Roses in the City Environment: A Heavy Metals Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Soil Samples Analysis
2.2. The Roses Petals Samples Analysis
2.2.1. Determination of Heavy Metals in Roses Petals
2.2.2. Determination of Chlorophyll Content in Roses Petals
2.3. Digital Maps Preparation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roses in Urban Space. Kutno City Hall. Available online: https://um.kutno.pl/roze-w-przestrzeni-miejskiej (accessed on 26 December 2022).
- Rose Tradition in Kutno—TPZK. Available online: https://tpzk.eu/tradycja-rozana/tradycja-rozana-w-kutnie/ (accessed on 11 January 2023).
- Year-Round Climate and Average Weather Conditions in Kutno. Available online: https://pl.weatherspark.com (accessed on 19 March 2025).
- City of Kutno. Environmental Impact Forecast. Zbigniew Bronowicki. Available online: https://um.kutno.pl/sites/default/files/attachments/2021-07/Prognoza_tekst.pdf (accessed on 10 March 2025).
- Gruszecki, J.; Lis, J.; Pasieczna, A.; Tomassi-Morawiec, H.; Kozłowska, O. State Geological Institute, Kutno Sheet, Warsaw 2004. Available online: https://bazadata.pgi.gov.pl/data/mgsp/txt/mgsp0517.pdf (accessed on 25 May 2025).
- Ahsan, M.; Nafees, M.; Amin, M.; Nawaz, F.; Tufail, A.; Sardar, H.; Shokralla, S.; Mahmoud, E.A.; El-Sabrout, A.M.; Elansary, H.O. Nutrients uptake and accumulation in plant parts of fragrant rosa species irrigated with treated and untreated wastewater. Plants 2022, 11, 1260. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.-C.; Choi, H.-K.; Kim, K.-T.; Lim, T.-G. Rose (Rosa gallica) petal extract suppress proliferation. Migration, and invasion of human lung adenocarcinoma A549 cells through via the EGFR Signaling Pathway. Molecules 2020, 25, 5119. [Google Scholar] [CrossRef] [PubMed]
- Galal, T.M.; Majrashi, A.; Al-Yasi, H.M.; Farahat, E.A.; Eid, E.M.; Ali, E.F. Taif’s Rose (Rosa damascena Mill var. trigentipetala) wastes are a potential candidate for heavy metals remediation from agricultural soil. Agriculture 2022, 12, 1319. [Google Scholar]
- Galal, T.M.; Al-Yasi, H.M.; Fawzy, M.A.; Abdelkader, T.G.; Hamza, R.Z.; Eid, E.M.; Ali, E.F. Evaluation of the phytochemical and pharmacological potential of taif’s rose (Rosa damascena mill var. trigintipetala) for possible recycling of pruning wastes. Life 2022, 12, 273. [Google Scholar]
- Antonkiewicz, J.; Kołodziej, B.; Bielińska, E.J. Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita. Intern. J. Phytoremediat. 2017, 19, 309–318. [Google Scholar] [CrossRef]
- Ramli, N.H.; Hisham, N.E.B.; Said, F.M.; Baharulrazi, N.; Othman, M.H.S. Potential of heavy metal and mould contamination in rose petal tea. Chem. Eng. Trans. 2022, 97, 325–330. [Google Scholar]
- dos Santos, A.M.P.; Silva, E.F.R.; dos Santos, W.N.L.; da Silva, E.G.P.; dos Santos, L.O.; da S. Santos, B.R.; da S. Sauthier, M.C.; dos Santos, W.P.C. Evaluation of minerals, toxic elements and bioactive compounds in rose petals (Rosa spp.) using chemometric tools and Artificial Neural Networks. Microchem. J. 2018, 138, 98–108. [Google Scholar] [CrossRef]
- Li, J.; Ma, L.B.; Liu, J.Z.; Li, X.; Yang, Y.Q.; Tai, X.S.; Zhou FYZang, F. Advanced matter-element extension model and machine learning for source-specific probabilistic health risk assessment of heavy metals/metaloids in soil-rose systems in Kushui, Northwest China. Ecol. Indic. 2025, 170, 113017. [Google Scholar] [CrossRef]
- Ebong, G.A.; Etuk, H.S.; Anweting, I.B.; Ekot, A.E. Relationship between traffic density, metal accumulation, pollution status, and human health problems in adjoining soils and vegetables within the South-South Region of Nigeria. Int. J. Environ. Agric. Biotechnol. 2023, 8, 65–79. [Google Scholar] [CrossRef]
- Oluwole, S.O.; Olubunmi Makinde, S.C.; Yusuf, K.A.; Fajana, O.O.; Odumosu, A.O. Determination of heavy metal contaminants in leafy vegetables cultivated by the road side. Int. J. Eng. Res. Dev. 2013, 7, 1–5. [Google Scholar]
- Bolaji, B.O.; Adejuyigbe, S.B. Vehicle emissions and their effects on the natural environment—A review. J. Ghana Inst. Eng. 2006, 4, 35–41. [Google Scholar]
- Wang, M.; Zhang, H. Accumulation of heavy metals in roadside soil in urban area and the related impacting factors. Int. J. Environ. Res. Public Health 2018, 15, 1064. [Google Scholar] [CrossRef] [PubMed]
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef] [PubMed]
- Krstić, M.; Stupar, M.; Đukić-Ćosić, D.; Baralić, K.; Mračević, S.Đ. Health risk assessment of toxic metals and toxigenic fungi in commercial herbal tea samples from Belgrade, Serbia. J. Food Comp. Anal. 2021, 104, 104159. [Google Scholar] [CrossRef]
- Paya, P.A.; Rodriguez, E.N. Status of Local Soil Contamination in Europe: Revision of the Indicator; Progress in the Management Contaminated Sites in Europe; JRC Publ. Reposts; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Sager, M. Urban soils and road dust—Civilization effects and metal pollution—A review. Environments 2020, 7, 98. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Ravina da Silva, M.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Binner, H.T.; Sullivan, M.A.K.; Jansen, M.E. McNamara. Metals in urban soils of Europe: A systematic review. Sci. Total Environ. 2023, 854, 158734. [Google Scholar] [CrossRef]
- Adamczyk-Szabela, D.; Wolf, W.M. The Impact of soil pH on heavy metals uptake and photosynthesis efficiency in Melissa officinalis, Taraxacum officinalis, Ocimum basilicum. Molecules 2022, 27, 4671. [Google Scholar] [CrossRef]
- Adamczyk-Szabela, D.; Lisowska, K.; Romanowska-Duda, Z.; Wolf, W.M. Combined cadmium-zinc interactions alter manganese, lead, copper uptake by Melissa officinalis. Sci. Rep. 2020, 10, 1675. [Google Scholar] [CrossRef]
- Appleton, J.D.; Cave, M.R. Variation in soil chemistry related to different classes and eras of urbanisation in the London area. Appl. Geochem. 2018, 90, 13–24. [Google Scholar] [CrossRef]
- Cachada, A.; Dias, A.C.; Pato, P.; Mieiro, C.; Rocha-Santos, T.; Pereira, M.E.; Da Silva, E.F.; Duarte, A.C. Major inputs and mobility of potentially toxic elements contamination in urban areas. Environ. Monit. Assess. 2013, 185, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Cicchella, D.; Zuzolo, D.; Albanese, S.; Fedele, L.; Di Tota, I.; Guagliardi, I.; Thiombane, M.; De Vivo, B.; Lima, A. Urban soil contamination in Salerno (Italy): Concentrations and patterns of major, minor, trace and ultra-trace elements in soils. J. Geochem. Explor. 2020, 213, 106519. [Google Scholar] [CrossRef]
- Azam, I.; Sajjad, B.; Sarwar, H.; Javeed, A.; Riaz, A.; Yaseen, W.; Ajaz, H. Study of Heavy metals (lead and magnesium) stress on Rosa indica. Int. J. Agric. Sustain. Dev. 2019, 01, 115–138. [Google Scholar] [CrossRef]
- Steudle, E. The cohesion-tension mechanism and the acquisition of water by plants roots. Ann. Rev. Plant Physiol. Mol. Biol. 2001, 52, 847–875. [Google Scholar] [CrossRef]
- McElrone, A.J.; Choat, B.; Gambetta, G.A.; Brodersen, C.R. Water uptake and transport in vascular plants. Nat. Educ. Knowl. 2013, 4, 6. [Google Scholar]
- Wheeler, T.D.; Stroock, A.D. The transpiration of water at negative pressures in a synthetic tree. Nature 2008, 455, 208–212. [Google Scholar] [CrossRef]
- McDowell, N.G.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef]
- Steudle, E. Transport of water in plants. Environ. Cont. Biol. 2002, 40, 29–37. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements; PWN: Warsaw, Poland, 1999. [Google Scholar]
- Chen, G.; Li, J.; Han, H.; Du, R.; Wang, X. Physiological and molecular mechanisms of plant responses to copper stress. Int. J. Mol. Sci. 2022, 23, 12950. [Google Scholar] [CrossRef]
- Mazzafera, P.; Tezotto, T.; Polacco, J.C. Nickel in Plants. In Encyclopedia of Metalloproteins; Kretsinger, R.H., Uversky, V.N., Permyakov, E.A., Eds.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Priya, A.K.; Muruganandam, M.; Ali, S.S.; Kornaros, M. Clean-up of heavy metals from contaminated soil by phytoremediation: A multidisciplinary and eco-friendly approach. Toxics 2023, 11, 422. [Google Scholar] [CrossRef]
- PN-ISO 10381-4; Soil Quality—Sampling—Part 4: Rules for Procedure During the Research Areas of Natural, Semi-Natural and Cultivated. The International Organization for Standardization (ISO): Geneva, Switzerland, 2007.
- PN-ISO 10390; Agricultural Chemical Analysis of the Soil. Determination of pH. The International Organization for Standardization (ISO): Geneva, Switzerland, 1997.
- ASTMD2974-00; Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. American Society for Testing and Materials: West Conshohocken, PA, USA, 2000.
- Schumacher, B.A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments; United States Environmental Protection Agency, Environmental Sciences Division, National Exposure Research Laboratory: Las Vegas, NV, USA, 2002. [Google Scholar]
- PN-ISO 11259; Soil Quality—Simplified Soil Description. The International Organization for Standardization (ISO): Geneva, Switzerland, 2001.
- Dybczyński, R.; Danko, B.; Kulisa, K.; Maleszewska, E.; Motrenko, H.P.; Samczynski, Z.; Szopa, Z. Preparation and preliminary certification of two new Polish CRMs for inorganic trace analysis. J. Radioanal. Nucl. Chem. 2004, 259, 409–413. [Google Scholar] [CrossRef]
- Kanwar, V.S.; Sharma, A.; Srivastav, A.L.; Rani, L. Phytoremediation of toxic metals present in soil and water environment: A critical review. Environ. Sci. Pollut. Res. Int. 2020, 27, 44835–44860. [Google Scholar] [CrossRef] [PubMed]
- Arole, K.; Velhal, M.; Tajedini, M.; Xavier, G.P.; Bardasz, E.; Green, M.J.; Liang, H. Impacts of particles released from vehicles on environment and health. Tribol. Int. 2023, 184, 108417. [Google Scholar] [CrossRef]
- Ahmad, W.; Alharthy, R.D.; Zubair, M. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 2021, 11, 17006. [Google Scholar] [CrossRef]
- Li, G.; Sun, G.-X.; Ren, Y.; Luo, X.-S.; Zhu, Y.-G. Urban soil and human health: A review. Eur. J. Soil Sci. 2018, 69, 196–215. [Google Scholar] [CrossRef]
- Regulation of the Minister of Environment. Item 1395, 1 August 2016. Available online: https://eli.gov.pl/api/acts/DU/2016/1395/text/O/D20161395.pdf (accessed on 25 May 2025).
- Ichimura, K.Y.; Kawabata, M.; Kishimoto, R.; Goto, K.Y. Shortage of soluble carbohydrates is largely responsible for short vase life of cut ‘Sonia’ rose flowers. J. Jpn. Soc. Hortic. Sci. 2003, 72, 292–298. [Google Scholar] [CrossRef]
- Yamada, K.; Norikoshi, R.; Suzuki, K.; Nishijima, T.; Iman, H.; Ichimura, K. Cell division and expansion growth during rose petal development. J. Jpn. Soc. Hortic. Sci. 2009, 78, 356–362. [Google Scholar] [CrossRef]
- Khoshgoftarmanesh, A.H.; Khademi, H.; Hosseini, F.; Aghajani, R. Influence of additional micronutrient supply on growth, nutritional status and flower quality of three rose cultivars in a soilless culture. J. Plant Nut. 2008, 31, 1543–1554. [Google Scholar] [CrossRef]
- Yruela, I. Copper in plants: Acquisition, transport and interactions. Funct. Plant Biol. 2009, 36, 409–430. [Google Scholar] [CrossRef]
- Norikoshi, R.; Shibata, T.; Niki, T.; Ichimura, K. Sucrose treatment enlarges petal cell size and increases vacuolar sugar concentrations in cut rose flowers. Postharvest Biol. Technol. 2016, 116, 59–65. [Google Scholar] [CrossRef]
- Norikoshi, R.; Shibata, T.; Ichimura, K. Cell division and expansion in petals during flower development and opening in Eustoma grandiflorum. Hortic. J. 2015, 85, 154–160. [Google Scholar] [CrossRef]
- Beauzamy, L.; Nakayama, N.; Boudaoud, A. Flowers under pressure: Ins and outs of turgor regulation in development. Ann. Bot. 2014, 114, 1517–1533. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.Y.; Reid, M.S. Changes in carbohydrates and osmotic potential during rhythmic expansion of rose petals. J. Am. Soc. Hortic. Sci. 1988, 113, 884–888. [Google Scholar] [CrossRef]
- Horibe, T.; Yamada, K. Petal growth physiology of cut rose flowers: Progress and future prospects. J. Hortic. Res. 2017, 25, 5–18. [Google Scholar] [CrossRef]
- Norikoshi, R.; Kohata, K.; Shimizu-Yumoto, H.; Goto, R.; Ichimura, K. Identification of soluble carbohydrates and their subcellular concentrations in petals during flower opening in Eustoma grandiflorum. Hortic. J. 2016, 85, 238–247. [Google Scholar] [CrossRef]
- Ohmiya, A.; Hirashima, M.; Yagi, M.; Tanase, K.; Yamamizo, C. Identification of genes associated with chlorophyll accumulation in flower petals. PLoS ONE 2014, 9, 12. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef]
- Sakuta, M.; Ohmiya, A. Pigment biosynthesis II: Betacyanins and carotenoids. In Plant Metabolism and Biotechnology; Crozier, A., Ashihara, H., Eds.; John Wiley & Sons. Ltd.: West Sussex, UK, 2011; pp. 343–371. [Google Scholar]
- Kim, J.; Eichacker, L.A.; Rudiger, W.; Mullet, J.E. Chlorophyll regulates accumulation of the plastidencoded chlorophyll proteins P700 and D1 by increasing apoprotein stability. Plant Physiol. 1994, 104, 907–916. [Google Scholar] [CrossRef]
- Croce, R. Chlorophyll-binding proteins of higher plants and cyanobacteria. Photosynthesis 2012, 34, 127–149. [Google Scholar]
- Weiss, D.; Shomer-Ilan, A.; Vainstein, A.; Halevy, H. Photosynthesis carbon fixation in the corollas of Petunia hybrida. Physiol. Plant 1990, 78, 345–350. [Google Scholar] [CrossRef]
- Lysenko, D. Anthocyanin-dependent anoxygenic photosynthesis in colored flower petals? Sci. Rep. 2013, 3, 3373. [Google Scholar] [CrossRef] [PubMed]
- Cavallini-Speisser, Q.; Morel, P.; Monniaux, M. Petal Cellular Identities. Front. Plant Sci. 2021, 12, 745507. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk-Szabela, D.; Wolf, W.M. The influence of copper and zinc on photosynthesis and phenolic levels in basil (Ocimum basilicum L.), borage (Borago officinalis L.), common Nettle (Urtica dioica L.) and peppermint (Mentha piperita L.). Int. J. Mol. Sci. 2024, 25, 3612. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk-Szabela, D.; Lisowska, K.; Romanowska-Duda, Z.; Wolf, W.M. Associated effects of cadmium and copper alter the heavy metals uptake by Melissa offcinalis. Molecules 2019, 24, 2458. [Google Scholar] [CrossRef]
Location Number | pH Average Value | Organic Matter [%] |
---|---|---|
1 | 7.59 | 3.51 |
2 | 7.06 | 4.22 |
3 | 7.48 | 4.03 |
4 | 7.64 | 3.18 |
5 | 7.39 | 3.96 |
6 | 7.48 | 4.11 |
7 | 7.62 | 4.87 |
8 | 7.61 | 3.42 |
9 | 7.37 | 4.57 |
10 | 7.55 | 3.77 |
11 | 7.55 | 4.20 |
12 | 7.06 | 4.48 |
13 | 6.82 | 3.13 |
Location Number | Variety | Metal Content of Rose Petals μg·g−1 | |||||
---|---|---|---|---|---|---|---|
Cu | Zn | Cd | Ni | Pb | Cr | ||
1 | Gebrüder Grim | 5.24 ± 0.37 | 27.0 ± 1.5 | <0.0020 | 0.68 ± 0.03 | 0.26 ± 0.01 | 0.11 ± 0.002 |
2 | Artemis | 3.93 ± 0.18 | 18.2 ± 0.9 | 0.0281 ± 0.0006 | 0.78 ± 0.05 | 0.78 ± 0.05 | 0.33 ± 0.04 |
Apache | 4.08 ± 0.15 | 15.1 ± 0.6 | 0.0123 ± 0.0003 | 0.39 ± 0.04 | 0.21 ± 0.03 | 0.068 ± 0.004 | |
Charmant | 5.94 ± 0.15 | 13.5 ± 0.3 | 0.0025 ± 0.0001 | 0.43 ± 0.05 | 0.36 ± 0.05 | 0.14 ± 0.02 | |
Cherry Girl | 4.88 ± 0.11 | 19.4 ± 0.4 | <0.0020 | 0.12 ± 0.02 | 0.35 ± 0.03 | 0.054 ± 0.002 | |
Gebrüder Grim | 6.28 ± 0.29 | 22.4 ± 0.5 | <0.0020 | 0.52 ± 0.03 | 0.30 ± 0.01 | 0.017 ± 0.003 | |
Bad Birnbach | 5.97 ± 0.16 | 13.3 ± 0.7 | <0.0020 | 0.39 ± 0.05 | 0.11 ± 0.03 | 0.059 ± 0.005 | |
Orient Express | 3.21 ± 0.21 | 17.2 ± 0.4 | 0.0023 ± 0.0001 | 0.56 ± 0.04 | 0.31 ± 0.03 | 0.21 ± 0.02 | |
Rosa rugosa “Hansa” | 4.76 ± 0.12 | 20.1 ± 0.5 | 0.0050 ± 0.0001 | 0.31 ± 0.03 | <0.0023 | 0.022 ± 0.002 | |
Diamant | 4.49 ± 0.20 | 11.7 ± 0.2 | 0.0024 ± 0.0001 | 0.21 ± 0.01 | <0.0023 | 0.038 ± 0.002 | |
Lady Kutno | 8.07 ± 0.46 | 31.7 ± 1.1 | <0.0020 | 1.21 ± 0.02 | 0.39 ± 0.02 | 0.025 ± 0.003 | |
3 | Nina | 6.84 ± 0.30 | 22.5 ± 0.6 | 0.012 ± 0.0002 | 0.43 ± 0.03 | 0.36 ± 0.02 | 0.12 ± 0.01 |
Queen Elizabeth | 2.30 ± 0.10 | 13.8 ± 0.3 | <0.0020 | 0.056 ± 0.001 | 0.35 ± 0.02 | 0.011 ± 0.001 | |
4 | Apache | 4.91 ± 0.20 | 12.4 ± 0.3 | 0.0049 ± 0.0001 | 0.80 ± 0.04 | 0.017 ± 0.001 | 0.14 ± 0.01 |
Bad Birnbach | 6.02 ± 0.17 | 15.4 ± 0.8 | 0.0025 ± 0.0001 | 0.35 ± 0.04 | 0.15 ± 0.02 | 0.12 ± 0.02 | |
5 | Artemis | 3.47 ± 0.12 | 13.8 ± 0.2 | 0.0071 ± 0.001 | 0.23 ± 0.01 | 1.03 ± 0.02 | 0.094 ± 0.002 |
6 | Marathon | 7.02 ± 0.43 | 20.2 ± 0.4 | 0.0050 ± 0.0001 | 1.04 ± 0.05 | 0.91 ± 0.05 | 0.23 ± 0.01 |
7 | Nina | 3.35 ± 0.13 | 15.9 ± 0.3 | <0.0020 | 0.37 ± 0.02 | 0.017 ± 0.001 | 0.098 ± 0.005 |
Queen Elizabeth | 3.99 ± 0.08 | 14.6 ± 0.2 | 0.0025 ± 0.0001 | 0.042 ± 0.001 | 0.24 ± 0.01 | 0.023 ± 0.001 | |
8 | Cherry Girl | 5.89 ± 0.19 | 14.2 ± 0.3 | 0.0073 ± 0.0001 | 0.41 ± 0.03 | 0.39 ± 0.02 | 0.24 ± 0.02 |
Diamant | 6.09 ± 0.31 | 16.8 ± 0.4 | 0.0049 ± 0.0001 | 0.28 ± 0.01 | 0.54 ± 0.03 | 0.37 ± 0.01 | |
Rosa rugosa “Hansa” | 6.53 ± 0.37 | 17.2 ± 0.4 | 0.0025 ± 0.0001 | 0.15 ± 0.01 | 0.11 ± 0.008 | 0.020 ± 0.001 | |
Orient Express | 8.06 ± 0.61 | 19.4 ± 0.5 | 0.0024 ± 0.0001 | 0.37 ± 0.02 | 0.23 ± 0.01 | 0.17± 0.01 | |
9 | Marathon | 3.94 ± 0.11 | 16.7 ± 0.3 | 0.0025 ± 0.0001 | 0.43 ± 0.03 | 0.39 ± 0.02 | 0.32 ± 0.02 |
Charmant | 6.13 ± 0.18 | 14.9 ± 0.3 | <0.0020 | 0.25 ± 0.01 | 0.17 ± 0.007 | 0.097 ± 0.006 | |
10 | Gebrüder Grim | 8.28 ± 0.24 | 27.0 ± 0.5 | 0.0049 ± 0.0001 | 0.35 ± 0.02 | 0.56 ± 0.03 | 0.084 ± 0.007 |
Bad Birnbach | 3.37 ± 0.35 | 13.9 ± 0.8 | 0.0025 ± 0.0001 | 0.55 ± 0.06 | 0.12 ± 0.03 | 0.10 ± 0.02 | |
Lady Kutno | 8.79 ± 0.45 | 28.0 ± 1.7 | 0.0023 ± 0.0001 | 1.21 ± 0.03 | 0.038 ± 0.002 | 0.10 ± 0.03 | |
11 | Bad Birnbach | 6.10 ± 0.36 | 14.7 ± 0.7 | 0.0025 ± 0.0001 | 0.41 ± 0.03 | 0.099 ± 0.01 | 0.084 ± 0.010 |
12 | Gebrüder Grim | 6.04 ± 0.15 | 15.5 ± 0.3 | 0.0025 ± 0.0001 | 0.23 ± 0.01 | 0.60 ± 0.04 | 0.056 ± 0.006 |
13 | Lady Kutno | 3.75 ± 0.32 | 18.8 ± 0.4 | <0.0020 | 0.13 ± 0.02 | <0.0023 | <0.0030 |
Cu | Zn | Ni | Pb | Cr | |
---|---|---|---|---|---|
Bad Birnbach | F = 111.3649 p = 6.22 × 10−11 | F = 4.8588 p = 1.37 × 10−2 | F = 12.6996 p = 1.68 × 10−4 | F = 2.5637 p = 9.11 × 10−2 | F = 12.3475 p = 1.96 × 10−4 |
Gebrüder Grim | F = 105.7409 p = 9.23 × 10−11 | F = 284.2421 p = 4.38 × 10−14 | F = 73.3449 p = 1.44 × 10−9 | F = 78.0890 p = 9.05 × 10−10 | F = 89.6899 p = 3.20 × 10−10 |
Lady Kutno | F = 210.7356 p = 4.50 × 10−10 | F = 130.8882 p = 7.09 × 10−9 | F = 3124.50 p = 4.96 × 10−17 | F = 2685.15 p = 1.23 × 10−16 | F = 51.0783 p = 1.35 × 10−6 |
Cu | Zn | Ni | Pb | Cr |
---|---|---|---|---|
F = 186.0752 p = 9.38 × 10−30 | F = 285.5443 p = 2.16 × 10−33 | F = 263.7759 p = 1.03 × 10−32 | F = 183.1288 p = 1.28 × 10−29 | F = 143.6139 p = 1.42 × 10−27 |
Location Number | Rose Variety | BAF(p) Factors |
---|---|---|
1 | Gebrüder Grim | Cu > Zn > Ni > Cr > Pb > Cd |
2 | Artemis | Cu > Zn > Ni > Cd > Cr > Pb |
Apache | Cu > Zn > Ni > Cd > Cr > Pb | |
Charmant | Cu > Zn > Ni > Cr > Pb > Cd | |
Cherry Girl | Cu > Zn > Ni > Cr > Pb > Cd | |
Gebrüder Grim | Cu > Zn > Ni > Pb > Cr > Cd | |
Bad Birnbach | Cu > Zn > Ni > Cr > Pb > Cd | |
Orient Express | Cu > Zn > Ni > Cr > Pb > Cd | |
Rosa rugosa “Hansa” | Cu > Zn > Ni > Cd > Cr > Pb | |
Diamant | Cu > Zn > Ni > Cr > Cd > Pb | |
Lady Kutno | Cu > Zn > Ni > Pb > Cr > Cd | |
3 | Nina | Cu > Zn > Ni > Pb > Cr > Cd |
Queen Elizabeth | Zn > Cu > Pb >Ni > Cr > Cd | |
4 | Apache | Cu > Zn > Ni > Cr > Cd > Pb |
Bad Birnbach | Cu > Zn > Ni > Cr > Cd > Pb | |
5 | Artemis | Cu > Zn > Ni > Pb > Cr > Cd |
6 | Marathon | Ni > Cu > Zn > Cr > Pb > Cd |
7 | Nina | Zn > Cu > Ni > Cr > Pb > Cd |
Queen Elizabeth | Zn > Cu > Ni > Cr > Pb > Cd | |
8 | Cherry Girl | Cu > Zn > Ni > Cr > Cd > Pb |
Diamant | Cu > Cr > Zn > Ni > Pb > Cd | |
Rosa rugosa “Hansa” | Cu > Zn > Ni > Cr > Pb = Cd | |
Orient Express | Cu > Zn > Ni > Cr > Pb > Cd | |
9 | Marathon | Cu > Ni > Zn > Cr > Pb > Cd |
Charmant | Cu > Zn > Ni > Cr > Pb > Cd | |
10 | Gebrüder Grim | Cu > Zn > Ni > Cr > Pb > Cd |
Bad Birnbach | Cu > Zn > Ni > Cr > Cd > Pb | |
Lady Kutno | Cu > Zn > Ni > Cr > Cd > Pb | |
11 | Bad Birnbach | Cu > Zn > Ni > Cr > Cd > Pb |
12 | Gebrüder Grim | Cu > Zn > Ni > Pb > Cr > Cd |
13 | Lady Kutno | Cu > Zn > Ni > Cr > Cd = Pb |
Location Number | Bioaccumulation Factor (p) |
---|---|
Gebrüder Grim | |
1 | Cu > Zn > Ni > Cr > Pb > Cd |
2 | Cu > Zn > Ni > Pb > Cr > Cd |
10 | Cu > Zn > Ni > Cr > Pb > Cd |
12 | Cu > Zn > Ni > Pb > Cr > Cd |
Bad Birnbach | |
2 | Cu > Zn > Ni > Cr > Pb > Cd |
4 | Cu > Zn > Ni > Cr > Pb > Cd |
10 | Cu > Zn > Ni > Cr > Cd > Pb |
11 | Cu > Zn > Ni > Cr > Cd > Pb |
Lady Kutno | |
2 | Cu > Zn > Ni > Pb > Cr > Cd |
10 | Cu > Zn > Ni > Cr > Cd > Pb |
11 | Cu > Zn > Ni > Cr > Cd > Pb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krakowiak, D.; Adamczyk-Szabela, D.; Szczesio, M.; Wolf, W.M. Roses in the City Environment: A Heavy Metals Case Study. Sustainability 2025, 17, 4939. https://doi.org/10.3390/su17114939
Krakowiak D, Adamczyk-Szabela D, Szczesio M, Wolf WM. Roses in the City Environment: A Heavy Metals Case Study. Sustainability. 2025; 17(11):4939. https://doi.org/10.3390/su17114939
Chicago/Turabian StyleKrakowiak, Dawid, Dorota Adamczyk-Szabela, Małgorzata Szczesio, and Wojciech M. Wolf. 2025. "Roses in the City Environment: A Heavy Metals Case Study" Sustainability 17, no. 11: 4939. https://doi.org/10.3390/su17114939
APA StyleKrakowiak, D., Adamczyk-Szabela, D., Szczesio, M., & Wolf, W. M. (2025). Roses in the City Environment: A Heavy Metals Case Study. Sustainability, 17(11), 4939. https://doi.org/10.3390/su17114939