, glitter, plastic bags, and plastic bottles—influence heavy metal uptake in lettuce (Lactuca sativa L.), a commonly consumed leafy vegetable. A controlled eight-week pot experiment was conducted in a greenhouse using contaminated loamy sand [...] Read more.
This study investigates how different types of microplastics (MPs)—fibers, glitter, plastic bags, and plastic bottles—influence heavy metal uptake in lettuce (Lactuca sativa L.), a commonly consumed leafy vegetable. A controlled eight-week pot experiment was conducted in a greenhouse using contaminated loamy sand soil (polluted with Cd, Pb, Cu, and other metals) collected from a smelter-impacted area. Microplastics were added at a concentration of 70–80 mg/kg, and lettuce seedlings were grown under phytotron conditions (22 ± 2 °C, 60 ± 5% RH, 16 h light/8 h dark) without fertilizers or external contaminants. Plant roots and shoots were harvested, and heavy metals were analyzed via MP-AES and ICP-MS. The results showed that MPs altered heavy metal mobility, bioavailability, and plant uptake. Copper accumulation in leaves decreased substantially across MP treatments, from 80.84 mg/kg in the control to 26.35 mg/kg (glitter), whereas lead and cadmium concentrations increased significantly in roots under fiber and glitter exposure (Pb increased from 12.13 mg/kg to 33.57 mg/kg and Cd from 1.70 mg/kg to 2.05 mg/kg in fiber treatment). Cobalt accumulation in leaves increased under the plastic bag treatment, indicating MP-specific metal interactions. Root growth was also affected, with fibers promoting elongation and plastic bottles restricting it. Sequential extraction revealed that MPs modified metal partitioning in soil, with Pb and Ni more strongly retained in stable fractions under some treatments. Observed trends in soil pH and organic matter content were associated with changes in metal mobility, highlighting the potential role of soil properties in mediating microplastic–metal interactions. These findings highlight the role of MPs as mediators of heavy metal transport in crops and underscore the need for clear regulatory guidelines that limit microplastic contamination in agricultural soils and promote routine monitoring to safeguard food safety and crop health. Full article
(This article belongs to the Special Issue 10th Anniversary of Green Chemistry Section)
Show Figures

Figure 1

20 pages, 2894 KiB  
Review
Algal–Bacterial Symbiotic Granular Sludge Technology in Wastewater Treatment: A Review on Advances and Future Prospects
by Shengnan Chen, Jiashuo Wang, Xin Feng and Fangchao Zhao
Water 2025, 17(11), 1647; https://doi.org/10.3390/w17111647 - 29 May 2025
Cited by 1 | Viewed by 1261
Abstract
This review systematically examines the critical mechanisms and process optimization strategies of algal–bacterial granular sludge (ABGS) technology in wastewater treatment. The key findings highlight the following: (1) enhanced pollutant removal—ABGS achieves >90% COD removal, >80% total nitrogen elimination via nitrification–denitrification coupling, and 70–95% [...] Read more.
This review systematically examines the critical mechanisms and process optimization strategies of algal–bacterial granular sludge (ABGS) technology in wastewater treatment. The key findings highlight the following: (1) enhanced pollutant removal—ABGS achieves >90% COD removal, >80% total nitrogen elimination via nitrification–denitrification coupling, and 70–95% phosphorus uptake through polyphosphate-accumulating organisms (PAOs), with simultaneous adsorption of heavy metals (e.g., Cu2+, Pb2+) via EPS binding; (2) energy-saving advantages—microalgal oxygen production reduces aeration energy consumption by 30–50% compared to conventional activated sludge, while the granular stability maintains >85% biomass retention under hydraulic shocks; (3) AI-driven optimization—machine learning models enable real-time prediction of nutrient removal efficiency (±5% error) by correlating microbial composition (e.g., Nitrosomonas abundance) with operational parameters (DO: 2–4 mg/L, pH: 7.5–8.5). This review further identifies EPS-mediated microbial co-aggregation and Chlorella–Pseudomonas cross-feeding as pivotal for system resilience. These advances position ABGS as a sustainable solution for low-carbon wastewater treatment, although challenges persist in scaling photobioreactors and maintaining symbiosis under fluctuating industrial loads. Full article
(This article belongs to the Special Issue Algae-Based Technology for Wastewater Treatment)
Show Figures

Figure 1

14 pages, 4608 KiB  
Article
Comparative Analysis on Carbon Mitigation by High-Temperature Lithium Adsorption Systems
by Hong Du, Jiaqi Ruan, Yunlin Li and Changlei Qin
Energies 2025, 18(11), 2817; https://doi.org/10.3390/en18112817 - 28 May 2025
Viewed by 311
Abstract
High-temperature adsorption is a promising technology for carbon mitigation, and it can be applied in direct carbon capture and the integration with utilization. Lithium-based adsorbents, known for their high CO2 uptake and rapid kinetics, have garnered significant interest. However, adsorption performance, cycling [...] Read more.
High-temperature adsorption is a promising technology for carbon mitigation, and it can be applied in direct carbon capture and the integration with utilization. Lithium-based adsorbents, known for their high CO2 uptake and rapid kinetics, have garnered significant interest. However, adsorption performance, cycling stability, and degradation behavior of this type of adsorbent are rarely reported and compared under comparable conditions. In this work, nine lithium-based adsorbents were synthesized and characterized for their physicochemical properties. Dynamic and isothermal thermogravimetric analysis were conducted to determine adsorption/desorption equilibrium temperatures, evaluate CO2 adsorption characteristics under varying thermal conditions, and assess cycling stability over 20 adsorption–desorption cycles. The results reveal exceptional initial CO2 capacities for α-Li5AlO4, Li5GaO4, Li5FeO4, and Li6ZnO4; however, these values decline to 30.2 wt.%, 24.3 wt.%, 41.6 wt.%, and 44.2 wt.% after cycling. In contrast, Li2CuO2 and Li4SiO4 exhibit lower initial capacities but possess superior cycling stability with final values of 21 wt.% and 21.6 wt.%. Phase composition and microstructural analysis identify lithium carbonate and metal oxides as primary products, and microstructural sintering was observed during cycling. This study could provide insights into the trade-offs between the initial capacity and cycling stability of lithium-based adsorbents, offering guidelines for adsorbent optimization through doping or pore engineering to advance high-temperature CO2 capture technologies. Full article
(This article belongs to the Special Issue Materials for CO2 Capture and Conversion)
Show Figures

Figure 1

16 pages, 1467 KiB  
Article
Roses in the City Environment: A Heavy Metals Case Study
by Dawid Krakowiak, Dorota Adamczyk-Szabela, Małgorzata Szczesio and Wojciech M. Wolf
Sustainability 2025, 17(11), 4939; https://doi.org/10.3390/su17114939 - 27 May 2025
Viewed by 519
Abstract
Kutno is a picturesque city in central Poland, known for extensive rose breeding worldwide. Soil samples and rose petals were collected from 13 locations in the city and characterized by diverse environments. This allowed determining the response of plants to changing cultivation conditions. [...] Read more.
Kutno is a picturesque city in central Poland, known for extensive rose breeding worldwide. Soil samples and rose petals were collected from 13 locations in the city and characterized by diverse environments. This allowed determining the response of plants to changing cultivation conditions. Rose petals have found a wide range of applications. They are used in the food, pharmaceutical and cosmetic industries. The aim of the research was to assess the contents of Cu, Zn, Cd, Ni, Pb and Cr in soils and their accumulation in rose petals. Samples were subjected to the microwave mineralization process using a mixture of concentrated HCl and HNO3. The metal contents in the soil and roses were determined by HR-CS-AAS and ICP-OES, respectively. Roses are usually cultivated in soils with a limited mobile fraction of heavy metals. In these unfavorable conditions, flower petals can absorb heavy metals substantially. Petals of roses cultivated for cosmetic, pharmaceutical or food purposes should be tested for heavy metal content. This study indicates that toxic metals are blocked at the root zone, and their transport to the above-ground parts is severely hampered. Nevertheless, metals related to the photo-synthesis process (Zn, Cu) are more intensively taken up by roses, while the uptake of toxic metals is partially inhibited. Full article
Show Figures

Figure 1

Back to TopTop