Assessing Nutrient Losses and Recycling in Sweet Cherry Orchards: A Yield-Based Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Experimental Site
2.2. Fruit Harvest and Production Measurement
2.3. Collection and Weighing of Leaves and Prunings
2.4. Soil and Plant Tissue Analyses
2.5. Statistical Analyses
3. Results
3.1. Physicochemical Properties of Studied Soils
3.2. Available Forms of Studied Macro- and Micronutrients in Soil and Respective Concentrations from Leaf Analysis Between Two Fields
3.3. Distribution Patterns of Nutrient Concentration and Their Total Uptake Among Different Plant Parts
3.4. Relations Between Fresh Yield Parameters of Different Plant Parts and Respective Nutrient Uptake Magnitudes
3.5. Relations Between Harvested Fresh Weight of Fruits and Peduncles and Total Nutrient Losses
4. Discussion
4.1. Soil and Regular Plant Analysis Interpretation
4.2. Nutrient Distribution and Uptake Patterns
4.3. Integrating Fresh Fruit Yield Data into Nutrient Uptake Predictions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Papapetros, S.; Louppis, A.; Kosma, I.; Kontakos, S.; Badeka, A.; Kontominas, M.G. Characterization and Differentiation of Botanical and Geographical Origin of Selected Popular Sweet Cherry Cultivars Grown in Greece. J. Food Compos. Anal. 2018, 72, 48–56. [Google Scholar] [CrossRef]
- Roversi, A.; Monteforte, A. Preliminary Results on the Mineral Uptake of Six Sweet Cherry Varieties. Acta Hortic. 2006, 721, 123–128. [Google Scholar] [CrossRef]
- Ughini, V.; Roversi, A. Application of the Szűcs Algorithm as an Aid for Orchard Mineral Fertilization. Acta Hortic. 2006, 721, 299–306. [Google Scholar] [CrossRef]
- Ughini, V.; Roversi, A. Estimation of Sweet Cherry Fertilizer Requirements by the Szűcs’ Method Varies by Cultivar. Acta Hortic. 2008, 795, 733–738. [Google Scholar] [CrossRef]
- Stylianidis, D.C.; Simonis, A.D.; Syrgiannidis, G.D. Nutrition, Fertilization of Deciduous Fruit Trees: Deficiencies, Toxicities, Physiological Disorders of Fruits; Stamoulis Publications: Athens, Greece, 2002. (In Greek) [Google Scholar]
- Milošević, T.; Milošević, N. Soil fertility: Plant nutrition vis-à-vis fruit yield and quality of stone fruits. In Fruit Crops; Elsevier: Amsterdam, The Netherlands, 2020; pp. 583–606. [Google Scholar]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: London, UK, 2012; Volume 89, p. 651. [Google Scholar]
- Smith, F.W.; Loneragan, J.F. Interpretation of Plant Analysis: Concepts and Priciples. In Plant Analysis: An Interpretation Manual; Reuter, D.J., Robinson, J.B., Eds.; CSIRO Publishing: Collingwood, Australia, 1997; pp. 3–33. [Google Scholar]
- Nijland, G.O.; Schouls, J. The Relation Between Crop Yield, Nutrient Uptake, Nutrient Surplus and Nutrient Application; Wageningen Agricultural University: Wageningen, The Netherlands, 1997. [Google Scholar]
- Dhanoa, M.S.; Sanderson, R.; Cardenas, L.M.; Shepherd, A.; Chadwick, D.R.; Powell, C.D.; Ellis, J.L.; López, S.; France, J. Overview and Application of the Mitscherlich Equation and Its Extensions to Estimate the Soil Nitrogen Pool Fraction Associated with Crop Yield and Nitrous Oxide Emission. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2022; Volume 174, pp. 269–295. ISBN 978-0-323-98957-2. [Google Scholar]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Rhoades, J.D. Salinity: Electrical Conductivity and Total Dissolved Solids. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; SSSA Book Series; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 417–435. [Google Scholar]
- Walkley, A.J.; Black, I.A. Estimation of Soil Organic Carbon by the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bremner, J.M. Nitrogen-Total. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; SSSA Book Series; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Mulvaney, R.L. Nitrogen-Inorganic Forms. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; SSSA Book Series; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 1123–1184. [Google Scholar]
- Kuo, S. Phosphorus. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; SSSA Book Series; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 869–919. [Google Scholar]
- Thomas, G.W. Exchangeable Cations. In Agronomy Monographs; Page, A.L., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 2015; pp. 159–165. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Keren, R. Boron. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; SSSA Book Series; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 603–626. [Google Scholar]
- Siatwiinda, S.M.; Ros, G.H.; Yerokun, O.A.; De Vries, W. Options to reduce ranges in critical soil nutrient levels used in fertilizer recommendations by accounting for site conditions and methodology: A review. Agron. Sustain. Dev. 2024, 44, 9. [Google Scholar] [CrossRef]
- Bai, Z.; Li, H.; Yang, X.; Zhou, B.; Shi, X.; Wang, B.; Li, D.; Shen, J.; Chen, Q.; Qin, W.; et al. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 2013, 372, 27–37. [Google Scholar] [CrossRef]
- Bilias, F.; Barbayiannis, N. Evaluation of sodium tetraphenylboron (NaBPh4) as a soil test of potassium availability. Arch. Agron. Soil Sci. 2017, 63, 468–476. [Google Scholar] [CrossRef]
- Reuter, D.J.; Edwards, D.G.; Wilhelm, N.S. Temperate and tropical crops. In Plant Analysis: An Interpretation Manual; Reuter, D.J., Robinson, J.B., Eds.; CSIRO Publishing: Collingwood, Australia, 1997; pp. 83–278. [Google Scholar]
- Milošević, T.; Milošević, N.; Milivojević, J.; Glišić, I.; Nikolić, R. Experiences with Mazzard and Colt sweet cherry rootstocks in Serbia which are used for high density planting system under heavy and acidic soil conditions. Sci. Hortic. 2014, 176, 261–272. [Google Scholar] [CrossRef]
- Milošević, T.; Moreno, M.Á.; Milošević, N.; Milinković, M. Regulation of Yield, Fruit Size, and Leaf Mineral Nutrients of the ‘Šumadinka’ Sour Cherry Cultivar with Help of Rootstocks. J. Plant Growth Regul. 2023, 42, 5587–5599. [Google Scholar] [CrossRef]
- Cantín, C.M.; Pinochet, J.; Gogorcena, Y.; Moreno, M.Á. Growth, yield and fruit quality of ‘Van’ and ‘Stark Hardy Giant’ sweet cherry cultivars as influenced by grafting on different rootstocks. Sci. Hortic. 2010, 123, 329–335. [Google Scholar] [CrossRef]
- Rutkowski, K.; Łysiak, G.P. Effect of Nitrogen Fertilization on Tree Growth and Nutrient Content in Soil and Cherry Leaves (Prunus cerasus L.). Agriculture 2023, 13, 578. [Google Scholar] [CrossRef]
- Rowley, S.D. Phosphorous and Potassium Fertility Management for Maximizing Tart Cherry Fruit Quality and Productivity on Alkaline Soils. Master’s Thesis, Utah State University, Logan, UT, USA, 2013. [Google Scholar] [CrossRef]
- Roeva, T.; Leonicheva, E.; Leonteva, L.; Stolyarov, M. Potassium dynamics in orchard soil and potassium status of sour cherry trees affected by soil nutritional conditions. J. Cent. Eur. Agric. 2022, 23, 103–113. [Google Scholar] [CrossRef]
- Quartieri, M.; Polidori, G.; Baldi, E.; Toselli, M. Evaluation of Removed and Recycled Mineral Nutrients in Italian Commercial Persimmon Orchards. Horticulturae 2023, 9, 374. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, U.M.; Manohar, M.; Gaur, V.S. Calcium transport from source to sink: Understanding the mechanism(s) of acquisition, translocation, and accumulation for crop biofortification. Acta Physiol. Plant 2015, 37, 1722. [Google Scholar] [CrossRef]
- Jarrell, W.M.; Beverly, R.B. The dilution effect in plant nutrition studies. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1981; pp. 197–224. [Google Scholar] [CrossRef]
- Brunetto, G.; Nava, G.; Ambrosini, V.G.; Comin, J.J.; Kaminski, J. The pear tree response to phosphorus and potassium fertilization. Rev. Bras. Frutic. 2015, 37, 507–516. [Google Scholar] [CrossRef]
- Kuzin, A.I.; Kashirskaya, N.Y.; Kochkina, A.M.; Kushner, A.V. Correction of Potassium Fertigation Rate of Apple Tree (Malus domestica Borkh.) in Central Russia during the Growing Season. Plants 2020, 9, 1366. [Google Scholar] [CrossRef]
- Li, M.; Watanabe, S.; Gao, F.; Dubos, C. Iron Nutrition in Plants: Towards a New Paradigm? Plants 2023, 12, 384. [Google Scholar] [CrossRef]
- Briat, J.-F.; Dubos, C.; Gaymard, F. Iron nutrition, biomass production, and plant product quality. Trends Plant Sci. 2015, 20, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Baghdadi, M.; Sadowski, A. Estimation of nutrient requirements of sour cherry. Acta Hortic. 1998, 468, 515–522. [Google Scholar] [CrossRef]
Nutrient | Equation | r2 (%) | p | Nutrient Loss ha−1 (kg) |
---|---|---|---|---|
N | 90.71 | 0.000 | 85.6 | |
P | 92.19 | 0.000 | 8.94 | |
K | 82.33 | 0.001 | 42.7 | |
Ca | 50.99 | 0.006 | - | |
Mg | 78.63 | 0.000 | 12.0 | |
B | 86.97 | 0.000 | 0.172 | |
Mn | 9.63 | 0.291 | - | |
Zn | 75.84 | 0.017 | 0.100 | |
Fe | 30.80 | 0.159 | - | |
Cu | 78.76 | 0.001 | 0.104 |
Nutrient | Equation | rs 1 | p | Nutrient Loss ha−1 (kg) |
---|---|---|---|---|
N | 0.976 | 0.003 | 86.3 | |
P | 0.927 | 0.005 | 9.0 | |
K | 0.685 | 0.039 | 43.4 | |
Ca | 0.830 | 0.012 | - | |
Mg | 0.915 | 0.006 | 12.1 | |
B | 0.964 | 0.004 | 0.100 | |
Mn | 0.273 | 0.413 | - | |
Zn | 0.758 | 0.023 | 0.100 | |
Fe | 0.333 | 0.317 | - | |
Cu | 0.794 | 0.017 | 0.102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karampatzakis, I.; Bilias, F.; Polychroniadou, C.; Tanou, G.; Kekelis, P.; Theofilidou, A.; Giannopoulos, G.; Pavlatou-Ve, A.; Aschonitis, V. Assessing Nutrient Losses and Recycling in Sweet Cherry Orchards: A Yield-Based Approach. Agriculture 2025, 15, 1312. https://doi.org/10.3390/agriculture15121312
Karampatzakis I, Bilias F, Polychroniadou C, Tanou G, Kekelis P, Theofilidou A, Giannopoulos G, Pavlatou-Ve A, Aschonitis V. Assessing Nutrient Losses and Recycling in Sweet Cherry Orchards: A Yield-Based Approach. Agriculture. 2025; 15(12):1312. https://doi.org/10.3390/agriculture15121312
Chicago/Turabian StyleKarampatzakis, Ilias, Fotis Bilias, Chrysanthi Polychroniadou, Georgia Tanou, Panagiotis Kekelis, Aphrodite Theofilidou, Georgios Giannopoulos, Athina Pavlatou-Ve, and Vassilis Aschonitis. 2025. "Assessing Nutrient Losses and Recycling in Sweet Cherry Orchards: A Yield-Based Approach" Agriculture 15, no. 12: 1312. https://doi.org/10.3390/agriculture15121312
APA StyleKarampatzakis, I., Bilias, F., Polychroniadou, C., Tanou, G., Kekelis, P., Theofilidou, A., Giannopoulos, G., Pavlatou-Ve, A., & Aschonitis, V. (2025). Assessing Nutrient Losses and Recycling in Sweet Cherry Orchards: A Yield-Based Approach. Agriculture, 15(12), 1312. https://doi.org/10.3390/agriculture15121312