Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,085)

Search Parameters:
Keywords = Cross River

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
102 pages, 29310 KiB  
Article
“We Begin in Water, and We Return to Water”: Track Rock Tradition Petroglyphs of Northern Georgia and Western North Carolina
by Johannes H. Loubser
Arts 2025, 14(4), 89; https://doi.org/10.3390/arts14040089 (registering DOI) - 6 Aug 2025
Abstract
Petroglyph motifs from 23 sites and 37 panels in northern Georgia and western North Carolina foothills and mountains are analyzed within their archaeological, ethnographic, and landscape contexts. The Track Rock Tradition comprises 10 chronologically sequenced marking categories: (1) Cupules/Meanders/Open Circles; (2) Soapstone Extraction [...] Read more.
Petroglyph motifs from 23 sites and 37 panels in northern Georgia and western North Carolina foothills and mountains are analyzed within their archaeological, ethnographic, and landscape contexts. The Track Rock Tradition comprises 10 chronologically sequenced marking categories: (1) Cupules/Meanders/Open Circles; (2) Soapstone Extraction cars; (3) Vulva Shapes; (4) Figures; (5) Feet/Hands/Tracks; (6) Nested Circles; (7) Cross-in-Circles; (8) Spirals; (9) Straight Lines; and (10) Thin Incised Lines. Dating spans approximately 3800 years. Early cupules and meanders predate 3000 years ago, truncated by Late Archaic soapstone extraction. Woodland period (3000–1050 years ago) motifs include vulva shapes, figures, feet, tracks, and hands. Early Mississippian concentric circles date to 1050–600 years ago, while Middle Mississippian cross-in-circles span 600–350 years ago. Late Mississippian spirals (350–200 years ago) and post-contact metal tool incisions represent the most recent phases. The Track Rock Tradition differs from western Trapp and eastern Hagood Mill traditions. Given the spatial overlap with Iroquoian-speaking Cherokee territory, motifs are interpreted through Cherokee beliefs, supplemented by related Muskogean Creek ethnography. In Cherokee cosmology, the matrilocal Thunderers hierarchy includes the Female Sun/Male Moon, Selu (Corn Mother)/Kanati (Lucky Hunter), Medicine Woman/Judaculla (Master of Game), and Little People families. Ritual practitioners served as intermediaries between physical and spirit realms through purification, fasting, body scratching, and rock pecking. Meanders represent trails, rivers, and lightning. Cupules and lines emphasize the turtle appearance of certain rocks. Vulva shapes relate to fertility, while tracks connect to life-giving abilities. Concentric circles denote townhouses; cross-in-circles and spirals represent central fires. The tradition shows continuity in core beliefs despite shifting emphases from hunting (Woodland) to corn cultivation (Mississippian), with petroglyphs serving as necessary waypoints for spiritual supplicants. Full article
(This article belongs to the Special Issue Advances in Rock Art Studies)
Show Figures

Figure 1

22 pages, 3135 KiB  
Article
Nonstationary Streamflow Variability and Climate Drivers in the Amur and Yangtze River Basins: A Comparative Perspective Under Climate Change
by Qinye Ma, Jue Wang, Nuo Lei, Zhengzheng Zhou, Shuguang Liu, Aleksei N. Makhinov and Aleksandra F. Makhinova
Water 2025, 17(15), 2339; https://doi.org/10.3390/w17152339 (registering DOI) - 6 Aug 2025
Abstract
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing [...] Read more.
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing long-term streamflow nonstationarity and its drivers at two key stations—Khabarovsk on the Amur River and Datong on the Yangtze River—representing distinct hydroclimatic settings. We utilized monthly discharge records, meteorological data, and large-scale climate indices to apply trend analysis, wavelet transform, percentile-based extreme diagnostics, lagged random forest regression, and slope-based attribution. The results show that Khabarovsk experienced an increase in winter baseflow from 513 to 1335 m3/s and a notable reduction in seasonal discharge contrast, primarily driven by temperature and cold-region reservoir regulation. In contrast, Datong displayed increased discharge extremes, with flood discharges increasing by +71.9 m3/s/year, equivalent to approximately 0.12% of the mean flood discharge annually, and low discharges by +24.2 m3/s/year in recent decades, shaped by both climate variability and large-scale hydropower infrastructure. Random forest models identified temperature and precipitation as short-term drivers, with ENSO-related indices showing lagged impacts on streamflow variability. Attribution analysis indicated that Khabarovsk is primarily shaped by cold-region reservoir operations in conjunction with temperature-driven snowmelt dynamics, while Datong reflects a combined influence of both climate variability and regulation. These insights may provide guidance for climate-responsive reservoir scheduling and basin-specific regulation strategies, supporting the development of integrated frameworks for adaptive water management under climate change. Full article
(This article belongs to the Special Issue Risks of Hydrometeorological Extremes)
Show Figures

Figure 1

20 pages, 5967 KiB  
Article
Inundation Modeling and Bottleneck Identification of Pipe–River Systems in a Highly Urbanized Area
by Jie Chen, Fangze Shang, Hao Fu, Yange Yu, Hantao Wang, Huapeng Qin and Yang Ping
Sustainability 2025, 17(15), 7065; https://doi.org/10.3390/su17157065 - 4 Aug 2025
Abstract
The compound effects of extreme climate change and intensive urban development have led to more frequent urban inundation, highlighting the urgent need for the fine-scale evaluation of stormwater drainage system performance in high-density urban built-up areas. A typical basin, located in Shenzhen, was [...] Read more.
The compound effects of extreme climate change and intensive urban development have led to more frequent urban inundation, highlighting the urgent need for the fine-scale evaluation of stormwater drainage system performance in high-density urban built-up areas. A typical basin, located in Shenzhen, was selected, and a pipe–river coupled SWMM was developed and calibrated via a genetic algorithm to simulate the storm drainage system. Design storm scenario analyses revealed that regional inundation occurred in the central area of the basin and the enclosed culvert sections of the midstream river, even under a 0.5-year recurrence period, while the downstream open river channels maintained a substantial drainage capacity under a 200-year rainfall event. To systematically identify bottleneck zones, two novel metrics, namely, the node cumulative inundation volume and the conduit cumulative inundation length, were proposed to quantify the local inundation severity and spatial interactions across the drainage network. Two critical bottleneck zones were selected, and strategic improvement via the cross-sectional expansion of pipes and river culverts significantly enhanced the drainage efficiency. This study provides a practical case study and transferable technical framework for integrating hydraulic modeling, spatial analytics, and targeted infrastructure upgrades to enhance the resilience of drainage systems in high-density urban environments, offering an actionable framework for sustainable urban stormwater drainage system management. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

16 pages, 1207 KiB  
Article
Study of Multi-Stakeholder Mechanism in Inter-Provincial River Basin Eco-Compensation: Case of the Inland Rivers of Eastern China
by Zhijie Cao and Xuelong Chen
Sustainability 2025, 17(15), 7057; https://doi.org/10.3390/su17157057 (registering DOI) - 4 Aug 2025
Viewed by 37
Abstract
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research [...] Read more.
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research reveals that the joint participation of multiple stakeholders is crucial to achieving the goals of ecological compensation in river basins. The government plays a significant role in macro-guidance, financial support, policy guarantees, supervision, and management. It promotes the comprehensive implementation of ecological environmental protection by formulating relevant laws and regulations, guiding the public to participate in ecological conservation, and supervising and punishing pollution behaviors. The public, serving as the main force, forms strong awareness and behavioral habits of ecological protection through active participation in environmental protection, monitoring, and feedback. As participants, enterprises contribute to industrial transformation and green development by improving resource utilization efficiency, reducing pollution emissions, promoting green industries, and participating in ecological restoration projects. Scientific research institutions, as technology enablers, have effectively enhanced governance efficiency through technological research and innovation, ecosystem value accounting to provide decision-making support, and public education. Social organizations, as facilitators, have injected vitality and innovation into watershed governance by extensively mobilizing social forces and building multi-party collaboration platforms. Communities, as supporters, have transformed ecological value into economic benefits by developing characteristic industries such as eco-agriculture and eco-tourism. Based on the above findings, further recommendations are proposed to mobilize the enthusiasm of upstream communities and encourage their participation in ecological compensation, promote the market-oriented operation of ecological compensation mechanisms, strengthen cross-regional cooperation to establish joint mechanisms, enhance supervision and evaluation, and establish a sound benefit-sharing mechanism. These recommendations provide theoretical support and practical references for ecological compensation worldwide. Full article
Show Figures

Figure 1

32 pages, 1671 KiB  
Article
Modelling the Impact of Climate Change on Runoff in a Sub-Regional Basin
by Ndifon M. Agbiji, Jonah C. Agunwamba and Kenneth Imo-Imo Israel Eshiet
Geosciences 2025, 15(8), 289; https://doi.org/10.3390/geosciences15080289 - 1 Aug 2025
Viewed by 215
Abstract
This study focuses on developing a climate-flood model to investigate and interpret the relationship and impact of climate on runoff/flooding at a sub-regional scale using multiple linear regression (MLR) with 30 years of hydro-climatic data for the Cross River Basin, Nigeria. Data were [...] Read more.
This study focuses on developing a climate-flood model to investigate and interpret the relationship and impact of climate on runoff/flooding at a sub-regional scale using multiple linear regression (MLR) with 30 years of hydro-climatic data for the Cross River Basin, Nigeria. Data were obtained from Nigerian Meteorological Agency (NIMET) for the following climatic parameters: annual average rainfall, maximum and minimum temperatures, humidity, duration of sunlight (sunshine hours), evaporation, wind speed, soil temperature, cloud cover, solar radiation, and atmospheric pressure. These hydro-meteorological data were analysed and used as parameters input to the climate-flood model. Results from multiple regression analyses were used to develop climate-flood models for all the gauge stations in the basin. The findings suggest that at 95% confidence, the climate-flood model was effective in forecasting the annual runoff at all the stations. The findings also identified the climatic parameters that were responsible for 100% of the runoff variability in Calabar (R2 = 1.000), 100% the runoff in Uyo (R2 = 1.000), 98.8% of the runoff in Ogoja (R2 = 0.988), and 99.9% of the runoff in Eket (R2 = 0.999). Based on the model, rainfall depth is the only climate parameter that significantly predicts runoff at 95% confidence intervals in Calabar, while in Ogoja, rainfall depth, temperature, and evaporation significantly predict runoff. In Eket, rainfall depth, relative humidity, solar radiation, and soil temperatures are significant predictors of runoff. The model also reveals that rainfall depth and evaporation are significant predictors of runoff in Uyo. The outcome of the study suggests that climate change has impacted runoff and flooding within the Cross River Basin. Full article
Show Figures

Figure 1

20 pages, 1838 KiB  
Article
Study on the Temporal and Spatial Evolution of Market Integration and Influencing Factors in the Yellow River Basin
by Chao Teng, Xumin Jiao, Zhenxing Jin and Chengxin Wang
Sustainability 2025, 17(15), 6920; https://doi.org/10.3390/su17156920 - 30 Jul 2025
Viewed by 165
Abstract
Enhancing market integration levels is crucial for advancing sustainable regional collaborative development and achieving ecological protection and high-quality development goals within the Yellow River Basin, fostering a balance between economic efficiency, social equity, and environmental resilience. This study analyzed the retail price data [...] Read more.
Enhancing market integration levels is crucial for advancing sustainable regional collaborative development and achieving ecological protection and high-quality development goals within the Yellow River Basin, fostering a balance between economic efficiency, social equity, and environmental resilience. This study analyzed the retail price data of goods from prefecture-level cities in the Yellow River Basin from 2010 to 2022, employing the relative price method to measure the market integration index. Additionally, it examined the temporal and spatial evolution patterns and driving factors using the Dagum Gini coefficient and panel regression models. The results indicate the following. (1) The market integration index of the Yellow River Basin shows a fluctuating upward trend, with an average annual growth rate of 9.8%. The spatial pattern generally reflects a situation where the east is relatively high and the west is relatively low, as well as the south being higher than the north. (2) Regional disparities are gradually diminishing, with the overall Gini coefficient decreasing from 0.153 to 0.104. However, internal differences within the downstream and midstream areas have become prominent, and contribution rate analysis reveals that super-variable density has replaced between-group disparities as the primary source. (3) Upgrading the industrial structure and enhancing the level of economic development are the core driving forces, while financial support and digital infrastructure significantly accelerate the integration process. Conversely, the level of openness exhibits a phase-specific negative impact. We propose policy emphasizing the need to strengthen development in the upper reach of the Yellow River Basin, further improve interregional collaborative innovation mechanisms, and enhance cross-regional coordination among multicenter network nodes. Full article
Show Figures

Figure 1

25 pages, 1658 KiB  
Article
Energy-Related Carbon Emissions in Mega City in Developing Country: Patterns and Determinants Revealed by Hong Kong
by Fei Wang, Changlong Sun, Si Chen, Qiang Zhou and Changjian Wang
Sustainability 2025, 17(15), 6854; https://doi.org/10.3390/su17156854 - 28 Jul 2025
Viewed by 230
Abstract
Cities serve as the primary arenas for achieving the strategic objectives of “carbon peak and carbon neutrality”. This study employed the LMDI method to systematically analyze the evolution trend of energy-related carbon emissions in Hong Kong and their influencing factors from 1980 to [...] Read more.
Cities serve as the primary arenas for achieving the strategic objectives of “carbon peak and carbon neutrality”. This study employed the LMDI method to systematically analyze the evolution trend of energy-related carbon emissions in Hong Kong and their influencing factors from 1980 to 2023. The main findings are as follows: (1) Hong Kong’s energy consumption structure remains dominated by coal and oil. Influenced by energy prices, significant shifts in this structure occurred across different periods. Imported electricity from mainland China, in particular, has exerted a promoting effect on the optimization of its energy consumption mix. (2) Economic output and population concentration are the primary drivers of increased carbon emissions. However, the contribution of economic growth to carbon emissions has gradually weakened in recent years due to a lack of new growth drivers. (3) Energy consumption intensity, energy consumption structure, and carbon intensity are the primary influencing factors in curbing carbon emissions. Among these, the carbon reduction impact of energy consumption intensity is the most significant. Hong Kong should continue to adopt a robust strategy for controlling total energy consumption to effectively mitigate carbon emissions. Additionally, it should remain vigilant regarding the potential implications of future energy price fluctuations. It is also essential to sustain cross-border energy cooperation, primarily based on electricity imports from the Pearl River Delta, while simultaneously expanding international and domestic supply channels for natural gas. Full article
(This article belongs to the Special Issue Low Carbon Energy and Sustainability—2nd Edition)
Show Figures

Figure 1

25 pages, 8105 KiB  
Article
Monitoring Critical Mountain Vertical Zonation in the Surkhan River Basin Based on a Comparative Analysis of Multi-Source Remote Sensing Features
by Wenhao Liu, Hong Wan, Peng Guo and Xinyuan Wang
Remote Sens. 2025, 17(15), 2612; https://doi.org/10.3390/rs17152612 - 27 Jul 2025
Viewed by 332
Abstract
Amidst the intensification of global climate change and the increasing impacts of human activities, ecosystem patterns and processes have undergone substantial transformations. The distribution and evolutionary dynamics of mountain ecosystems have become a focal point in ecological research. The Surkhan River Basin is [...] Read more.
Amidst the intensification of global climate change and the increasing impacts of human activities, ecosystem patterns and processes have undergone substantial transformations. The distribution and evolutionary dynamics of mountain ecosystems have become a focal point in ecological research. The Surkhan River Basin is located in the transitional zone between the arid inland regions of Central Asia and the mountain systems, where its unique physical and geographical conditions have shaped distinct patterns of vertical zonation. Utilizing Landsat imagery, this study applies a hierarchical classification approach to derive land cover classifications within the Surkhan River Basin. By integrating the NDVI (normalized difference vegetation index) and DEM (digital elevation model (30 m SRTM)), an “NDVI-DEM-Land Cover” scatterplot is constructed to analyze zonation characteristics from 1980 to 2020. The 2020 results indicate that the elevation boundary between the temperate desert and mountain grassland zones is 1100 m, while the boundary between the alpine cushion vegetation zone and the ice/snow zone is 3770 m. Furthermore, leveraging DEM and LST (land surface temperature) data, a potential energy analysis model is employed to quantify potential energy differentials between adjacent zones, enabling the identification of ecological transition areas. The potential energy analysis further refines the transition zone characteristics, indicating that the transition zone between the temperate desert and mountain grassland zones spans 1078–1139 m with a boundary at 1110 m, while the transition between the alpine cushion vegetation and ice/snow zones spans 3729–3824 m with a boundary at 3768 m. Cross-validation with scatterplot results confirms that the scatterplot analysis effectively delineates stable zonation boundaries with strong spatiotemporal consistency. Moreover, the potential energy analysis offers deeper insights into ecological transition zones, providing refined boundary identification. The integration of these two approaches addresses the dimensional limitations of traditional vertical zonation studies, offering a transferable methodological framework for mountain ecosystem research. Full article
(This article belongs to the Special Issue Temporal and Spatial Analysis of Multi-Source Remote Sensing Images)
Show Figures

Figure 1

41 pages, 4553 KiB  
Review
Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review
by Yue Li, Yihui Li, Siyuan Zhang, Tianyi Gao, Zhaoyi Gao, Chin Wei Lai, Ping Xiang and Fengqi Yang
Toxics 2025, 13(8), 616; https://doi.org/10.3390/toxics13080616 - 24 Jul 2025
Viewed by 751
Abstract
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist [...] Read more.
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist in understanding their spatiotemporal distribution, cross-media migration mechanisms, and cascading ecotoxicological consequences. This review systematically investigates the global distribution patterns of ECs in aquatic environments over the past five years and evaluates their potential ecological risks. Furthermore, it examines the performance of various treatment technologies, focusing on economic cost, efficiency, and environmental sustainability. Methodologically aligned with PRISMA 2020 guidelines, this study implements dual independent screening protocols, stringent inclusion–exclusion criteria (n = 327 studies). Key findings reveal the following: (1) Occurrences of ECs show geographical clustering in highly industrialized river basins, particularly in Asia (37.05%), Europe (24.31%), and North America (14.01%), where agricultural pharmaceuticals and fluorinated compounds contribute disproportionately to environmental loading. (2) Complex transboundary pollutant transport through atmospheric deposition and oceanic currents, coupled with compound-specific partitioning behaviors across water–sediment–air interfaces. (3) Emerging hybrid treatment systems (e.g., catalytic membrane bioreactors, plasma-assisted advanced oxidation) achieve > 90% removal for recalcitrant ECs, though requiring 15–40% cost reductions for scalable implementation. This work provides actionable insights for developing adaptive regulatory frameworks and advancing green chemistry principles in environmental engineering practice. Full article
Show Figures

Graphical abstract

23 pages, 2437 KiB  
Article
From Farmworkers to Urban Residents: Mapping Multi-Class Pesticide Exposure Gradients in Morocco via Urinary Biomonitoring
by Zineb Ben Khadda, Andrei-Flavius Radu, Souleiman El Balkhi, Fagroud Mustapha, Yahya El Karmoudi, Gabriela Bungau, Pierre Marquet, Tarik Sqalli Houssaini and Sanae Achour
J. Xenobiot. 2025, 15(4), 120; https://doi.org/10.3390/jox15040120 - 23 Jul 2025
Viewed by 334
Abstract
Pesticide exposure gradients between occupational, para-occupational, and general populations remain poorly characterized in North African agricultural contexts. This study evaluates urinary pesticide levels among farmers, indirectly exposed individuals, and a control group in Morocco’s Fez-Meknes region. A cross-sectional survey measured pesticide concentrations using [...] Read more.
Pesticide exposure gradients between occupational, para-occupational, and general populations remain poorly characterized in North African agricultural contexts. This study evaluates urinary pesticide levels among farmers, indirectly exposed individuals, and a control group in Morocco’s Fez-Meknes region. A cross-sectional survey measured pesticide concentrations using LC-MS/MS in urine samples collected from 154 adults residing in both rural and urban areas. A questionnaire was used to gather information from participants regarding factors that may elevate the risk of pesticide exposure. The results revealed that farmers exhibited the highest concentrations of pesticides in their urine, including compounds classified as Ia/Ib by the World Health Organization. Indirectly exposed individuals showed moderate levels of contamination, with notable detections such as dichlofluanid (22.13 µg/L), while the control group had residual traces of neonicotinoids, notably imidacloprid (2.05 µg/L). Multivariate analyses revealed several sociodemographic factors significantly associated with increased pesticide exposure. The main risk factors identified included low education, residence in an agricultural area, and the consumption of untreated water (wells/rivers). Conversely, wearing personal protective equipment was associated with reduced urinary concentrations. This study highlights intense occupational exposure among farmers, secondary environmental contamination among residents living near treated areas, and the widespread dispersion of pesticide residues into urban areas. Full article
Show Figures

Figure 1

11 pages, 332 KiB  
Proceeding Paper
Water-Level Forecasting Based on an Ensemble Kalman Filter with a NARX Neural Network Model
by Jackson B. Renteria-Mena, Douglas Plaza and Eduardo Giraldo
Eng. Proc. 2025, 101(1), 2; https://doi.org/10.3390/engproc2025101002 - 21 Jul 2025
Viewed by 152
Abstract
It is fundamental, yet challenging, to accurately predict water levels at hydrological stations located along the banks of an open channel river due to the complex interactions between different hydraulic structures. This paper presents a novel application for short-term multivariate prediction applied to [...] Read more.
It is fundamental, yet challenging, to accurately predict water levels at hydrological stations located along the banks of an open channel river due to the complex interactions between different hydraulic structures. This paper presents a novel application for short-term multivariate prediction applied to hydrological variables based on a multivariate NARX model coupled to a nonlinear recursive Ensemble Kalman Filter (EnKF). The proposed approach is designed for two hydrological stations of the Atrato river in Colombia, where the variables, water level, water flow, and water precipitation, are correlated using a NARX model based on neural networks. The NARX model is designed to consider the complex dynamics of the hydrological variables and their corresponding cross-correlations. The short-term two-day water-level forecast is designed with a fourth-order NARX model. It is observed that the NARX model coupled with EnKF improves the robustness of the proposed approach in terms of external disturbances. Furthermore, the proposed approach is validated by subjecting the NARX–EnKF coupled model to five levels of additive white noise. The proposed approach employs metric regressions to evaluate the proposed model by means of the Root Mean Squared Error (RMSE) and the Nash–Sutcliffe model efficiency (NSE) coefficient. Full article
Show Figures

Figure 1

25 pages, 2201 KiB  
Article
Evolutionary-Assisted Data-Driven Approach for Dissolved Oxygen Modeling: A Case Study in Kosovo
by Bruno da S. Macêdo, Larissa Lima, Douglas Lima Fonseca, Tales H. A. Boratto, Camila M. Saporetti, Osman Fetoshi, Edmond Hajrizi, Pajtim Bytyçi, Uilson R. V. Aires, Roland Yonaba, Priscila Capriles and Leonardo Goliatt
Earth 2025, 6(3), 81; https://doi.org/10.3390/earth6030081 - 21 Jul 2025
Viewed by 299
Abstract
Dissolved oxygen (DO) is widely recognized as a fundamental parameter in assessing water quality, given its critical role in supporting aquatic ecosystems. Accurate estimation of DO levels is crucial for effective management of riverine environments, especially in anthropogenically stressed regions. In this study, [...] Read more.
Dissolved oxygen (DO) is widely recognized as a fundamental parameter in assessing water quality, given its critical role in supporting aquatic ecosystems. Accurate estimation of DO levels is crucial for effective management of riverine environments, especially in anthropogenically stressed regions. In this study, a hybrid machine learning (ML) framework is introduced to predict DO concentrations, where optimization is performed through Genetic Algorithm Search with Cross-Validation (GASearchCV). The methodology was applied to a dataset collected from the Sitnica River in Kosovo, comprising more than 18,000 observations of temperature, conductivity, pH, and dissolved oxygen. The ML models Elastic Net (EN), Support Vector Regression (SVR), and Light Gradient Boosting Machine (LGBM) were fine-tuned using cross-validation and assessed using five performance metrics: coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error MARE, and mean square error (MSE). Among them, the LGBM model yielded the best predictive results, achieving an R2 of 0.944 and RMSE of 8.430 mg/L on average. A Monte Carlo Simulation-based uncertainty analysis further confirmed the model’s robustness, enabling comparison of the trade-off between uncertainty and predictive precision. Comparison with recent studies confirms the proposed framework’s competitive performance, demonstrating the effectiveness of automated tuning and ensemble learning in achieving reliable and real-time water quality forecasting. The methodology offers a scalable and reliable solution for advancing data-driven water quality forecasting, with direct applicability to real-time environmental monitoring and sustainable resource management. Full article
Show Figures

Figure 1

22 pages, 3160 KiB  
Article
Monthly Urban Electricity Power Consumption Prediction Using Nighttime Light Remote Sensing: A Case Study of the Yangtze River Delta Urban Agglomeration
by Shuo Chen, Dongmei Yan, Cuiting Li, Jun Chen, Jun Yan and Zhe Zhang
Remote Sens. 2025, 17(14), 2478; https://doi.org/10.3390/rs17142478 - 17 Jul 2025
Viewed by 278
Abstract
Urban electricity power consumption (EPC) prediction plays a crucial role in urban management and sustainable development. Nighttime light (NTL) remote sensing imagery has demonstrated significant potential in estimating urban EPC due to its strong correlation with human activities and energy use. However, most [...] Read more.
Urban electricity power consumption (EPC) prediction plays a crucial role in urban management and sustainable development. Nighttime light (NTL) remote sensing imagery has demonstrated significant potential in estimating urban EPC due to its strong correlation with human activities and energy use. However, most existing models focus on annual-scale estimations, limiting their ability to capture month-scale EPC. To address this limitation, a novel monthly EPC prediction model that incorporates monthly average temperature, and the interaction between NTL data and temperature was proposed in this study. The proposed method was applied to cities within the Yangtze River Delta (YRD) urban agglomeration, and was validated using datasets constructed from NPP/VIIRS and SDGSAT-1 satellite imageries, respectively. For the NPP/VIIRS dataset, the proposed method achieved a Mean Absolute Relative Error (MARE) of 7.96% during the training phase (2017–2022) and of 10.38% during the prediction phase (2023), outperforming the comparative methods. Monthly EPC spatial distribution maps from VPP/VIIRS data were generated, which not only reflect the spatial patterns of EPC but also clearly illustrate the temporal evolution of EPC at the spatial level. Annual EPC estimates also showed superior accuracy compared to three comparative methods, achieving a MARE of 7.13%. For the SDGSAT-1 dataset, leave-one-out cross-validation confirmed the robustness of the model, and high-resolution (40 m) monthly EPC maps were generated, enabling the identification of power consumption zones and their spatial characteristics. The proposed method provides a timely and accurate means for capturing monthly EPC dynamics, effectively supporting the dynamic monitoring of urban EPC at the monthly scale in the YRD urban agglomeration. Full article
Show Figures

Graphical abstract

20 pages, 2707 KiB  
Article
Quantifying Multifactorial Drivers of Groundwater–Climate Interactions in an Arid Basin Based on Remote Sensing Data
by Zheng Lu, Chunying Shen, Cun Zhan, Honglei Tang, Chenhao Luo, Shasha Meng, Yongkai An, Heng Wang and Xiaokang Kou
Remote Sens. 2025, 17(14), 2472; https://doi.org/10.3390/rs17142472 - 16 Jul 2025
Viewed by 471
Abstract
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a [...] Read more.
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a novel remote sensing framework to quantify factor controls on groundwater–climate interaction characteristics in the Heihe River Basin (HRB). High-resolution (0.005° × 0.005°) maps of groundwater response time (GRT) and water table ratio (WTR) were generated using multi-source geospatial data. Employing Geographical Convergent Cross Mapping (GCCM), we established causal relationships between GRT/WTR and their drivers, identifying key influences on groundwater dynamics. Generalized Additive Models (GAM) further quantified the relative contributions of climatic (precipitation, temperature), topographic (DEM, TWI), geologic (hydraulic conductivity, porosity, vadose zone thickness), and vegetative (NDVI, root depth, soil water) factors to GRT/WTR variability. Results indicate an average GRT of ~6.5 × 108 years, with 7.36% of HRB exhibiting sub-century response times and 85.23% exceeding 1000 years. Recharge control dominates shrublands, wetlands, and croplands (WTR < 1), while topography control prevails in forests and barelands (WTR > 1). Key factors collectively explain 86.7% (GRT) and 75.9% (WTR) of observed variance, with spatial GRT variability driven primarily by hydraulic conductivity (34.3%), vadose zone thickness (13.5%), and precipitation (10.8%), while WTR variation is controlled by vadose zone thickness (19.2%), topographic wetness index (16.0%), and temperature (9.6%). These findings provide a scientifically rigorous basis for prioritizing groundwater conservation zones and designing climate-resilient water management policies in arid endorheic basins, with our high-resolution causal attribution framework offering transferable methodologies for global groundwater vulnerability assessments. Full article
(This article belongs to the Special Issue Remote Sensing for Groundwater Hydrology)
Show Figures

Figure 1

17 pages, 5004 KiB  
Article
Local Emissions Drive Summer PM2.5 Pollution Under Adverse Meteorological Conditions: A Quantitative Case Study in Suzhou, Yangtze River Delta
by Minyan Wu, Ningning Cai, Jiong Fang, Ling Huang, Xurong Shi, Yezheng Wu, Li Li and Hongbing Qin
Atmosphere 2025, 16(7), 867; https://doi.org/10.3390/atmos16070867 - 16 Jul 2025
Viewed by 323
Abstract
Accurately identifying the sources of fine particulate matter (PM2.5) pollution is crucial for pollution control and public health protection. Taking the PM2.5 pollution event that occurred in Suzhou in June 2023 as a typical case, this study analyzed the characteristics [...] Read more.
Accurately identifying the sources of fine particulate matter (PM2.5) pollution is crucial for pollution control and public health protection. Taking the PM2.5 pollution event that occurred in Suzhou in June 2023 as a typical case, this study analyzed the characteristics and components of PM2.5, and quantified the contributions of meteorological conditions, regional transport, and local emissions to the summertime PM2.5 surge in a typical Yangtze River Delta (YRD) city. Chemical composition analysis highlighted a sharp increase in nitrate ions (NO3, contributing up to 49% during peak pollution), with calcium ion (Ca2+) and sulfate ion (SO42−) concentrations rising to 2 times and 7.5 times those of clean periods, respectively. Results from the random forest model demonstrated that emission sources (74%) dominated this pollution episode, significantly surpassing the meteorological contribution (26%). The Weather Research and Forecasting model combined with the Community Multiscale Air Quality model (WRF–CMAQ) further revealed that local emissions contributed the most to PM2.5 concentrations in Suzhou (46.3%), while external transport primarily originated from upwind cities such as Shanghai and Jiaxing. The findings indicate synergistic effects from dust sources, industrial emissions, and mobile sources. Validation using electricity consumption and key enterprise emission data confirmed that intensive local industrial activities exacerbated PM2.5 accumulation. Recommendations include strengthening regulations on local industrial and mobile source emissions, and enhancing regional joint prevention and control mechanisms to mitigate cross-boundary transport impacts. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

Back to TopTop