Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review
Abstract
1. Introduction
2. Literature Review Methodology
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
3. Distribution of EC Occurrences in Published Studies
3.1. Spatial Distribution of PCPs
3.2. Spatial Distribution of Antibiotics
3.3. Spatial Distribution of EDCs
3.4. Spatial Distribution of PFASs
3.5. Spatial Distribution of MPs
4. Sources and Migration of ECs
4.1. Industrial Activities
4.2. Agricultural Activities
4.3. Emissions from Healthcare Activities
4.4. Wastewater Treatment Plants and Landfills
4.5. Co-Occurrence of ECs
5. Risks of ECs to Ecosystems and Human Health
5.1. Aquatic Ecosystem Risks
5.2. Atmospheric Environmental Risks
5.3. Soil Ecosystem Risks
5.4. Human Health Risks
6. Removal Methods for ECs
6.1. Physical Removal Methods
Adsorption Treatment
6.2. Chemical Removal Methods
6.3. Biological Remediation Methods
6.4. Hybrid Treatment Methods
6.5. Interference of Treatment Processes Under Multi-ECs Conditions
7. Conclusions and Prospection
- (1)
- Shift from the single-pollutant and single-medium studies paradigm to comprehensive research on multi-pollutant interactions and all environmental media. Emphasis should be placed on exploring ECs’ migration and transformation mechanisms across water, soil, and air media, as well as the interactions, synergistic, or antagonistic toxic effects among multiple pollutants. This will help construct multidimensional environmental behavior models, providing a scientific basis for comprehensive environmental risk assessment.
- (2)
- Strengthen research on ECs in developing countries. Enhancing monitoring capabilities can address data gaps in developing regions, contributing to a globally unified database of ECs. This would improve the accuracy and comprehensiveness of global risk assessments.
- (3)
- Develop technologies for the collaborative treatment of multiple pollutants, enabling the efficient removal of complex pollution systems. Additionally, optimize the integration of treatment technologies to enhance overall remediation performance. Focus should also be given to the economic feasibility of treatment technologies, reducing implementation costs, particularly in resource-constrained areas.
- (4)
- Enhance public awareness and education regarding ECs. This will increase societal support for pollution control measures. Furthermore, establish multi-stakeholder collaboration platforms to integrate efforts from governments, research institutions, enterprises, and the public, thereby advancing the implementation of emerging pollutant management and providing a robust social foundation for achieving environmental sustainability.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naidu, R.; Biswas, B.; Willett, I.R.; Cribb, J.; Kumar Singh, B.; Paul Nathanail, C.; Coulon, F.; Semple, K.T.; Jones, K.C.; Barclay, A.; et al. Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environ. Int. 2021, 156, 106616. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wang, S.; Yu, P.; Wang, D.; Hu, B.; Zheng, P.; Zhang, M. A bibliometric analysis of emerging contaminants (ECs) (2001–2021): Evolution of hotspots and research trends. Sci. Total Environ. 2024, 907, 168116. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Naushad, M.; Govarthanan, M.; Iqbal, J.; Alfadul, S.M. Emerging contaminants of high concern for the environment: Current trends and future research. Environ. Res. 2022, 207, 112609. [Google Scholar] [CrossRef] [PubMed]
- Puri, M.; Gandhi, K.; Kumar, M.S. Emerging environmental contaminants: A global perspective on policies and regulations. J. Environ. Manag. 2023, 332, 117344. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, X.; Jiang, W.; Xi, Y.; Li, S. Comprehensive review of emerging contaminants: Detection technologies, environmental impact, and management strategies. Ecotoxicol. Environ. Saf. 2024, 278, 116420. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol. 2015, 32, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Enyoh, C.E.; Verla, A.W.; Qingyue, W.; Ohiagu, F.O.; Chowdhury, A.H.; Enyoh, E.C.; Chowdhury, T.; Verla, E.N.; Chinwendu, U.P. An overview of emerging pollutants in air: Method of analysis and potential public health concern from human environmental exposure. Trends Environ. Anal. Chem. 2020, 28, e00107. [Google Scholar] [CrossRef]
- Wu, S.; Tong, C.; Liu, J. Obesogenic effects of six classes of emerging contaminants. J. Environ. Sci. 2025, 151, 252–272. [Google Scholar] [CrossRef] [PubMed]
- Al Aukidy, M.; Verlicchi, P.; Voulvoulis, N. A framework for the assessment of the environmental risk posed by pharmaceuticals originating from hospital effluents. Sci. Total Environ. 2014, 493, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Corada-Fernández, C.; Candela, L.; Torres-Fuentes, N.; Pintado-Herrera, M.G.; Paniw, M.; González-Mazo, E. Effects of extreme rainfall events on the distribution of selected emerging contaminants in surface and groundwater: The Guadalete River basin (SW, Spain). Sci. Total Environ. 2017, 605, 770–783. [Google Scholar] [CrossRef] [PubMed]
- Barroso, P.J.; Santos, J.L.; Martín, J.; Aparicio, I.; Alonso, E. Emerging contaminants in the atmosphere: Analysis, occurrence and future challenges. Crit. Rev. Environ. Sci. Technol. 2019, 49, 104–171. [Google Scholar] [CrossRef]
- Khan, N.A.; Khan, S.U.; Ahmed, S.; Farooqi, I.H.; Yousefi, M.; Mohammadi, A.A.; Changani, F. Recent trends in disposal and treatment technologies of emerging-pollutants—A critical review. TrAC Trends Anal. Chem. 2020, 122, 115744. [Google Scholar] [CrossRef]
- Fang, Y.; Umasankar, Y.; Ramasamy, R.P. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate. Biosens. Bioelectron. 2016, 81, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhu, P.; Xiong, J.; Gao, L.; Tan, K. A sensitive and selective triple-channel optical assay based on red-emissive carbon dots for the determination of PFOS. Microchem. J. 2019, 145, 388–396. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Ma, J.; Wei, S.; Zhang, H. A novel electrochemical sensor based on molecularly imprinted polymer with binary functional monomers at Fe-doped porous carbon decorated Au electrode for the sensitive detection of lomefloxacin. Ionics 2020, 26, 4183–4192. [Google Scholar] [CrossRef]
- Mofijur, M.; Hasan, M.M.; Ahmed, S.F.; Djavanroodi, F.; Fattah, I.M.R.; Silitonga, A.S.; Kalam, M.A.; Zhou, J.L.; Khan, T.M.Y. Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. Environ. Pollut. 2024, 341, 122889. [Google Scholar] [CrossRef] [PubMed]
- Vera-Chang, M.N.; St-Jacques, A.D.; Gagné, R.; Martyniuk, C.J.; Yauk, C.L.; Moon, T.W.; Trudeau, V.L. Transgenerational hypocortisolism and behavioral disruption are induced by the antidepressant fluoxetine in male zebrafish Danio rerio. Proc. Natl. Acad. Sci. USA 2018, 115, E12435–E12442. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.; Martínez-Paz, P.; Sánchez-Argüello, P.; Morcillo, G.; Martínez-Guitarte, J.L. Bisphenol A (BPA) modulates the expression of endocrine and stress response genes in the freshwater snail Physa acuta. Ecotoxicol. Environ. Saf. 2018, 152, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Qian, C.; Zheng, Z.; Shi, Y.; Cui, J.; Cai, Y. Perfluoroalkyl acids (PFAAs) in urban surface water of Shijiazhuang, China: Occurrence, distribution, sources and ecological risks. J. Environ. Sci. 2023, 125, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, L.; Zhou, N.; Chen, Y.; Ling, Z.; Xiang, P. Microplastics in the human body: A comprehensive review of exposure, distribution, migration mechanisms, and toxicity. Sci. Total Environ. 2024, 946, 174215. [Google Scholar] [CrossRef] [PubMed]
- Das, A. The emerging role of microplastics in systemic toxicity: Involvement of reactive oxygen species (ROS). Sci. Total Environ. 2023, 895, 165076. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Liu, W.; Juhasz, A.; Chen, J.; Ma, L. Emerging contaminants antibiotic resistance genes and microplastics in the environment: Introduction to 21 review articles published in CREST during 2018–2022. Crit. Rev. Environ. Sci. Technol. 2022, 52, 4135–4146. [Google Scholar] [CrossRef]
- Ahmad, H.A.; Ahmad, S.; Cui, Q.; Wang, Z.; Wei, H.; Chen, X.; Ni, S.-Q.; Ismail, S.; Awad, H.M.; Tawfik, A. The environmental distribution and removal of emerging pollutants, highlighting the importance of using microbes as a potential degrader: A review. Sci. Total Environ. 2022, 809, 151926. [Google Scholar] [CrossRef] [PubMed]
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A.; et al. Worldwide cases of water pollution by emerging contaminants: A review. Environ. Chem. Lett. 2022, 20, 2311–2338. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Li, Z.; Guo, S.; Li, K.; Xu, P.; Ok, Y.S.; Jones, D.L.; Zou, J. Antibiotics and antibiotic resistance genes in agricultural soils: A systematic analysis. Crit. Rev. Environ. Sci. Technol. 2023, 53, 847–864. [Google Scholar] [CrossRef]
- Chang, X.; Fang, Y.; Wang, Y.; Wang, F.; Shang, L.; Zhong, R. Microplastic pollution in soils, plants, and animals: A review of distributions, effects and potential mechanisms. Sci. Total Environ. 2022, 850, 157857. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, J.; Wang, B.; Xin, M.; Lin, C.; Gu, X.; Lian, M.; Li, Y. Comprehensive profiling of the distribution, risks and priority of pharmaceuticals and personal care products: A large-scale study from rivers to coastal seas. Water Res. 2023, 230, 119591. [Google Scholar] [CrossRef] [PubMed]
- Ciślak, M.; Kruszelnicka, I.; Zembrzuska, J.; Ginter-Kramarczyk, D. Estrogen pollution of the European aquatic environment: A critical review. Water Res. 2023, 229, 119413. [Google Scholar] [CrossRef] [PubMed]
- Ehsan, M.N.; Riza, M.; Pervez, M.N.; Khyum, M.M.O.; Liang, Y.; Naddeo, V. Environmental and health impacts of PFAS: Sources, distribution and sustainable management in North Carolina (USA). Sci. Total Environ. 2023, 878, 163123. [Google Scholar] [CrossRef] [PubMed]
- Ogunlaja, A.; Ogunlaja, O.O.; Olukanni, O.D.; Taylor, G.O.; Olorunnisola, C.G.; Dougnon, V.T.; Mousse, W.; Fatta-Kassinos, D.; Msagati, T.A.M.; Unuabonah, E.I. Antibiotic resistomes and their chemical residues in aquatic environments in Africa. Environ. Pollut. 2022, 312, 119783. [Google Scholar] [CrossRef] [PubMed]
- Böger, B.; Surek, M.; Vilhena, R.d.O.; Fachi, M.M.; Junkert, A.M.; Santos, J.M.M.F.; Domingos, E.L.; Cobre, A.d.F.; Momade, D.R.; Pontarolo, R. Occurrence of antibiotics and antibiotic resistant bacteria in subtropical urban rivers in Brazil. J. Hazard. Mater. 2021, 402, 123448. [Google Scholar] [CrossRef] [PubMed]
- Leterme, S.C.; Tuuri, E.M.; Drummond, W.J.; Jones, R.; Gascooke, J.R. Microplastics in urban freshwater streams in Adelaide, Australia: A source of plastic pollution in the Gulf St Vincent. Sci. Total Environ. 2023, 856, 158672. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Thai, P.K.; Kaserzon, S.L.; O’Brien, J.W.; Mueller, J.F. Nationwide occurrence and discharge mass load of per- and polyfluoroalkyl substances in effluent and biosolids: A snapshot from 75 wastewater treatment plants across Australia. J. Hazard. Mater. 2024, 470, 134203. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Sridharan, S.; Sawarkar, A.D.; Shakeel, A.; Anerao, P.; Mannina, G.; Sharma, P.; Pandey, A. Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review. Sci. Total Environ. 2023, 859, 160031. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.F.; Powers, S.M.; Hampton, S.E. An Evidence Synthesis of Pharmaceuticals and Personal Care Products (PPCPs) in the Environment: Imbalances among Compounds, Sewage Treatment Techniques, and Ecosystem Types. Environ. Sci. Technol. 2019, 53, 12961–12973. [Google Scholar] [CrossRef] [PubMed]
- Anh, H.Q.; Le, T.P.Q.; Da Le, N.; Lu, X.X.; Duong, T.T.; Garnier, J.; Rochelle-Newall, E.; Zhang, S.; Oh, N.-H.; Oeurng, C.; et al. Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives. Sci. Total Environ. 2021, 764, 142865. [Google Scholar] [CrossRef] [PubMed]
- Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 2010, 8, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cai, T.; Zhang, S.; Hou, J.; Cheng, L.; Chen, W.; Zhang, Q. Contamination distribution and non-biological removal pathways of typical tetracycline antibiotics in the environment: A review. J. Hazard. Mater. 2024, 463, 132862. [Google Scholar] [CrossRef] [PubMed]
- Ghimpețeanu, O.M.; Pogurschi, E.N.; Popa, D.C.; Dragomir, N.; Drăgotoiu, T.; Mihai, O.D.; Petcu, C.D. Antibiotic Use in Livestock and Residues in Food—A Public Health Threat: A Review. Foods 2022, 11, 1430. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Sun, R.; Pan, C.; Sun, Y.; Mai, B.; Li, Q.X. Antibiotics and Food Safety in Aquaculture. J. Agric. Food Chem. 2020, 68, 11908–11919. [Google Scholar] [CrossRef] [PubMed]
- Haenni, M.; Dagot, C.; Chesneau, O.; Bibbal, D.; Labanowski, J.; Vialette, M.; Bouchard, D.; Martin-Laurent, F.; Calsat, L.; Nazaret, S.; et al. Environmental contamination in a high-income country (France) by antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes: Status and possible causes. Environ. Int. 2022, 159, 107047. [Google Scholar] [CrossRef] [PubMed]
- Ojoghoro, J.O.; Scrimshaw, M.D.; Sumpter, J.P. Steroid hormones in the aquatic environment. Sci. Total Environ. 2021, 792, 148306. [Google Scholar] [CrossRef] [PubMed]
- Vryzas, Z.; Ramwell, C.; Sans, C. Pesticide prioritization approaches and limitations in environmental monitoring studies: From Europe to Latin America and the Caribbean. Environ. Int. 2020, 143, 105917. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Sarma, D.K.; Shubham, S.; Kumawat, M.; Verma, V.; Prakash, A.; Tiwari, R. Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Front. Public Health 2020, 8, 553850. [Google Scholar] [CrossRef] [PubMed]
- Bornman Maria, S.; Aneck-Hahn Natalie, H.; de Jager, C.; Wagenaar Gesina, M.; Bouwman, H.; Barnhoorn Irene, E.J.; Patrick Sean, M.; Vandenberg Laura, N.; Kortenkamp, A.; Blumberg, B.; et al. Endocrine Disruptors and Health Effects in Africa: A Call for Action. Environ. Health Perspect. 2017, 125, 085005. [Google Scholar] [CrossRef] [PubMed]
- Rotimi, O.A.; Olawole, T.D.; De Campos, O.C.; Adelani, I.B.; Rotimi, S.O. Bisphenol A in Africa: A review of environmental and biological levels. Sci. Total Environ. 2021, 764, 142854. [Google Scholar] [CrossRef] [PubMed]
- Dimitrakopoulou, M.-E.; Karvounis, M.; Marinos, G.; Theodorakopoulou, Z.; Aloizou, E.; Petsangourakis, G.; Papakonstantinou, M.; Stoitsis, G. Comprehensive analysis of PFAS presence from environment to plate. npj Sci. Food 2024, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Muir, D.; Bossi, R.; Carlsson, P.; Evans, M.; De Silva, A.; Halsall, C.; Rauert, C.; Herzke, D.; Hung, H.; Letcher, R.; et al. Levels and trends of poly- and perfluoroalkyl substances in the Arctic environment—An update. Emerg. Contam. 2019, 5, 240–271. [Google Scholar] [CrossRef]
- Podder, A.; Sadmani, A.H.M.A.; Reinhart, D.; Chang, N.-B.; Goel, R. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects. J. Hazard. Mater. 2021, 419, 126361. [Google Scholar] [CrossRef] [PubMed]
- Baluyot, J.C.; Reyes, E.M.; Velarde, M.C. Per- and polyfluoroalkyl substances (PFAS) as contaminants of emerging concern in Asia’s freshwater resources. Environ. Res. 2021, 197, 111122. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Kumar, N.; Kumar Yadav, A.; Singh, R.; Kumar, K. Per-and polyfluoroalkyl substances (PFAS) as a health hazard: Current state of knowledge and strategies in environmental settings across Asia and future perspectives. Chem. Eng. J. 2023, 475, 145064. [Google Scholar] [CrossRef]
- Ssebugere, P.; Sillanpää, M.; Matovu, H.; Wang, Z.; Schramm, K.-W.; Omwoma, S.; Wanasolo, W.; Ngeno, E.C.; Odongo, S. Environmental levels and human body burdens of per- and poly-fluoroalkyl substances in Africa: A critical review. Sci. Total Environ. 2020, 739, 139913. [Google Scholar] [CrossRef] [PubMed]
- Rauert, C.; Harner, T.; Schuster, J.K.; Eng, A.; Fillmann, G.; Castillo, L.E.; Fentanes, O.; Villa Ibarra, M.; Miglioranza, K.S.B.; Moreno Rivadeneira, I.; et al. Atmospheric Concentrations of New Persistent Organic Pollutants and Emerging Chemicals of Concern in the Group of Latin America and Caribbean (GRULAC) Region. Environ. Sci. Technol. 2018, 52, 7240–7249. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Courtene-Jones, W.; Boucher, J.; Pahl, S.; Raubenheimer, K.; Koelmans, A.A. Twenty years of microplastic pollution research—What have we learned? Science 2024, 386, eadl2746. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C.; Silva, A.L.P.; Walker, T.R.; Duarte, A.C.; Rocha-Santos, T. COVID-19 Pandemic Repercussions on the Use and Management of Plastics. Environ. Sci. Technol. 2020, 54, 7760–7765. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Siddiqui, M.T.; Galodha, A.; Anees, S.; Lall, B.; Chakma, S.; Ahammad, S.Z. Pharmaceuticals and personal care product modelling: Unleashing artificial intelligence and machine learning capabilities and impact on one health and sustainable development goals. Sci. Total Environ. 2024, 955, 176999. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, J.; Yao, Z.; Li, M. A review on the alternatives to antibiotics and the treatment of antibiotic pollution: Current development and future prospects. Sci. Total Environ. 2024, 926, 171757. [Google Scholar] [CrossRef] [PubMed]
- Sabba, F.; Kassar, C.; Zeng, T.; Mallick, S.; Downing, L.; McNamara, P. PFAS in Landfill Leachate: Practical Considerations for Treatment and Characterization. J. Hazard. Mater. 2024, 481, 136685. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, C.; Fu, R.; Nie, F.; Zuo, W.; Tian, Y.; Zhang, J. Full-chain analysis on emerging contaminants in soil: Source, migration and remediation. Chemosphere 2024, 363, 142854. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Deng, Y.; Hu, C.; Li, D.; Zhang, J.; Zhou, N. Microplastic pollution in urban rivers within China’s Danxia landforms: Spatial distribution characteristics, migration, and risk assessment. Sci. Total Environ. 2024, 910, 168610. [Google Scholar] [CrossRef] [PubMed]
- Souza, H.d.O.; Costa, R.d.S.; Quadra, G.R.; Fernandez, M.A.d.S. Pharmaceutical pollution and sustainable development goals: Going the right way? Sustain. Chem. Pharm. 2021, 21, 100428. [Google Scholar] [CrossRef]
- Liu, X.; Gu, S.; Yang, S.; Deng, J.; Xu, J. Heavy metals in soil-vegetable system around E-waste site and the health risk assessment. Sci. Total Environ. 2021, 779, 146438. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Gao, S.; Zhang, S.; Che, X.; Jiao, Z.; Ren, Y.; Wang, C. Identification of atmospheric emerging contaminants from industrial emissions: A case study of halogenated hydrocarbons emitted by the pharmaceutical industry. Environ. Int. 2024, 192, 109027. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Shi, Q.; Wang, Y.; Zhao, L.; Li, X.; Sun, Z.; Lu, Y.; Liu, N.; Su, G.; Wang, L.; et al. Electronic-Waste-Driven Pollution of Liquid Crystal Monomers: Environmental Occurrence and Human Exposure in Recycling Industrial Parks. Environ. Sci. Technol. 2022, 56, 2248–2257. [Google Scholar] [CrossRef] [PubMed]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Liu, X.; He, X. A global meta-analysis of crop yield and agricultural greenhouse gas emissions under nitrogen fertilizer application. Sci. Total Environ. 2022, 831, 154982. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.S.; Leite, F.F.G.D.; France, C.L.; Adekoya, A.O.; Ros, G.H.; de Vries, W.; Melchor-Martínez, E.M.; Iqbal, H.M.N.; Parra-Saldívar, R. Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. Sci. Total Environ. 2022, 826, 154161. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Tian, H.; Pan, B.; Zhong, T.; Xin, M.; Ding, J.; Wei, J.; Huang, H.-J.; Tang, J.-Q.; Zhang, F.; et al. Investigating the environmental dynamics of emerging pollutants in response to global climate change: Insights from bibliometrics-based visualization analysis. Sci. Total Environ. 2024, 957, 177758. [Google Scholar] [CrossRef] [PubMed]
- Anastopoulos, I.; Pashalidis, I.; Orfanos, A.G.; Manariotis, I.D.; Tatarchuk, T.; Sellaoui, L.; Bonilla-Petriciolet, A.; Mittal, A.; Núñez-Delgado, A. Removal of caffeine, nicotine and amoxicillin from (waste)waters by various adsorbents. A review. J. Environ. Manag. 2020, 261, 110236. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Cui, M.; Ye, Z.; Guo, Q. Environmental challenges from the increasing medical waste since SARS outbreak. J. Clean. Prod. 2021, 291, 125246. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Vambol, V.; Vambol, S.; Bolibrukh, B.; Sillanpaa, M.; Changani, F.; Esrafili, A.; Yousefi, M. Hospital effluent guidelines and legislation scenario around the globe: A critical review. J. Environ. Chem. Eng. 2021, 9, 105874. [Google Scholar] [CrossRef]
- Hu, P.; Qian, Y.; Radian, A.; Xu, M.; Guo, C.; Gu, J.-D. A global metagenomics-based analysis of BPA degradation and its coupling with nitrogen, sulfur, and methane metabolism in landfill leachates. J. Hazard. Mater. 2024, 477, 135395. [Google Scholar] [CrossRef] [PubMed]
- Devendrapandi, G.; Liu, X.; Balu, R.; Ayyamperumal, R.; Valan Arasu, M.; Lavanya, M.; Minnam Reddy, V.R.; Kim, W.K.; Karthika, P.C. Innovative remediation strategies for persistent organic pollutants in soil and water: A comprehensive review. Environ. Res. 2024, 249, 118404. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-h.; Dsikowitzky, L.; Yang, F.; Schwarzbauer, J. Emerging contaminants in municipal wastewaters and their relevance for the surface water contamination in the tropical coastal city Haikou, China. Estuar. Coast. Shelf Sci. 2020, 235, 106611. [Google Scholar] [CrossRef]
- Propp, V.R.; De Silva, A.O.; Spencer, C.; Brown, S.J.; Catingan, S.D.; Smith, J.E.; Roy, J.W. Organic contaminants of emerging concern in leachate of historic municipal landfills. Environ. Pollut. 2021, 276, 116474. [Google Scholar] [CrossRef] [PubMed]
- Fida, M.; Li, P.; Alam, S.M.K.; Wang, Y.; Nsabimana, A.; Shrestha, P.S. Review of Groundwater Nitrate Pollution from Municipal Landfill Leachates: Implications for Environmental and Human Health and Leachate Treatment Technologies. Expo. Health 2024, 16, 1225–1249. [Google Scholar] [CrossRef]
- Tong, X.; Mohapatra, S.; Zhang, J.; Tran, N.H.; You, L.; He, Y.; Gin, K.Y.-H. Source, fate, transport and modelling of selected emerging contaminants in the aquatic environment: Current status and future perspectives. Water Res. 2022, 217, 118418. [Google Scholar] [CrossRef] [PubMed]
- Yashir, N.; Sun, Q.; Zhang, X.; Ma, M.; Wang, D.; Feng, Y.; Song, X. Co-occurrence of microplastics, PFASs, antibiotics, and antibiotic resistance genes in groundwater and their composite impacts on indigenous microbial communities: A field study. Sci. Total Environ. 2025, 961, 178373. [Google Scholar] [CrossRef] [PubMed]
- Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M.; Tufenkji, N. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef] [PubMed]
- Barhoumi, B.; Sander, S.G.; Tolosa, I. A review on per- and polyfluorinated alkyl substances (PFASs) in microplastic and food-contact materials. Environ. Res. 2022, 206, 112595. [Google Scholar] [CrossRef] [PubMed]
- Rathi, B.S.; Kumar, P.S.; Show, P.-L. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. J. Hazard. Mater. 2021, 409, 124413. [Google Scholar] [CrossRef] [PubMed]
- Saidulu, D.; Gupta, B.; Gupta, A.K.; Ghosal, P.S. A review on occurrences, eco-toxic effects, and remediation of emerging contaminants from wastewater: Special emphasis on biological treatment based hybrid systems. J. Environ. Chem. Eng. 2021, 9, 105282. [Google Scholar] [CrossRef]
- Su, C.; Cui, Y.; Liu, D.; Zhang, H.; Baninla, Y. Endocrine disrupting compounds, pharmaceuticals and personal care products in the aquatic environment of China: Which chemicals are the prioritized ones? Sci. Total Environ. 2020, 720, 137652. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Wu, J.; Wang, H.; Bao, Y.; Xing, H.; Ye, W.; Li, X.; Huang, M. Interaction of microplastics with perfluoroalkyl and polyfluoroalkyl substances in water: A review of the fate, mechanisms and toxicity. Sci. Total Environ. 2024, 948, 175000. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.; Liang, J.; Luo, Y.; Tang, N.; Ye, S.; Zhu, Z.; Xing, W.; Guo, J.; Zhang, H. Microcystis aeruginosa’s exposure to an antagonism of nanoplastics and MWCNTs: The disorders in cellular and metabolic processes. Chemosphere 2022, 288, 132516. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-S.; You, W.-D.; Chen, C.-E.; Wang, X.-Y.; Yang, B.; Ying, G.-G. Occurrence, fate and ecological risks of 90 typical emerging contaminants in full-scale textile wastewater treatment plants from a large industrial park in Guangxi, Southwest China. J. Hazard. Mater. 2023, 449, 131048. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Ruiz, R.; Picó, Y.; Campo, J. Bioaccumulation of emerging contaminants in mussel (Mytilus galloprovincialis): Influence of microplastics. Sci. Total Environ. 2021, 796, 149006. [Google Scholar] [CrossRef] [PubMed]
- Rathi, B.S.; Kumar, P.S.; Vo, D.-V.N. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Sci. Total Environ. 2021, 797, 149134. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Hajeb, P.; Fauser, P.; Vorkamp, K. Endocrine disrupting chemicals in indoor dust: A review of temporal and spatial trends, and human exposure. Sci. Total Environ. 2023, 874, 162374. [Google Scholar] [CrossRef] [PubMed]
- Nafea, T.H.; Chan, F.K.S.; Xu, Y.; Wang, C.; Wang, X.; Zhao, W.; Ji, D.; Xiao, H.; He, J. Microplastics Aloft: A comprehensive exploration of sources, transport, variations, interactions and their implications on human health in the atmospheric realm. Earth-Sci. Rev. 2024, 255, 104864. [Google Scholar] [CrossRef]
- Wang, Y.; Good, K.D. Microplastics and PFAS air-water interaction and deposition. Sci. Total Environ. 2024, 954, 176247. [Google Scholar] [CrossRef] [PubMed]
- Yamini, V.; Shanmugam, V.; Rameshpathy, M.; Venkatraman, G.; Ramanathan, G.; Al Garalleh, H.; Hashmi, A.; Brindhadevi, K.; Devi Rajeswari, V. Environmental effects and interaction of nanoparticles on beneficial soil and aquatic microorganisms. Environ. Res. 2023, 236, 116776. [Google Scholar] [CrossRef] [PubMed]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, L.; Yen, H.; Zhao, F.; Wang, X.; Zhou, T.; Feng, Q.; Chen, L. Occurrence, spatial distribution and ecological risks of antibiotics in soil in urban agglomeration. J. Environ. Sci. 2023, 125, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Wang, W.; Chen, X.; Zheng, X.; Fu, W.; Wang, G.; Ji, J.; Guan, C. Rice-associated with Bacillus sp. DRL1 enhanced remediation of DEHP-contaminated soil and reduced the risk of secondary pollution through promotion of plant growth, degradation of DEHP in soil and modulation of rhizosphere bacterial community. J. Hazard. Mater. 2022, 440, 129822. [Google Scholar] [CrossRef]
- Guo, J.-J.; Huang, X.-P.; Xiang, L.; Wang, Y.-Z.; Li, Y.-W.; Li, H.; Cai, Q.-Y.; Mo, C.-H.; Wong, M.-H. Source, migration and toxicology of microplastics in soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, T.; Dharmarajan, R. Nanocontaminants in soil: Emerging concerns and risks. Int. J. Environ. Sci. Technol. 2022, 19, 9129–9148. [Google Scholar] [CrossRef]
- Deng, Q.; He, B.; Shen, M.; Ge, J.; Du, B.; Zeng, L. First Evidence of Hindered Amine Light Stabilizers As Abundant, Ubiquitous, Emerging Pollutants in Dust and Air Particles: A New Concern for Human Health. Environ. Sci. Technol. 2024, 58, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Xia, Y.; Wei, W.; Ni, B.-J. Accelerated spread of antibiotic resistance genes (ARGs) induced by non-antibiotic conditions: Roles and mechanisms. Water Res. 2022, 224, 119060. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Wei, Q.; Wei, D. A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. J. Hazard. Mater. 2020, 387, 121682. [Google Scholar] [CrossRef] [PubMed]
- Ismanto, A.; Hadibarata, T.; Kristanti, R.A.; Maslukah, L.; Safinatunnajah, N.; Kusumastuti, W. Endocrine disrupting chemicals (EDCs) in environmental matrices: Occurrence, fate, health impact, physio-chemical and bioremediation technology. Environ. Pollut. 2022, 302, 119061. [Google Scholar] [CrossRef] [PubMed]
- Ojo, A.F.; Peng, C.; Ng, J.C. Assessing the human health risks of per- and polyfluoroalkyl substances: A need for greater focus on their interactions as mixtures. J. Hazard. Mater. 2021, 407, 124863. [Google Scholar] [CrossRef] [PubMed]
- Sigurnjak Bureš, M.; Cvetnić, M.; Miloloža, M.; Kučić Grgić, D.; Markić, M.; Kušić, H.; Bolanča, T.; Rogošić, M.; Ukić, Š. Modeling the toxicity of pollutants mixtures for risk assessment: A review. Environ. Chem. Lett. 2021, 19, 1629–1655. [Google Scholar] [CrossRef]
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef] [PubMed]
- Rathi, B.S.; Kumar, P.S. Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environ. Pollut. 2021, 280, 116995. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Pan, Z.; Wang, W.; Ren, J.; Yu, X.; Lin, L.; Lin, H.; Chen, H.; Jin, X. Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Res. 2019, 155, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Monsalvo, V.M.; McDonald, J.A.; Khan, S.J.; Le-Clech, P. Removal of trace organics by anaerobic membrane bioreactors. Water Res. 2014, 49, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Singer, H.; Jaus, S.; Hanke, I.; Lück, A.; Hollender, J.; Alder, A.C. Determination of biocides and pesticides by on-line solid phase extraction coupled with mass spectrometry and their behaviour in wastewater and surface water. Environ. Pollut. 2010, 158, 3054–3064. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.K.; Singhania, R.R.; Albarico, F.P.J.B.; Pandey, A.; Chen, C.-W.; Dong, C.-D. Organic wastes bioremediation and its changing prospects. Sci. Total Environ. 2022, 824, 153889. [Google Scholar] [CrossRef] [PubMed]
- Do Minh, T.; Song, J.; Deb, A.; Cha, L.; Srivastava, V.; Sillanpää, M. Biochar based catalysts for the abatement of emerging pollutants: A review. Chem. Eng. J. 2020, 394, 124856. [Google Scholar] [CrossRef]
- Awad, A.M.; Jalab, R.; Benamor, A.; Nasser, M.S.; Ba-Abbad, M.M.; El-Naas, M.; Mohammad, A.W. Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview. J. Mol. Liq. 2020, 301, 112335. [Google Scholar] [CrossRef]
- Godage, N.H.; Gionfriddo, E. Use of natural sorbents as alternative and green extractive materials: A critical review. Anal. Chim. Acta 2020, 1125, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Thiebault, T. Raw and modified clays and clay minerals for the removal of pharmaceutical products from aqueous solutions: State of the art and future perspectives. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1451–1514. [Google Scholar] [CrossRef]
- Thiebault, T.; Guégan, R.; Boussafir, M. Adsorption mechanisms of emerging micro-pollutants with a clay mineral: Case of tramadol and doxepine pharmaceutical products. J. Colloid Interface Sci. 2015, 453, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Hu, Y.; Li, Y.; Zhou, Y.; Niu, D.; Lei, Z.; Zhang, Z. Citric acid-crosslinked β-cyclodextrin for simultaneous removal of bisphenol A, methylene blue and copper: The roles of cavity and surface functional groups. J. Taiwan Inst. Chem. Eng. 2018, 82, 189–197. [Google Scholar] [CrossRef]
- Bulgariu, L.; Escudero, L.B.; Bello, O.S.; Iqbal, M.; Nisar, J.; Adegoke, K.A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The utilization of leaf-based adsorbents for dyes removal: A review. J. Mol. Liq. 2019, 276, 728–747. [Google Scholar] [CrossRef]
- Shanmugavel, S.P.; Kumar, G. Recent progress in mineralization of emerging contaminants by advanced oxidation process: A review. Environ. Pollut. 2024, 341, 122842. [Google Scholar]
- Niu, J.; Yuan, R.; Chen, H.; Zhou, B.; Luo, S. Heterogeneous catalytic ozonation for the removal of antibiotics in water: A review. Environ. Res. 2024, 262, 119889. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Y.; Guo, J.; Kan, Z.; Jia, Y. Catalytic ozonation mechanisms of Norfloxacin using Cu–CuFe2O4. Environ. Res. 2023, 216, 114521. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, J.; Zeng, L.; Zhu, M. Recent progress on the removal of antibiotic pollutants using photocatalytic oxidation process. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1401–1448. [Google Scholar] [CrossRef]
- Song, K.; Liu, Y.; Umar, A.; Ma, H.; Wang, H. Ultrasonic cavitation: Tackling organic pollutants in wastewater. Chemosphere 2024, 350, 141024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, Y.; Qiao, T.; Hu, S.; Liu, J.; Zhu, R.; Yang, K.; Li, S.; Zhang, L. Study on ultrasonic enhanced ozone oxidation of cyanide-containing wastewater. Sep. Purif. Technol. 2022, 303, 122258. [Google Scholar] [CrossRef]
- Shah, A.; Shah, M. Characterisation and bioremediation of wastewater: A review exploring bioremediation as a sustainable technique for pharmaceutical wastewater. Groundw. Sustain. Dev. 2020, 11, 100383. [Google Scholar] [CrossRef]
- Watkinson, A.J.; Murby, E.J.; Costanzo, S.D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 2007, 41, 4164–4176. [Google Scholar] [CrossRef] [PubMed]
- Akcal Comoglu, B.; Filik Iscen, C.; Ilhan, S. The anaerobic treatment of pharmaceutical industry wastewater in an anaerobic batch and upflow packed-bed reactor. Desalination Water Treat. 2016, 57, 6278–6289. [Google Scholar] [CrossRef]
- Shi, X.; Lefebvre, O.; Ng, K.K.; Ng, H.Y. Sequential anaerobic–aerobic treatment of pharmaceutical wastewater with high salinity. Bioresour. Technol. 2014, 153, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Adeel, M.; Rasheed, T.; Zhao, Y.; Iqbal, H.M.N. Emerging contaminants of high concern and their enzyme-assisted biodegradation—A review. Environ. Int. 2019, 124, 336–353. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Ding, Y.; Wang, F.; Chen, Y.; Jiang, Y. Construction of nano-composites by enzyme entrapped in mesoporous dendritic silica particles for efficient biocatalytic degradation of antibiotics in wastewater. Chem. Eng. J. 2019, 375, 121968. [Google Scholar] [CrossRef]
- Das, A.; Singh, J. Laccase immobilized magnetic iron nanoparticles: Fabrication and its performance evaluation in chlorpyrifos degradation. Int. Biodeterior. Biodegrad. 2017, 117, 183–189. [Google Scholar] [CrossRef]
- Fathali, Z.; Rezaei, S.; Faramarzi, M.A.; Habibi-Rezaei, M. Catalytic phenol removal using entrapped cross-linked laccase aggregates. Int. J. Biol. Macromol. 2019, 122, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Yoom, H.; Son, H.; Seo, C.; Kim, K.; Lee, Y.; Kim, Y.M. Removal efficiency of organic micropollutants in successive wastewater treatment steps in a full-scale wastewater treatment plant: Bench-scale application of tertiary treatment processes to improve removal of organic micropollutants persisting after secondary treatment. Chemosphere 2022, 288, 132629. [Google Scholar] [PubMed]
- Sudhakar, P.; Mall, I.D.; Srivastava, V.C. Adsorptive removal of bisphenol-A by rice husk ash and granular activated carbon—A comparative study. Desalination Water Treat. 2016, 57, 12375–12384. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Tang, Y. Fragmentation of microplastics in the drinking water treatment process–A case study in Yangtze River region, China. Sci. Total Environ. 2022, 806, 150545. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, H.; Masih, I.; van Hullebusch, E.J.W.S. The anaerobic biodegradation of emerging organic contaminants by horizontal subsurface flow constructed wetlands. Water Sci. Technol. 2021, 83, 2809–2828. [Google Scholar] [CrossRef] [PubMed]
- Venditti, S.; Brunhoferova, H.; Hansen, J. Behaviour of 27 selected emerging contaminants in vertical flow constructed wetlands as post-treatment for municipal wastewater. Sci. Total Environ. 2022, 819, 153234. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J.; Dvořáková Březinová, T.; Koželuh, M.; Kule, L. Occurrence and removal of pharmaceuticals in four full-scale constructed wetlands in the Czech Republic—The first year of monitoring. Ecol. Eng. 2017, 98, 354–364. [Google Scholar] [CrossRef]
- Lu, N.; Liu, F. Tempospatially Confined Catalytic Membranes for Advanced Water Remediation. Adv. Mater. 2024, 36, 2311419. [Google Scholar] [CrossRef] [PubMed]
- van Gijn, K.; Zhao, Y.; Balasubramaniam, A.; de Wilt, H.A.; Carlucci, L.; Langenhoff, A.A.M.; Rijnaarts, H.H.M. The effect of organic matter fractions on micropollutant ozonation in wastewater effluents. Water Res. 2022, 222, 118933. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Basu, S.; Shetti, N.P.; Nadagouda, M.N.; Aminabhavi, T.M. Microplastics in the environment: Occurrence, perils, and eradication. Chem. Eng. J. 2021, 408, 127317. [Google Scholar] [CrossRef] [PubMed]
- Gerbersdorf, S.U.; Cimatoribus, C.; Class, H.; Engesser, K.-H.; Helbich, S.; Hollert, H.; Lange, C.; Kranert, M.; Metzger, J.; Nowak, W.; et al. Anthropogenic Trace Compounds (ATCs) in aquatic habitats—Research needs on sources, fate, detection and toxicity to ensure timely elimination strategies and risk management. Environ. Int. 2015, 79, 85–105. [Google Scholar] [CrossRef] [PubMed]
- Abdel Ghani, S.A.; El-Sayed, A.A.M.; Ibrahim, M.I.A.; Ghobashy, M.M.; Shreadah, M.A.; Shabaka, S. Characterization and distribution of plastic particles along Alexandria beaches, Mediterranean Coast of Egypt, using microscopy and thermal analysis techniques. Sci. Total Environ. 2022, 834, 155363. [Google Scholar] [CrossRef] [PubMed]
- Abril, C.; Santos, J.L.; Martín, J.; Aparicio, I.; Alonso, E. Occurrence, fate and environmental risk of anionic surfactants, bisphenol A, perfluorinated compounds and personal care products in sludge stabilization treatments. Sci. Total Environ. 2020, 711, 135048. [Google Scholar] [CrossRef] [PubMed]
- Ademollo, N.; Spataro, F.; Rauseo, J.; Pescatore, T.; Fattorini, N.; Valsecchi, S.; Polesello, S.; Patrolecco, L. Occurrence, distribution and pollution pattern of legacy and emerging organic pollutants in surface water of the Kongsfjorden (Svalbard, Norway): Environmental contamination, seasonal trend and climate change. Mar. Pollut. Bull. 2021, 163, 111900. [Google Scholar] [CrossRef] [PubMed]
- Adeyinka, G.C.; Afolabi, F.; Bakare, B.F. Evaluating the fate and potential health risks of organochlorine pesticides and triclosan in soil, sediment, and water from Asa Dam River, Ilorin Kwara State, Nigeria. Environ. Monit. Assess. 2022, 195, 189. [Google Scholar] [CrossRef] [PubMed]
- Adomat, Y.; Grischek, T. Occurrence, fate and potential risks of pharmaceuticals and personal care products (PPCPs) in Elbe river water during water treatment in Dresden, Germany. Environ. Chall. 2024, 15. [Google Scholar] [CrossRef]
- Aemig, Q.; Hélias, A.; Patureau, D. Impact assessment of a large panel of organic and inorganic micropollutants released by wastewater treatment plants at the scale of France. Water Res. 2021, 188, 116524. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Tscharke, B.; O’bRien, J.W.; Hall, W.D.; Cabot, P.J.; Sowa, P.M.; Samanipour, S.; Thomas, K.V. National Wastewater Reconnaissance of Analgesic Consumption in Australia. Environ. Sci. Technol. 2023, 57, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
- Akdemir, T.; Gedik, K. Microplastic emission trends in Turkish primary and secondary municipal wastewater treatment plant effluents discharged into the Sea of Marmara and Black Sea. Environ. Res. 2023, 231, 116188. [Google Scholar] [CrossRef] [PubMed]
- Akdogan, Z.; Guven, B.; Kideys, A.E. Microplastic distribution in the surface water and sediment of the Ergene River. Environ. Res. 2023, 234, 116500. [Google Scholar] [CrossRef] [PubMed]
- Al-Mansoori, M.; Stephenson, M.; Harrad, S.; Abdallah, M.A.-E. Synthetic Microplastics in UK tap and bottled water; Implications for human exposure. Emerg. Contam. 2025, 11, 100417. [Google Scholar] [CrossRef]
- Al Nahian, S.; Rakib, M.R.J.; Haider, S.M.B.; Kumar, R.; Mohsen, M.; Sharma, P.; Khandaker, M.U. Occurrence, spatial distribution, and risk assessment of microplastics in surface water and sediments of Saint Martin Island in the Bay of Bengal. Mar. Pollut. Bull. 2022, 179, 113720. [Google Scholar] [CrossRef] [PubMed]
- Al Nahian, S.; Rakib, M.R.J.; Kumar, R.; Haider, S.M.B.; Sharma, P.; Idris, A.M. Distribution, characteristics, and risk assessments analysis of microplastics in shore sediments and surface water of Moheshkhali channel of Bay of Bengal, Bangladesh. Sci. Total Environ. 2022, 855, 158892. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.J.; Shammi, M.; Tareq, S.M. Distribution of microplastics in shoreline water and sediment of the Ganges River Basin to Meghna Estuary in Bangladesh. Ecotoxicol. Environ. Saf. 2023, 266, 115537. [Google Scholar] [CrossRef] [PubMed]
- Petroody, S.S.A.; Hashemi, S.H.; van Gestel, C.A.M. Factors affecting microplastic retention and emission by a wastewater treatment plant on the southern coast of Caspian Sea. Chemosphere 2020, 261, 128179. [Google Scholar] [CrossRef] [PubMed]
- Alexa, E.T.; Bernal-Romero del Hombre Bueno, M.D.; González, R.; Sánchez, A.V.; García, H.; Prats, D. Occurrence and removal of priority substances and contaminants of emerging concern at the WWTP of Benidorm (Spain). Water 2022, 14, 4129. [Google Scholar] [CrossRef]
- Ali, A.M.; Higgins, C.P.; Alarif, W.M.; Al-Lihaibi, S.S.; Ghandourah, M.; Kallenborn, R. Per- and polyfluoroalkyl substances (PFASs) in contaminated coastal marine waters of the Saudi Arabian Red Sea: A baseline study. Environ. Sci. Pollut. Res. 2020, 28, 2791–2803. [Google Scholar] [CrossRef] [PubMed]
- Almaiman, L.; Aljomah, A.; Bineid, M.; Aljeldah, F.M.; Aldawsari, F.; Liebmann, B.; Lomako, I.; Sexlinger, K.; Alarfaj, R. The occurrence and dietary intake related to the presence of microplastics in drinking water in Saudi Arabia. Environ. Monit. Assess. 2021, 193, 390. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Cui, T.; Zhang, Y.; Liu, H. A case study on small-size microplastics in water and snails in an urban river. Sci. Total Environ. 2022, 847, 157461. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulpou, K.; Nannou, C.; Aschonitis, V.G.; Lambropoulou, D.A. Screening of pesticides and emerging contaminants in eighteen Greek lakes by using target and non-target HRMS approaches: Occurrence and ecological risk assessment. Sci. Total Environ. 2022, 849, 157887. [Google Scholar] [CrossRef] [PubMed]
- Andrews, D.Q.; Naidenko, O.V. Population-wide exposure to per- and polyfluoroalkyl substances from drinking water in the United States. Environ. Sci. Technol. Lett. 2020, 7, 931–936. [Google Scholar] [CrossRef]
- Angeles, L.F.; Islam, S.; Aldstadt, J.; Saqeeb, K.N.; Alam, M.; Khan, A.; Johura, F.-T.; Ahmed, S.I.; Aga, D.S. Retrospective suspect screening reveals previously ignored antibiotics, antifungal compounds, and metabolites in Bangladesh surface waters. Sci. Total Environ. 2020, 712, 136285. [Google Scholar] [CrossRef] [PubMed]
- Anim, A.K.; Thompson, K.; Duodu, G.O.; Tscharke, B.; Birch, G.; Goonetilleke, A.; Ayoko, G.A.; Mueller, J.F. Pharmaceuticals, personal care products, food additive and pesticides in surface waters from three Australian east coast estuaries (Sydney, Yarra and Brisbane). Mar. Pollut. Bull. 2020, 153, 111014. [Google Scholar] [CrossRef] [PubMed]
- Arregocés-Garcés, R.; Garcés-Ordóñez, O.; Vivas-Aguas, L.-J.; Canals, M. Microplastics transfer from a malfunctioning municipal wastewater oxidation pond into a marine protected area in the Colombian Caribbean. Reg. Stud. Mar. Sci. 2024, 69, 103361. [Google Scholar] [CrossRef]
- Arsand, J.B.; Hoff, R.B.; Jank, L.; Bussamara, R.; Dallegrave, A.; Bento, F.M.; Kmetzsch, L.; Falção, D.A.; Peralba, M.D.C.R.; Gomes, A.d.A.; et al. Presence of antibiotic resistance genes and its association with antibiotic occurrence in Dilúvio River in southern Brazil. Sci. Total Environ. 2020, 738, 139781. [Google Scholar] [CrossRef] [PubMed]
- Ashfaq, M.; Li, Y.; Wang, Y.; Chen, W.; Wang, H.; Chen, X.; Wu, W.; Huang, Z.; Yu, C.-P.; Sun, Q. Occurrence, fate, and mass balance of different classes of pharmaceuticals and personal care products in an anaerobic-anoxic-oxic wastewater treatment plant in Xiamen, China. Water Res. 2017, 123, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Ashfaq, M.; Li, Y.; Zubair, M.; Rehman, M.S.U.; Sumrra, S.H.; Nazar, M.F.; Mustafa, G.; Fazal, M.T.; Ashraf, H.; Sun, Q. Occurrence and risk evaluation of endocrine-disrupting chemicals in wastewater and surface water of Lahore, Pakistan. Environ. Geochem. Health. 2023, 45, 4837–4851. [Google Scholar] [CrossRef] [PubMed]
- Astuti, M.P.; Notodarmojo, S.; Priadi, C.R.; Padhye, L.P. Contaminants of emerging concerns (CECs) in a municipal wastewater treatment plant in Indonesia. Environ. Sci. Pollut. Res. 2023, 30, 21512–21532. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Ulvi, A.; Aydin, M.E. Occurrence, characteristics, and risk assessment of microplastics and polycyclic aromatic hydrocarbons associated with microplastics in surface water and sediments of the Konya Closed Basin, Turkey. Environ. Sci. Pollut. Res. 2024, 31, 57989–58009. [Google Scholar] [CrossRef] [PubMed]
- Äystö, L.; Vieno, N.; Fjäder, P.; Mehtonen, J.; Nystén, T. Hospitals and households as primary emission sources for risk-posing pharmaceuticals in municipal wastewater. Ecotoxicol. Environ. Saf. 2023, 262, 115149. [Google Scholar] [CrossRef] [PubMed]
- Azzi, M.; Ravier, S.; Elkak, A.; Coulomb, B.; Boudenne, J.-L. Fast UHPLC-MS/MS for the simultaneous determination of azithromycin, erythromycin, fluoxetine and sotalol in surface water samples. Appl. Sci. 2021, 11, 8316. [Google Scholar] [CrossRef]
- Babayev, M.; Capozzi, S.L.; Miller, P.; McLaughlin, K.R.; Medina, S.S.; Byrne, S.; Zheng, G.; Salamova, A. PFAS in drinking water and serum of the people of a southeast Alaska community: A pilot study. Environ. Pollut. 2022, 305, 119246. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Son, Y. Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA. Sci. Total Environ. 2021, 751, 141622. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Zhu, X.; Jiang, H.; Wang, Z.; He, C.; Sheng, L.; Zhuang, J. Purification effect of sequential constructed wetland for the polluted water in urban river. Water 2020, 12, 1054. [Google Scholar] [CrossRef]
- Bakare, B.F.; Adeyinka, G.C. Occurrence and fate of triclosan and triclocarban in selected Wastewater Systems across Durban Metropolis, KwaZulu-Natal, South Africa. Int. J. Environ. Res. Public Health 2022, 19, 6769. [Google Scholar] [CrossRef] [PubMed]
- Bandara, R.M.L.S.; Perera, M.D.D.; Gomes, P.I.A.; Yan, X.-F. Profiling microplastic pollution in surface water bodies in the most urbanized city of Sri Lanka and its suburbs to understand the underlying factors. Water Air Soil Pollut. 2023, 234, 157. [Google Scholar] [CrossRef]
- Bayati, M.; Ho, T.L.; Vu, D.C.; Wang, F.; Rogers, E.; Cuvellier, C.; Huebotter, S.; Inniss, E.C.; Udawatta, R.; Jose, S.; et al. Assessing the efficiency of constructed wetlands in removing PPCPs from treated wastewater and mitigating the ecotoxicological impacts. Int. J. Hyg. Environ. Health 2021, 231, 113664. [Google Scholar] [CrossRef] [PubMed]
- Ben, Y.; Hu, M.; Zhang, X.; Wu, S.; Wong, M.H.; Wang, M.; Andrews, C.B.; Zheng, C. Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water. Water Res. 2020, 175, 115699. [Google Scholar] [CrossRef] [PubMed]
- Bentaallah, M.E.A.; Baghdadi, D.; Gündoğdu, S.; Megharbi, A.; Taibi, N.-E.; Büyükdeveci, F. Assessment of microplastic abundance and impact on recreational beaches along the western Algerian coastline. Mar. Pollut. Bull. 2024, 199, 116007. [Google Scholar] [CrossRef] [PubMed]
- Berov, D.; Klayn, S. Microplastics and floating litter pollution in Bulgarian Black Sea coastal waters. Mar. Pollut. Bull. 2020, 156, 111225. [Google Scholar] [CrossRef] [PubMed]
- Blankson, E.R.; Tetteh, P.N.; Oppong, P.; Gbogbo, F.; Zhu, X. Microplastics prevalence in water, sediment and two economically important species of fish in an urban riverine system in Ghana. PLoS ONE 2022, 17, e0263196. [Google Scholar] [CrossRef] [PubMed]
- Brožová, K.; Halfar, J.; Čabanová, K.; Motyka, O.; Drabinová, S.; Hanus, P.; Heviánková, S. The first evidence of microplastic occurrence in mine water: The largest black coal mining area in the Czech Republic. Water Res. 2023, 244, 120538. [Google Scholar] [CrossRef] [PubMed]
- Bujaczek, T.; Kolter, S.; Locky, D.; Ross, M.S.; Salomon, A. Characterization of microplastics and anthropogenic fibers in surface waters of the North Saskatchewan River, Alberta, Canada. Facets 2021, 6, 26–43. [Google Scholar] [CrossRef]
- Campanale, C.; Stock, F.; Massarelli, C.; Kochleus, C.; Bagnuolo, G.; Reifferscheid, G.; Uricchio, V.F. Microplastics and their possible sources: The example of Ofanto river in southeast Italy. Environ. Pollut. 2020, 258, 113284. [Google Scholar] [CrossRef] [PubMed]
- Cantoni, B.; Bergna, G.; Baldini, E.; Malpei, F.; Antonelli, M. PFAS in textile wastewater: An integrated scenario analysis for interventions prioritization to reduce environmental risk. Process. Saf. Environ. Prot. 2024, 183, 437–445. [Google Scholar] [CrossRef]
- Cao, M.H.; Wang, B.B.; Yu, H.S.; Wang, L.L.; Yuan, S.H.; Chen, J. Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation. J. Hazard. Mater. 2010, 179, 1143–1146. [Google Scholar] [CrossRef] [PubMed]
- Capparelli, M.V.; Molinero, J.; Moulatlet, G.M.; Barrado, M.; Prado-Alcívar, S.; Cabrera, M.; Gimiliani, G.; Ñacato, C.; Pinos-Velez, V.; Cipriani-Avila, I. Microplastics in rivers and coastal waters of the province of Esmeraldas, Ecuador. Mar. Pollut. Bull. 2021, 173, 113067. [Google Scholar] [CrossRef] [PubMed]
- Castaño-Trias, M.; Rodríguez-Mozaz, S.; Verlicchi, P.; Buttiglieri, G. Selection of pharmaceuticals of concern in reclaimed water for crop irrigation in the Mediterranean area. J. Hazard. Mater. 2024, 466, 133538. [Google Scholar] [CrossRef] [PubMed]
- Castro, R.O.; da Silva, M.L.; Marques, M.R.; de Araújo, F.V. Spatio-temporal evaluation of macro, meso and microplastics in surface waters, bottom and beach sediments of two embayments in Niterói, RJ, Brazil. Mar. Pollut. Bull. 2020, 160, 111537. [Google Scholar] [CrossRef] [PubMed]
- Cerón-Vivas, A.; Mesa, G.A.P. Environmental risk assessment of pharmaceutical pollutants in the Oro River Sub-basin (Colombia). Environ. Res. 2024, 252, 118951. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Shappell, N.W.; Mukhopadhyay, M.; Onanong, S.; Rex, K.R.; Snow, D. Surveillance of plasticizers, bisphenol A, steroids and caffeine in surface water of River Ganga and Sundarban wetland along the Bay of Bengal: Occurrence, sources, estrogenicity screening and ecotoxicological risk assessment. Water Res. 2021, 190, 116668. [Google Scholar] [CrossRef] [PubMed]
- Chandrajith, R.; Zwiener, C.; Daniel, C.; Amann, K.; Nanayakkara, N.; Barth, J.A.C. Screening of micro-organic compounds in groundwater from areas with chronic kidney disease of unclear aetiology (CKDu) in the dry zone of Sri Lanka. Expo. Health 2025, 17, 167–176. [Google Scholar] [CrossRef]
- Chaves, M.d.J.S.; Barbosa, S.C.; Malinowski, M.d.M.; Volpato, D.; Castro, Í.B.; Franco, T.C.R.d.S.; Primel, E.G. Pharmaceuticals and personal care products in a Brazilian wetland of international importance: Occurrence and environmental risk assessment. Sci. Total Environ. 2020, 734, 139374. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.d.J.S.; Barbosa, S.C.; Primel, E.G. Emerging contaminants in Brazilian aquatic environment: Identifying targets of potential concern based on occurrence and ecological risk. Environ. Sci. Pollut. Res. 2021, 28, 67528–67543. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tong, T.; Jiang, X.; Xie, S. Biodegradation of sulfonamides in both oxic and anoxic zones of vertical flow constructed wetland and the potential degraders. Environ. Pollut. 2020, 265, 115040. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhong, Y.; Chen, K.; Guo, C.; Gong, J.; Wang, D.; Yang, Y.; Ma, S.; Yu, Y. The impact of discharge reduction activities on the occurrence of contaminants of emerging concern in surface water from the Pearl River. Environ. Sci. Pollut. Res. 2020, 27, 30378–30389. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, H.; Liu, Y.; Bowden, J.A.; Tolaymat, T.M.; Townsend, T.G.; Solo-Gabriele, H.M. Evaluation of per- and polyfluoroalkyl substances (PFAS) in leachate, gas condensate, stormwater and groundwater at landfills. Chemosphere 2023, 318, 137903. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.L.; Kim, J.-G.; Kim, H.-B.; Choi, J.H.; Tsang, Y.F.; Baek, K. Occurrence and removal of microplastics in wastewater treatment plants and drinking water purification facilities: A review. Chem. Eng. J. 2021, 410, 128381. [Google Scholar] [CrossRef]
- Chepchirchir, R.; Mwalimu, R.; Tanui, I.; Kiprop, A.; Krauss, M.; Brack, W.; Kandie, F. Occurrence, removal and risk assessment of chemicals of emerging concern in selected rivers and wastewater treatment plants in western Kenya. Sci. Total Environ. 2024, 948, 174982. [Google Scholar] [CrossRef] [PubMed]
- Chernova, E.; Zhakovskaya, Z.; Berezina, N. Occurrence of pharmaceuticals in the Eastern Gulf of Finland (Russia). Environ. Sci. Pollut. Res. 2021, 28, 68871–68884. [Google Scholar] [CrossRef] [PubMed]
- Cipriani-Avila, I.; Molinero, J.; Cabrera, M.; Medina-Villamizar, E.J.; Capparelli, M.V.; Jara-Negrete, E.; Pinos-Velez, V.; Acosta, S.; Andrade, D.L.; Barrado, M.; et al. Occurrence of emerging contaminants in surface water bodies of a coastal province in Ecuador and possible influence of tourism decline caused by COVID-19 lockdown. Sci. Total Environ. 2023, 866, 161340. [Google Scholar] [CrossRef] [PubMed]
- Close, M.E.; Humphries, B.; Northcott, G. Outcomes of the first combined national survey of pesticides and emerging organic contaminants (EOCs) in groundwater in New Zealand 2018. Sci. Total Environ. 2021, 754, 142005. [Google Scholar] [CrossRef] [PubMed]
- Cooney, J.; Lenczewski, M.; Leal-Bautista, R.M.; Tucker, K.; Davis, M.; Rodriguez, J. Analysis of sunscreens and antibiotics in groundwater during the Covid-19 pandemic in the Riviera Maya, Mexico. Sci. Total Environ. 2023, 894, 164820. [Google Scholar] [CrossRef] [PubMed]
- Cruz-López, A.; Dávila-Pórcel, R.A.; de León-Gómez, H.; Rodríguez-Martínez, J.M.; Suárez-Vázquez, S.I.; Cardona-Benavides, A.; Castro-Larragoitia, G.J.; Boreselli, L.; Villalba, M.d.L.; Pinales-Munguía, A.; et al. Exploratory study on the presence of bisphenol A and bis(2-ethylhexyl) phthalate in the Santa Catarina River in Monterrey, N.L., Mexico. Environ. Monit. Assess. 2020, 192, 488. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Zhang, Y.; Han, W.; Li, J.; Sun, X.; Shen, J.; Wang, L. Advanced treatment of triazole fungicides discharged water in pilot scale by integrated system: Enhanced electrochemical oxidation, upflow biological aerated filter and electrodialysis. Chem. Eng. J. 2017, 315, 335–344. [Google Scholar] [CrossRef]
- Cunsolo, S.; Williams, J.; Hale, M.; Read, D.S.; Couceiro, F. Optimising sample preparation for FTIR-based microplastic analysis in wastewater and sludge samples: Multiple digestions. Anal. Bioanal. Chem. 2021, 413, 3789–3799. [Google Scholar] [CrossRef] [PubMed]
- Currell, M.; Northby, N.; Netherway, P. Examining changes in groundwater PFAS contamination from legacy landfills over a three-year period at Australia’s largest urban renewal site. Chemosphere 2024, 352, 141345. [Google Scholar] [CrossRef] [PubMed]
- da Silva, B.F.; Aristizabal-Henao, J.J.; Aufmuth, J.; Awkerman, J.; Bowden, J.A. Survey of per- and polyfluoroalkyl substances (PFAS) in surface water collected in Pensacola, FL. Heliyon 2022, 8, e10239. [Google Scholar] [CrossRef] [PubMed]
- Datel, J.V.; Hrabankova, A. Pharmaceuticals load in the Svihov Water Reservoir (Czech Republic) and impacts on quality of treated drinking water. Water 2020, 12, 1387. [Google Scholar] [CrossRef]
- de Carvalho, A.R.; Garcia, F.; Riem-Galliano, L.; Tudesque, L.; Albignac, M.; ter Halle, A.; Cucherousset, J. Urbanization and hydrological conditions drive the spatial and temporal variability of microplastic pollution in the Garonne River. Sci. Total Environ. 2021, 769, 144479. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, N.G.; Olivatto, G.P.; Lourenço, F.M.d.O.; Lourenço, A.L.A.; Garcia, G.M.; Pimpinato, R.F.; Tornisielo, V.L. Contamination by microplastics and sorbed organic pollutants in the surface waters of the Tietê River, São Paulo-SP, Brazil. Heliyon 2024, 10, e36047. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Santos, A.D.; do Nascimento, M.T.L.; Sanson, A.L.; dos Santos, R.F.; Felix, L.C.; da Silva de Freitas, A.; Hauser-Davis, R.A.; da Fonseca, E.M.; Neto, J.A.B.; Bila, D.M. Pharmaceuticals, natural and synthetic hormones and phenols in sediments from an eutrophic estuary, Jurujuba Sound, Guanabara Bay, Brazil. Mar. Pollut. Bull. 2022, 184, 114176. [Google Scholar] [CrossRef] [PubMed]
- de Rezende, A.T.; Mounteer, A.H. Ecological risk assessment of pharmaceuticals and endocrine disrupting compounds in Brazilian surface waters. Environ. Pollut. 2023, 338, 122628. [Google Scholar] [CrossRef] [PubMed]
- Dehm, J.; Singh, S.; Ferreira, M.; Piovano, S.; Fick, J. Screening of pharmaceuticals in coastal waters of the southern coast of Viti Levu in Fiji, South Pacific. Chemosphere 2021, 276, 130161. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Sosa, V.R.; Tapia-Salazar, M.; Wanner, J.; Cardenas-Chavez, D.L. Monitoring and ecotoxicity assessment of emerging contaminants in wastewater discharge in the City of Prague (Czech Republic). Water 2020, 12, 1079. [Google Scholar] [CrossRef]
- Díaz-Cubilla, M.; Letón, P.; Luna-Vázquez, C.; Marrón-Romera, M.; Boltes, K. Effect of carbamazepine, ibuprofen, triclosan and sulfamethoxazole on anaerobic bioreactor performance: Combining cell damage, ecotoxicity and chemical information. Toxics 2022, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Zhang, J.; Chen, Y.; Wang, L.; Wang, M.; Xiong, D.; Sun, Y. Combined effects of PFOS and PFOA on zebrafish (Danio rerio) embryos. Arch. Environ. Contam. Toxicol. 2013, 64, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Dilshad, A.; Taneez, M.; Younas, F.; Jabeen, A.; Rafiq, M.T.; Fatimah, H. Microplastic pollution in the surface water and sediments from Kallar Kahar wetland, Pakistan: Occurrence, distribution, and characterization by ATR-FTIR. Environ. Monit. Assess. 2022, 194, 511. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento, R.F.; de Carvalho Filho, J.A.A.; Napoleão, D.C.; Ribeiro, B.G.; da Silva Pereira Cabral, J.J.; de Paiva, A.L.R. Presence of non-steroidal anti-inflammatories in Brazilian semiarid waters. Water Air Soil Pollut. Water Air Soil Pollut. 2023, 234, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Jaimes, L.P.; Cedillo-González, E.I.; Luévano-Hipólito, E.; Acuña-Bedoya, J.D.; Hernández-López, J.M. Degradation of primary nanoplastics by photocatalysis using different anodized TiO2 structures. J. Hazard. Mater. 2021, 413, 125452. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zhao, Y.; Wang, C.; Zhang, H.; Chen, Q.; Zhang, X.; Zhang, L.; Wu, J.; Wu, Z.; Zhou, Q. Removal performance of antibiotics and antibiotic resistance genes in swine wastewater by integrated vertical-flow constructed wetlands with zeolite substrate. Sci. Total Environ. 2020, 721, 137765. [Google Scholar] [CrossRef] [PubMed]
- Durcik, M.; Grobin, A.; Roškar, R.; Trontelj, J.; Mašič, L.P. Estrogenic potency of endocrine disrupting chemicals and their mixtures detected in environmental waters and wastewaters. Chemosphere 2023, 330, 138712. [Google Scholar] [CrossRef] [PubMed]
- Duru, C.I.; Kang, D.H.; Sherchan, S.P. The trends of per-and polyfluoroalkyl substances (PFAS) in drinking water systems in Maryland, United States. Sci. Total Environ. 2024, 957, 177152. [Google Scholar] [CrossRef] [PubMed]
- Dvorakova, D.; Jurikova, M.; Svobodova, V.; Parizek, O.; Kozisek, F.; Kotal, F.; Jeligova, H.; Mayerova, L.; Pulkrabova, J. Complex monitoring of perfluoroalkyl substances (PFAS) from tap drinking water in the Czech Republic. Water Res. 2023, 247, 120764. [Google Scholar] [CrossRef] [PubMed]
- Ebele, A.J.; Oluseyi, T.; Drage, D.S.; Harrad, S.; Abou-Elwafa Abdallah, M. Occurrence, seasonal variation and human exposure to pharmaceuticals and personal care products in surface water, groundwater and drinking water in Lagos State, Nigeria. Emerg. Contam. 2020, 6, 124–132. [Google Scholar] [CrossRef]
- El Meragawi, S.; Akbari, A.; Hernandez, S.; Mirshekarloo, M.S.; Bhattacharyya, D.; Tanksale, A.; Majumder, M. Enhanced permselective separation of per-fluorooctanoic acid in graphene oxide membranes by a simple PEI modification. J. Mater. Chem. A 2020, 8, 24800–24811. [Google Scholar] [CrossRef]
- Elles-Pérez, C.; Guzman-Tordecilla, M.; Ramos, Y.; Castillo-Ramírez, M.; Moreno-Ríos, A.; Garzón-Rodríguez, C.; Rojas-Solano, J. Assessment of water quality and emerging pollutants in two fish species from the Mallorquín Swamp in the Colombian Caribbean. Heliyon 2024, 10, e39005. [Google Scholar] [CrossRef] [PubMed]
- Emam, T.E.; Souaya, E.R.; Ibrahim, M.B.M.; Mahmoud, S.A. Advanced removal of pesticides, herbicides, and pharmaceutical residues from surface water. Environ. Technol. 2023, 44, 3466–3478. [Google Scholar] [CrossRef] [PubMed]
- Emnet, P.; Mahaliyana, A.S.; Northcott, G.; Gaw, S. Organic micropollutants in wastewater effluents and the receiving coastal waters, sediments, and biota of Lyttelton Harbour (Te Whakaraupō), New Zealand. Arch. Environ. Contam. Toxicol. 2020, 79, 461–477. [Google Scholar] [CrossRef] [PubMed]
- Erdem, I.Ç.; Yurtsever, M.; Şahin, F. Determination of microplastics in drinking water treatment plants and tap water in Kocaeli, Turkey. Urban Water J. 2024, 21, 941–952. [Google Scholar] [CrossRef]
- Fabregat-Safont, D.; Botero-Coy, A.M.; Nieto-Juárez, J.I.; Torres-Palma, R.A.; Hernández, F. Searching for pharmaceutically active products and metabolites in environmental waters of Peru by HRMS-based screening: Proposal for future monitoring and environmental risk assessment. Chemosphere 2023, 337, 139375. [Google Scholar] [CrossRef] [PubMed]
- Falahudin, D.; Cordova, M.R.; Sun, X.; Yogaswara, D.; Wulandari, I.; Hindarti, D.; Arifin, Z. The first occurrence, spatial distribution and characteristics of microplastic particles in sediments from Banten Bay, Indonesia. Sci. Total Environ. 2020, 705, 135304. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Yin, W.; Gu, W.; Liu, M.; Liu, J.; Wang, Z.; Shi, L. Occurrence, spatial distribution and risk assessment of high concern endocrine-disrupting chemicals in Jiangsu Province, China. Chemosphere 2021, 285, 131396. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Zou, L.; Zhao, G. Microplastic abundance, distribution, and composition in the surface water and sediments of the Yangtze River along Chongqing City, China. J. Soils Sediments 2021, 21, 1840–1851. [Google Scholar] [CrossRef]
- Fan, L.; Mohseni, A.; Schmidt, J.; Evans, B.; Murdoch, B.; Gao, L. Efficiency of lagoon-based municipal wastewater treatment in removing microplastics. Sci. Total Environ. 2023, 876, 162714. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zheng, J.; Deng, L.; Rao, W.; Zhang, Q.; Liu, T.; Qian, X. Spatiotemporal dynamics of microplastics in an urban river network area. Water Res. 2022, 212, 118116. [Google Scholar] [CrossRef] [PubMed]
- Fardullah, M.; Hossain, M.T.; Islam, M.S.; Islam, M.R.; Rahman, R.; Akther, K.; Uddin, A.; Morshed, S.; Sultana, N.; Alam, A.; et al. Occurrence and spatial distribution of microplastics in water and sediments of Hatiya Island, Bangladesh and their risk assessment. J. Environ. Manag. 2024, 370, 122697. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.J.; Paíga, P.; Silva, A.; Llaguno, C.P.; Carvalho, M.; Vázquez, F.M.; Delerue-Matos, C. Antibiotics and antidepressants occurrence in surface waters and sediments collected in the north of Portugal. Chemosphere 2020, 239, 124729. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, M.; Bauer, A.L.; Valiati, V.H.; Schulz, U.H. Microplastic concentrations in raw and drinking water in the Sinos River, Southern Brazil. Water 2020, 12, 3115. [Google Scholar] [CrossRef]
- Fiedler, H.; Vega-Bustillos, L.; Arias-Pastrano, J.; Pérez-Aldás, L.V.; Castro-Díaz, J. Snapshot survey of the presence of perfluoroalkyl substances in products, articles, and the environment in Ecuador. Engineering 2024, 37, 49–61. [Google Scholar] [CrossRef]
- Fonseca, E.; Hernández, F.; Ibáñez, M.; Rico, A.; Pitarch, E.; Bijlsma, L. Occurrence and ecological risks of pharmaceuticals in a Mediterranean river in Eastern Spain. Environ. Int. 2020, 144, 106004. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.A.; Arellano, J.M.; Albendín, G.; Rodríguez-Barroso, R.; Quiroga, J.M.; Coello, M.D. Microplastic pollution in wastewater treatment plants in the city of Cádiz: Abundance, removal efficiency and presence in receiving water body. Sci. Total Environ. 2021, 776, 145795. [Google Scholar] [CrossRef]
- Frank, Y.; Ershova, A.; Batasheva, S.; Vorobiev, E.; Rakhmatullina, S.; Vorobiev, D.; Fakhrullin, R. Microplastics in freshwater: A focus on the Russian inland waters. Water 2022, 14, 3909. [Google Scholar] [CrossRef]
- Frank, Y.A.; Vorobiev, E.D.; Vorobiev, D.S.; Trifonov, A.A.; Antsiferov, D.V.; Hunter, T.S.; Wilson, S.P.; Strezov, V. Preliminary screening for microplastic concentrations in the surface water of the Ob and Tom Rivers in Siberia, Russia. Sustainability 2020, 13, 80. [Google Scholar] [CrossRef]
- Fredriksson, F.; Eriksson, U.; Kärrman, A.; Yeung, L.W.Y. Per- and polyfluoroalkyl substances (PFAS) in sludge from wastewater treatment plants in Sweden—First findings of novel fluorinated copolymers in Europe including temporal analysis. Sci. Total Environ. 2022, 846, 157406. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Ríos, S.E.; Peñuela, G.A. Evaluation of ibuprofen and diclofenac in the main rivers of Colombia and striped catfish Pseudoplatystoma magdaleniatum. Environ. Monit. Assess. 2021, 193, 210. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, Y.; Song, T.; Su, R.; Luo, J. Activated peroxymonosulfate with ferric chloride-modified biochar to degrade bisphenol A: Characteristics, influencing factors, reaction mechanism and reuse performance. Sep. Purif. Technol. 2022, 300, 121857. [Google Scholar] [CrossRef]
- Garcés-Ordóñez, O.; Saldarriaga-Vélez, J.F.; Espinosa-Díaz, L.F.; Patiño, A.D.; Cusba, J.; Canals, M.; Mejía-Esquivia, K.; Fragozo-Velásquez, L.; Sáenz-Arias, S.; Córdoba-Meza, T.; et al. Microplastic pollution in water, sediments and commercial fish species from Ciénaga Grande de Santa Marta lagoon complex, Colombian Caribbean. Sci. Total Environ. 2022, 829, 154643. [Google Scholar] [CrossRef] [PubMed]
- Gebbink, W.A.; van Leeuwen, S.P.J. Environmental contamination and human exposure to PFASs near a fluorochemical production plant: Review of historic and current PFOA and GenX contamination in the Netherlands. Environ. Int. 2020, 137, 105583. [Google Scholar] [CrossRef] [PubMed]
- Gerrity, D.; Gamage, S.; Holady, J.C.; Mawhinney, D.B.; Quiñones, O.; Trenholm, R.A.; Snyder, S.A. Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection. Water Res. 2011, 45, 2155–2165. [Google Scholar] [CrossRef] [PubMed]
- Gevao, B.; Uddin, S.; Krishnan, D.; Rajagopalan, S.; Habibi, N. Antibiotics in wastewater: Baseline of the influent and effluent streams in Kuwait. Toxics 2022, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Gewurtz, S.B.; Auyeung, A.S.; De Silva, A.O.; Teslic, S.; Smyth, S.A. Per- and polyfluoroalkyl substances (PFAS) in Canadian municipal wastewater and biosolids: Recent patterns and time trends 2009 to 2021. Sci. Total Environ. 2024, 912, 168638. [Google Scholar] [CrossRef] [PubMed]
- Gobelius, L.; Glimstedt, L.; Olsson, J.; Wiberg, K.; Ahrens, L. Mass flow of per- and polyfluoroalkyl substances (PFAS) in a Swedish municipal wastewater network and wastewater treatment plant. Chemosphere 2023, 336, 139182. [Google Scholar] [CrossRef] [PubMed]
- Göckener, B.; Fliedner, A.; Weinfurtner, K.; Rüdel, H.; Badry, A.; Koschorreck, J. Tracking down unknown PFAS pollution—The direct TOP assay in spatial monitoring of surface waters in Germany. Sci. Total Environ. 2023, 898, 165425. [Google Scholar] [CrossRef] [PubMed]
- Grbić, J.; Helm, P.; Athey, S.; Rochman, C.M. Microplastics entering northwestern Lake Ontario are diverse and linked to urban sources. Water Res. 2020, 174, 115623. [Google Scholar] [CrossRef] [PubMed]
- Grini, H.; Metallaoui, S.; Rangel-Buitrago, N.; Hadef, A.; González-Fernández, D.; Bensouilah, M. Persistence and potential increasing accumulation of microplastic pollution on the Skikda coast (northeastern Algeria). Mar. Pollut. Bull. 2024, 209, 117314. [Google Scholar] [CrossRef] [PubMed]
- Grobin, A.; Roškar, R.; Trontelj, J. The environmental occurrence, fate, and risks of 25 endocrine disruptors in Slovenian waters. Sci. Total Environ. 2024, 906, 167245. [Google Scholar] [CrossRef] [PubMed]
- Grung, M.; Hjermann, D.Ø.; Rundberget, T.; Bæk, K.; Thomsen, C.; Knutsen, H.K.; Haug, L.S. Low levels of per- and polyfluoroalkyl substances (PFAS) detected in drinking water in Norway, but elevated concentrations found near known sources. Sci. Total Environ. 2024, 947, 174550. [Google Scholar] [CrossRef] [PubMed]
- Guillossou, R.; Le Roux, J.; Mailler, R.; Pereira-Derome, C.S.; Varrault, G.; Bressy, A.; Vulliet, E.; Morlay, C.; Nauleau, F.; Rocher, V.; et al. Influence of dissolved organic matter on the removal of 12 organic micropollutants from wastewater effluent by powdered activated carbon adsorption. Water Res. 2020, 172, 115487. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Li, J.; Luo, M.; Mao, Y.; Yu, X.; Elskens, M.; Baeyens, W.; Gao, Y. Estrogenic activity and ecological risk of steroids, bisphenol A and phthalates after secondary and tertiary sewage treatment processes. Water Res. 2022, 214, 118189. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Gomaa, H.; Ray, M.B. Performance characterization of a hybrid adsorptive-photocatalytic (APC) oscillatory membrane reactor for micropollutant removal. Sep. Purif. Technol. 2021, 279, 119706. [Google Scholar] [CrossRef]
- Hain, E.; He, K.; Batista-Andrade, J.A.; Feerick, A.; Tarnowski, M.; Timm, A.; Blaney, L. Geospatial and co-occurrence analysis of antibiotics, hormones, and UV filters in the Chesapeake Bay (USA) to confirm inputs from wastewater treatment plants, septic systems, and animal feeding operations. J. Hazard. Mater. 2023, 460, 132405. [Google Scholar] [CrossRef] [PubMed]
- Hajiouni, S.; Mohammadi, A.; Ramavandi, B.; Arfaeinia, H.; De-La-Torre, G.E.; Tekle-Röttering, A.; Dobaradaran, S. Occurrence of microplastics and phthalate esters in urban runoff: A focus on the Persian Gulf coastline. Sci. Total Environ. 2022, 806, 150559. [Google Scholar] [CrossRef] [PubMed]
- Halfar, J.; Brožová, K.; Placová, K.; Kyncl, M. Determining the presence of micro-particles in drinking water in the Czech Republic—An exploratory study focusing on microplastics and additives. Eng. Proc. 2023, 57, 16. [Google Scholar] [CrossRef]
- Halfar, J.; Heviánková, S.; Brožová, K.; Čabanová, K.; Valigůrová, A.; Motyka, O. Microplastic contamination in Czech drinking water: Insights from comprehensive monitoring. Environ. Sci. Eur. 2024, 36, 213. [Google Scholar] [CrossRef]
- Haque, A.; Holsen, T.M.; Baki, A.B.M. Distribution and risk assessment of microplastic pollution in a rural river system near a wastewater treatment plant, hydro-dam, and river confluence. Sci. Rep. 2024, 14, 6066. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.R.; Ali, M.M.; Ahmed, W.; Siddique, M.A.B.; Akbor, M.A.; Islam, M.S.; Rahman, M. Assessment of microplastics pollution in aquatic species (fish, crab, and snail), water, and sediment from the Buriganga River, Bangladesh: An ecological risk appraisal. Sci. Total Environ. 2022, 857, 159344. [Google Scholar] [CrossRef] [PubMed]
- Harley-Nyang, D.; Memon, F.A.; Jones, N.; Galloway, T. Investigation and analysis of microplastics in sewage sludge and biosolids: A case study from one wastewater treatment works in the UK. Sci. Total Environ. 2022, 823, 153735. [Google Scholar] [CrossRef] [PubMed]
- Harrad, S.; Drage, D.S.; Sharkey, M.; Berresheim, H. Perfluoroalkyl substances and brominated flame retardants in landfill-related air, soil, and groundwater from Ireland. Sci. Total Environ. 2020, 705, 135834. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Yoon, Y.; Lee, G.; Kim, Y.; Han, J.; Park, C.M. Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4–biochar composite. Bioresour. Technol. 2019, 281, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, J.; Cano-Cuadro, H.; Puello-Polo, E. Emission of bisphenol A and four new analogs from industrial wastewater treatment plants in the production processes of polypropylene and polyethylene terephthalate in South America. Sustainability 2022, 14, 10919. [Google Scholar] [CrossRef]
- Hernandez, E.T.; Koo, B.; Sofen, L.E.; Amin, R.; Togashi, R.K.; Lall, A.I.; Gisch, D.J.; Kern, B.J.; Rickard, M.A.; Francis, M.B. Proteins as adsorbents for PFAS removal from water. Environ. Sci. Water Res. Technol. 2022, 8, 1188–1194. [Google Scholar] [CrossRef]
- Hernández, F.; Ibáñez, M.; Portoles, T.; Hidalgo-Troya, A.; Ramírez, J.D.; Paredes, M.A.; Hidalgo, A.F.; García, A.M.; Galeano, L.A. High resolution mass spectrometry-based screening for the comprehensive investigation of organic micropollutants in surface water and wastewater from Pasto city, Colombian Andean highlands. Sci. Total Environ. 2024, 922, 171293. [Google Scholar] [CrossRef] [PubMed]
- Herzke, D.; Ghaffari, P.; Sundet, J.H.; Tranang, C.A.; Halsband, C. Microplastic fiber emissions from wastewater effluents: Abundance, transport behavior and exposure risk for biota in an Arctic fjord. Front. Environ. Sci. 2021, 9, 662168. [Google Scholar] [CrossRef]
- Higgins, C.; Turner, A. Microplastics in surface coastal waters around Plymouth, UK, and the contribution of boating and shipping activities. Sci. Total Environ. 2023, 893, 164695. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.T.; Konovets, I.M.; Terletskaya, A.V.; Milyukin, M.V.; Lyashenko, A.V.; Shitikova, L.I.; Shevchuk, L.I.; Afanasyev, S.A.; Krot, Y.G.; Zorina-Sakharova, K.Y.; et al. Contaminants, mutagenicity and toxicity in the surface waters of Kyiv, Ukraine. Mar. Pollut. Bull. 2020, 155, 111153. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Yu, J.; Banik, P.; Noman, A.; Nur, A.-A.U.; Haque, R.; Rahman, M.; Albeshr, M.F.; Arai, T. First evidence of microplastics and their characterization in bottled drinking water from a developing country. Front. Environ. Sci. 2023, 11, 1232931. [Google Scholar] [CrossRef]
- Hossain, J.; AftabUddin, S.; Akhter, F.; Nusrat, N.; Rahaman, A.; Sikder, M.N.A.; Monwar, M.; Chowdhury, M.S.N.; Jiang, S.; Shi, H.; et al. Surface water, sediment, and biota: The first multi-compartment analysis of microplastics in the Karnafully river, Bangladesh. Mar. Pollut. Bull. 2022, 180, 113820. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, R.; Sayadi, M.H.; Aazami, J.; Savabieasfehani, M. Accumulation and distribution of microplastics in the sediment and coastal water samples of Chabahar Bay in the Oman Sea, Iran. Mar. Pollut. Bull. 2020, 160, 111682. [Google Scholar] [CrossRef] [PubMed]
- Hrkal, Z.; Adomat, Y.; Rozman, D.; Grischek, T. Efficiency of micropollutant removal through artificial recharge and riverbank filtration: Case studies of Káraný, Czech Republic and Dresden-Hosterwitz, Germany. Environ. Earth Sci. 2023, 82, 155. [Google Scholar] [CrossRef]
- Hron, L.M.C.; Wöckner, M.; Fuchs, V.; Fembacher, L.; Aschenbrenner, B.; Herr, C.; Schober, W.; Heinze, S.; Völkel, W. Monitoring of per- and polyfluoroalkyl substances (PFAS) in human blood samples collected in three regions with known PFAS releases in the environment and three control regions in South Germany. Arch. Toxicol. 2024, 98, 3727–3738. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Zhou, P.; Yang, Y.; Hall, T.; Nie, G.; Yao, Y.; Duan, X.; Wang, S. Degradation of microplastics by a thermal Fenton reaction. ACS ES&T Eng. 2021, 2, 110–120. [Google Scholar] [CrossRef]
- Huang, D.; Li, X.; Ouyang, Z.; Zhao, X.; Wu, R.; Zhang, C.; Lin, C.; Li, Y.; Guo, X. The occurrence and abundance of microplastics in surface water and sediment of the West River downstream, in the south of China. Sci. Total Environ. 2021, 756, 143857. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, X.; Pan, Z.; Li, X.; Ling, Y.; Li, L. Efficient degradation of perfluorooctanoic acid (PFOA) by photocatalytic ozonation. Chem. Eng. J. 2016, 296, 329–334. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, L.; Ma, L.; Zhang, D.; Xu, J.; Zhang, S.; Li, L. FeS combined ozonation to remove p-aminobenzenesulfonamide from water: Density functional theory insights into the mechanism. Chemosphere 2022, 311, 137158. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.G.; Day, J.W.; Wiegman, A.R.; Lane, R.R. Municipal wastewater treatment costs with an emphasis on assimilation wetlands in the Louisiana coastal zone. Ecol. Eng. 2019, 137, 21–25. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Hasan, M.; Sadia, M.R.; Mubin, A.-N.; Ali, M.M.; Senapathi, V.; Idris, A.M.; Malafaia, G. Unveiling microplastics pollution in a subtropical rural recreational lake: A novel insight. Environ. Res. 2024, 250, 118543. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Islam, Z.; Hasan, M.R. Pervasiveness and characteristics of microplastics in surface water and sediment of the Buriganga River, Bangladesh. Chemosphere 2022, 307, 135945. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Islam, Z.; Jamal, A.H.M.S.I.M.; Momtaz, N.; Beauty, S.A. Removal efficiencies of microplastics of the three largest drinking water treatment plants in Bangladesh. Sci. Total Environ. 2023, 895, 165155. [Google Scholar] [CrossRef] [PubMed]
- Ismanto, A.; Hadibarata, T.; Kristanti, R.A.; Maslukah, L.; Safinatunnajah, N.; Sathishkumar, P. The abundance of endocrine-disrupting chemicals (EDCs) in downstream of the Bengawan Solo and Brantas rivers located in Indonesia. Chemosphere 2022, 297, 134151. [Google Scholar] [CrossRef] [PubMed]
- Jahan, I.; Chowdhury, G.; Baquero, A.O.; Couetard, N.; Hossain, M.A.; Mian, S.; Iqbal, M.M. Microplastics pollution in the Surma River, Bangladesh: A rising hazard to upstream water quality and aquatic life. J. Environ. Manag. 2024, 360, 121117. [Google Scholar] [CrossRef] [PubMed]
- Jara-Negrete, E.; Cipriani-Avila, I.; Molinero, J.; Pinos-Vélez, V.; Acosta-López, S.; Cabrera, M.; Medina-Villamizar, E.J.; Leiva-Andrade, D.; Pozo, A.; Martínez, O.; et al. Pharmaceutical compounds in urban drinking waters of Ecuador. Front. Environ. Sci. 2023, 11, 1232405. [Google Scholar] [CrossRef]
- Jiang, R.; Liu, J.; Huang, B.; Wang, X.; Luan, T.; Yuan, K. Assessment of the potential ecological risk of residual endocrine-disrupting chemicals from wastewater treatment plants. Sci. Total Environ. 2020, 714, 136689. [Google Scholar] [CrossRef] [PubMed]
- Jian, M.; Chen, X.; Liu, S.; Liu, Y.; Liu, Y.; Wang, Q.; Tu, W. Combined exposure with microplastics increases the toxic effects of PFOS and its alternative F53B in adult zebrafish. Sci. Total Environ. 2024, 920, 170948. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yuan, T.; Li, J.; Shen, Z.; Tian, Y. Occurrence, health risk assessment and water quality criteria derivation of six personal care products (PCPs) in Huangpu River, China. Environ. Monit. Assess. 2022, 194, 577. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.R. PFAS in soil and groundwater following historical land application of biosolids. Water Res. 2022, 211, 118035. [Google Scholar] [CrossRef] [PubMed]
- Jurikova, M.; Dvorakova, D.; Pulkrabova, J. The occurrence of perfluoroalkyl substances (PFAS) in drinking water in the Czech Republic: A pilot study. Environ. Sci. Pollut. Res. 2022, 29, 60341–60353. [Google Scholar] [CrossRef] [PubMed]
- K’OReje, K.; Okoth, M.; Van Langenhove, H.; Demeestere, K. Occurrence and point-of-use treatment of contaminants of emerging concern in groundwater of the Nzoia River basin, Kenya. Environ. Pollut. 2022, 297, 118725. [Google Scholar] [CrossRef] [PubMed]
- Natesan, U.; Vaikunth, R.; Kumar, P.; Ruthra, R.; Srinivasalu, S. Spatial distribution of microplastic concentration around landfill sites and its potential risk on groundwater. Chemosphere 2021, 277, 130263. [Google Scholar] [CrossRef] [PubMed]
- Kandie, F.J.; Krauss, M.; Beckers, L.-M.; Massei, R.; Fillinger, U.; Becker, J.; Liess, M.; Torto, B.; Brack, W. Occurrence and risk assessment of organic micropollutants in freshwater systems within the Lake Victoria South Basin, Kenya. Sci. Total Environ. 2020, 714, 136748. [Google Scholar] [CrossRef] [PubMed]
- Karimi, K.J.; Ngumba, E.; Ahmad, A.; Duse, A.G.; Olago, D.; Ndwigah, S.N.; Mwanthi, M.A.; Ayah, R.; Dulo, S.; Amarasiri, M. Contamination of groundwater with sulfamethoxazole and antibiotic resistant Escherichia coli in informal settlements in Kisumu, Kenya. PLoS Water 2023, 2, e0000076. [Google Scholar] [CrossRef]
- Kasula, M.; Pala, J.; Esfahani, M.R. Designing super fine activated carbon-functionalized thin-film nanocomposite membranes for adsorptive removal of per- and poly-fluoroalkyl substances. ACS Appl. Eng. Mater. 2024, 2, 143–155. [Google Scholar] [CrossRef]
- Khan, H.K.; Rehman, M.Y.A.; Junaid, M.; Lv, M.; Yue, L.; Haq, I.-U.; Xu, N.; Malik, R.N. Occurrence, source apportionment and potential risks of selected PPCPs in groundwater used as a source of drinking water from key urban-rural settings of Pakistan. Sci. Total Environ. 2022, 807, 151010. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Ali, S.A.; Ali, A.S. Biodegradation of low density polyethylene (LDPE) by mesophilic fungus ‘Penicillium citrinum’ isolated from soils of plastic waste dump yard, Bhopal, India. Environ. Technol. 2023, 44, 2300–2314. [Google Scholar] [CrossRef] [PubMed]
- Khavar, A.H.C.; Khedri, N.; Rizo, R.; Martínez, J.M.F.; Mahjoub, A.R.; Doolabi, M.; Aghayani, E. A novel Ga(III) coordination complex as an efficient sensitizer for enhancing photocatalytic activity of TiO2/rGO nanocomposite. J. Rare Earths 2023, 41, 1004–1013. [Google Scholar] [CrossRef]
- Chanez, L.; Rania, D.; Fouzia, T.; Faouzi, S.; Kheireddine, O. Evaluation of sediment contamination by macro and microplastics in coastal waters of Southern Mediterranean: A case study of Annaba, Algeria, before and after the COVID-19 pandemic. Arch. Environ. Prot. 2024, 50, 21–31. [Google Scholar] [CrossRef]
- Khezami, F.; Gómez-Navarro, O.; Barbieri, M.V.; Khiari, N.; Chkirbene, A.; Chiron, S.; Khadhar, S.; Pérez, S. Occurrence of contaminants of emerging concern and pesticides and relative risk assessment in Tunisian groundwater. Sci. Total Environ. 2024, 906, 167319. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.R.; Patsiou, D.; Catarino, A.I. Pollutants bioavailability and toxicological risk from microplastics. In Handbook of Microplastics in the Environment; RochaSantos, T., Costa, M., Mouneyrac, C., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 697–736. [Google Scholar] [CrossRef]
- Kiendrebeogo, M.; Estahbanati, M.K.; Mostafazadeh, A.K.; Drogui, P.; Tyagi, R. Treatment of microplastics in water by anodic oxidation: A case study for polystyrene. Environ. Pollut. 2021, 269, 116168. [Google Scholar] [CrossRef] [PubMed]
- Kılıç, E.; Yücel, N.; Bengil, F.; Bengil, E.G.T.; Şahutoğlu, S.M. Microplastic pollution levels in the surface water and sediment of Orontes basin: Urgent risk for endangered species. Mar. Pollut. Bull. 2024, 208, 116945. [Google Scholar] [CrossRef] [PubMed]
- Kleywegt, S.; Raby, M.; McGill, S.; Helm, P. The impact of risk management measures on the concentrations of per- and polyfluoroalkyl substances in source and treated drinking waters in Ontario, Canada. Sci. Total Environ. 2020, 748, 141195. [Google Scholar] [CrossRef] [PubMed]
- Kodom, K.; Attiogbe, F.; Kuranchie, F.A. Assessment of removal efficiency of pharmaceutical products from wastewater in sewage treatment plants: A case of the Sewerage Systems Ghana Limited, Accra. Heliyon 2021, 7, e08385. [Google Scholar] [CrossRef] [PubMed]
- Kortesmäki, E.; Östman, J.R.; Meierjohann, A.; Brozinski, J.-M.; Eklund, P.; Kronberg, L. Occurrence of antibiotics in influent and effluent from three major wastewater-treatment plants in Finland. Environ. Environ. Toxicol. Chem. 2020, 39, 1774–1789. [Google Scholar] [CrossRef] [PubMed]
- Kovalova, L.; Siegrist, H.; von Gunten, U.; Eugster, J.; Hagenbuch, M.; Wittmer, A.; Moser, R.; McArdell, C.S. Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV. Environ. Sci. Technol. 2013, 47, 7899–7908. [Google Scholar] [CrossRef] [PubMed]
- Kozisek, F.; Dvorakova, D.; Kotal, F.; Jeligova, H.; Mayerova, L.; Svobodova, V.; Jurikova, M.; Gomersall, V.; Pulkrabova, J. Assessing PFAS in drinking water: Insights from the Czech Republic’s risk-based monitoring approach. Chemosphere 2025, 370, 143969. [Google Scholar] [CrossRef] [PubMed]
- Lalonde, B.; Garron, C. Spatial and temporal distribution of BPA in the Canadian freshwater environment. Environ. Contam. Toxicol. 2020, 78, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Valdivia, A.E.L.; Larico, J.R.; Huillca, C.V.; Arias, A.H. First evidence of microplastics in the Quilca-Vítor-Chili river basin, Arequipa region, Peru. J. Contam. Hydrol. 2025, 269, 104484. [Google Scholar] [CrossRef] [PubMed]
- Lath, S.; Navarro, D.A.; Losic, D.; Kumar, A.; McLaughlin, M.J. Sorptive remediation of perfluorooctanoic acid (PFOA) using mixed mineral and graphene/carbon-based materials. Environ. Chem. 2018, 15, 472–480. [Google Scholar] [CrossRef]
- Lechthaler, S.; Waldschläger, K.; Sandhani, C.G.; Sannasiraj, S.A.; Sundar, V.; Schwarzbauer, J.; Schüttrumpf, H. Baseline study on microplastics in Indian rivers under different anthropogenic influences. Water 2021, 13, 1648. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Lee, J.-Y.; Kim, M.-K.; Yang, H.; Lee, J.-E.; Son, Y.; Kho, Y.; Choi, K.; Zoh, K.-D. Concentration and distribution of per- and polyfluoroalkyl substances (PFAS) in the Asan Lake area of South Korea. J. Hazard. Mater. 2020, 381, 120909. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, C.; Le Bihanic, F.; Jalón-Rojas, I.; Dusacre, E.; Chassaigne--Viscaïno, L.; Bichon, J.; Clérandeau, C.; Morin, B.; Lecomte, S.; Cachot, J. Spatial distribution of anthropogenic particles and microplastics in a meso-tidal lagoon (Arcachon Bay, France): A multi-compartment approach. Sci. Total Environ. 2023, 898, 165460. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.; Lin, C.-Y.; Zhu, Y.; Chen, W.; Pan, H.-Y.; Sun, Z.; Sweetman, A.; Zhang, Q.; He, M.-C. Estrogens in municipal wastewater and receiving waters in the Beijing-Tianjin-Hebei region, China: Occurrence and risk assessment of mixtures. J. Hazard. Mater. 2020, 389, 121891. [Google Scholar] [CrossRef] [PubMed]
- Lestari, P.; Trihadiningrum, Y.; Wijaya, B.A.; Yunus, K.A.; Firdaus, M. Distribution of microplastics in Surabaya River, Indonesia. Sci. Total Environ. 2020, 726, 138560. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Huang, Z.; Li, H.; Zhang, Z.; Cui, L. Synergistic removal of sulfamethoxazole and dimethyl phthalate by five constructed wetland substrates. Chemosphere 2023, 318, 137936. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ouyang, Z.; Liu, P.; Zhao, X.; Wu, R.; Zhang, C.; Lin, C.; Li, Y.; Guo, X. Distribution and characteristics of microplastics in the basin of Chishui River in Renhuai, China. Sci. Total Environ. 2021, 773, 145591. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Ding, J.; Song, Z.; Yang, B.; Zhang, C.; Guan, B. Degradation of nano-sized polystyrene plastics by ozonation or chlorination in drinking water disinfection processes. Chem. Eng. J. 2022, 427, 131690. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Wang, C.; Ying, Z.; Huo, M.; Yang, W. Effective column adsorption of triclosan from pure water and wastewater treatment plant effluent by using magnetic porous reduced graphene oxide. J. Hazard. Mater. 2020, 386, 121942. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Thompson, J.; Wang, Z.; Bräunig, J.; Zheng, Q.; Thai, P.K.; Mueller, J.F.; Yuan, Z. Transformation and fate of pharmaceuticals, personal care products, and per- and polyfluoroalkyl substances during aerobic digestion of anaerobically digested sludge. Water Res. 2022, 219, 118568. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Song, H.; Wu, Y.; Gao, S.; Zeng, X.; Yu, Z. Occurrence and distribution of triclosan and its transformation products in Taihu Lake, China. Environ. Sci. Pollut. Res. 2022, 29, 84787–84797. [Google Scholar] [CrossRef] [PubMed]
- Liddie, J.M.; Bind, M.-A.; Karra, M.; Sunderland, E.M. County-level associations between drinking water PFAS contamination and COVID-19 mortality in the United States. J. Expo. Sci. Environ. Epidemiol. 2024, 35, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Cen, Z.; Zhang, C.; Lin, X.; Liang, T.; Xu, Y.; Zheng, L.; Qiao, Q.; Huang, L.; Xiong, K. Triclosanloaded aged microplastics exacerbate oxidative stress and neurotoxicity in Xenopus tropicalis tadpoles via increased bioaccumulation. Sci. Total Environ. 2024, 935, 173457. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Xu, J.; Keller, A.A.; He, L.; Gu, Y.; Zheng, W.; Sun, D.; Lu, Z.; Huang, J.; Huang, X.; et al. Occurrence and risk assessment of emerging contaminants in a water reclamation and ecological reuse project. Sci. Total Environ. 2020, 744, 140977. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, Z.; Li, J.; Hua, X.; Zhang, B.; Tang, C.; An, X.; Lin, T. Emerging and legacy perfluoroalkyl and polyfluoroalkyl substances (PFAS) in surface water around three international airports in China. Chemosphere 2023, 344, 140360. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Munoz, G.; Duy, S.V.; Sauvé, S.; Liu, J. Per- and polyfluoroalkyl substances in contaminated soil and groundwater at airports: A Canadian case study. Environ. Sci. Technol. 2022, 56, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, C.; Wang, P.; Chen, J.; Wang, X.; Yuan, Q. Anthropogenic disturbances on distribution and sources of pharmaceuticals and personal care products throughout the Jinsha River Basin, China. Environ. Res. 2021, 198, 110449. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Feng, M.; Wang, B.; Zhao, X.; Guo, R.; Bu, Y.; Zhang, S.; Chen, J. Distribution and potential risk assessment of antibiotic pollution in the main drinking water sources of Nanjing, China. Environ. Sci. Pollut. Res. 2020, 27, 21429–21441. [Google Scholar] [CrossRef] [PubMed]
- Llamas-Dios, M.; Vadillo, I.; Jiménez-Gavilán, P.; Candela, L.; Corada-Fernández, C. Assessment of a wide array of contaminants of emerging concern in a Mediterranean water basin (Guadalhorce river, Spain): Motivations for an improvement of water management and pollutants surveillance. Sci. Total Environ. 2021, 788, 147822. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Herguedas, N.; Irazola, M.; Alvarez-Mora, I.; Orive, G.; Lertxundi, U.; Olivares, M.; Zuloaga, O.; Prieto, A. Comprehensive micropollutant characterization of wastewater during COVID-19 crisis in 2020: Suspect screening and environmental risk prioritization strategy. Sci. Total Environ. 2023, 873, 162281. [Google Scholar] [CrossRef] [PubMed]
- López-Velázquez, K.; Guzmán-Mar, J.L.; Saldarriaga-Noreña, H.A.; Murillo-Tovar, M.A.; Hinojosa-Reyes, L.; Villanueva-Rodríguez, M. Occurrence and seasonal distribution of five selected endocrine-disrupting compounds in wastewater treatment plants of the Metropolitan Area of Monterrey, Mexico: The role of water quality parameters. Environ. Pollut. 2021, 269, 116223. [Google Scholar] [CrossRef] [PubMed]
- López, C.; Soto, L.M.; Acosta, V.; Santana-Piñeros, A.M.; Cruz-Quintana, Y.; Gomes-Barbosa, L.; Stamou, G.; Karpowicz, M.; Michaloudi, E.; Domínguez-Granda, L.; et al. A first step to assess suspended microplastics in a freshwater wetland from the coastal region of Ecuador. Front. Environ. Sci. 2023, 11, 1028970. [Google Scholar] [CrossRef]
- Lopez, F.; Pitarch, E.; Botero-Coy, A.; Fabregat-Safont, D.; Ibáñez, M.; Marin, J.M.; Peruga, A.; Ontañón, N.; Martínez-Morcillo, S.; Olalla, A.; et al. Removal efficiency for emerging contaminants in a WWTP from Madrid (Spain) after secondary and tertiary treatment and environmental impact on the Manzanares River. Sci. Total Environ. 2022, 812, 152567. [Google Scholar] [CrossRef] [PubMed]
- Lugo-Bueno, S.F.; García-Morales, R.; Coronel, R.; Aguilar-Hernandez, I.; Becerril-Bravo, J.E.; Barrios-Perez, J.A.; Mahlknecht, J.; Cano-Quiroz, A.; Ornelas-Soto, N. Biocatalysis assisted by electrochemical processes for the removal of bisphenol A and triclosan in wastewater. Environ. Technol. Innov. 2022, 28, 102921. [Google Scholar] [CrossRef]
- Luo, Y.; Xie, H.; Xu, H.; Zhou, C.; Wang, P.; Liu, Z.; Yang, Y.; Huang, J.; Wang, C.; Zhao, X. Wastewater treatment plant serves as a potentially controllable source of microplastic: Association of microplastic removal and operational parameters and water quality data. J. Hazard. Mater. 2023, 441, 129974. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, M.; Tang, D.; Xu, Y.; Ran, H.; He, J.; Chen, K.; Sun, J. High H2O2 selectivity and enhanced Fe2+ regeneration toward an effective electro-Fenton process based on a self-doped porous biochar cathode. Appl. Catal. B Environ. 2022, 315, 121523. [Google Scholar] [CrossRef]
- Madeira, C.L.; Acayaba, R.D.; Santos, V.S.; Villa, J.E.; Jacinto-Hernández, C.; Azevedo, J.A.T.; Elias, V.O.; Montagner, C.C. Uncovering the impact of agricultural activities and urbanization on rivers from the Piracicaba, Capivari, and Jundiaí basin in São Paulo, Brazil: A survey of pesticides, hormones, pharmaceuticals, industrial chemicals, and PFAS. Chemosphere 2023, 341, 139954. [Google Scholar] [CrossRef] [PubMed]
- Mahamuni, N.N.; Adewuyi, Y.G. Advanced oxidation processes (AOPs) involving ultrasound for wastewater treatment: A review with emphasis on cost estimation. Ultrason. Sonochem. 2010, 17, 990–1003. [Google Scholar] [CrossRef] [PubMed]
- Mainardis, M.; Buttazzoni, M.; De Bortoli, N.; Mion, M.; Goi, D. Evaluation of ozonation applicability to pulp and paper streams for a sustainable wastewater treatment. J. Clean. Prod. 2020, 258, 120781. [Google Scholar] [CrossRef]
- Martínez-Alcalá, I.; Guillén-Navarro, J.M.; Lahora, A. Occurrence and fate of pharmaceuticals in a wastewater treatment plant from southeast of Spain and risk assessment. J. Environ. Manag. 2021, 279, 111565. [Google Scholar] [CrossRef] [PubMed]
- Maryam, B.; Buscio, V.; Odabasi, S.U.; Buyukgungor, H. A study on behavior, interaction and rejection of Paracetamol, Diclofenac and Ibuprofen (PhACs) from wastewater by nanofiltration membranes. Environ. Technol. Innov. 2020, 18, 100641. [Google Scholar] [CrossRef]
- McKenzie, T.; Holloway, C.; Dulai, H.; Tucker, J.P.; Sugimoto, R.; Nakajima, T.; Harada, K.; Santos, I.R. Submarine groundwater discharge: A previously undocumented source of contaminants of emerging concern to the coastal ocean (Sydney, Australia). Mar. Pollut. Bull. 2020, 160, 111519. [Google Scholar] [CrossRef] [PubMed]
- McMahon, P.B.; Tokranov, A.K.; Bexfield, L.M.; Lindsey, B.D.; Johnson, T.D.; Lombard, M.A.; Watson, E. Perfluoroalkyl and polyfluoroalkyl substances in groundwater used as a source of drinking water in the eastern United States. Environ. Sci. Technol. 2022, 56, 2279–2288. [Google Scholar] [CrossRef] [PubMed]
- Mercy, F.T.; Alam, A.R.; Akbor, A. Abundance and characteristics of microplastics in major urban lakes of Dhaka, Bangladesh. Heliyon 2023, 9, e14587. [Google Scholar] [CrossRef] [PubMed]
- Mhlongo, S.A.; Sibali, L.L.; Ndibewu, P.P. Occurrence, quantification and removal of triclosan in wastewater of Umbogintwini Industrial Complex in KwaMakhutha, South Africa. S. Afr. J. Sci. 2023, 119. [Google Scholar] [CrossRef] [PubMed]
- Mhuka, V.; Dube, S.; Nindi, M.M. Occurrence of pharmaceutical and personal care products (PPCPs) in wastewater and receiving waters in South Africa using LC-Orbitrap™ MS. Emerg. Contam. 2020, 6, 250–258. [Google Scholar] [CrossRef]
- Miao, F.; Liu, Y.; Gao, M.; Yu, X.; Xiao, P.; Wang, M.; Wang, S.; Wang, X. Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode. J. Hazard. Mater. 2020, 399, 123023. [Google Scholar] [CrossRef] [PubMed]
- Mo, L.; Fu, H.; Lu, Q.; Chen, S.; Liu, R.; Xiang, J.; Xing, Q.; Wang, L.; Sun, K.; Li, B.; et al. Characteristics and ecological risks of microplastic pollution in a tropical drinking water source reservoir in Hainan province, China. Environ. Sci. Process. Impacts 2024, 26, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Moazeni, M.; Ebrahimpour, K.; Mohammadi, F.; Heidari, Z.; Ebrahimi, A. Human health risk assessment of triclosan in water: Spatial analysis of a drinking water system. Environ. Monit. Assess. 2023, 195, 1117. [Google Scholar] [CrossRef] [PubMed]
- Moid AlAmmari, A.; Rizwan Khan, M.; Aqel, A. Trace identification of endocrine-disrupting bisphenol A in drinking water by solid-phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry. J. King Saud Univ. Sci. 2020, 32, 1634–1640. [Google Scholar] [CrossRef]
- Montes, R.; Méndez, S.; Cobas, J.; Carro, N.; Neuparth, T.; Alves, N.; Santos, M.M.; Quintana, J.B.; Rodil, R. Occurrence of persistent and mobile chemicals and other contaminants of emerging concern in Spanish and Portuguese wastewater treatment plants, transnational river basins and coastal water. Sci. Total Environ. 2023, 885, 163737. [Google Scholar] [CrossRef] [PubMed]
- Moral Pajares, E.; Gallego Valero, L.; Román Sánchez, I.M. Cost of urban wastewater treatment and ecotaxes: Evidence from municipalities in southern. Water 2019, 11, 423. [Google Scholar] [CrossRef]
- Morales-Arredondo, J.I.; Armienta-Hernández, M.A.; Lugo-Dorantes, A.E.; Barrera-Arrazola, A.P.; Flores-Ocampo, I.Z.; Flores-Vargas, R. Fluoride presence in drinking water along the southeastern part of El Bajío Guanajuatense, Guanajuato, Mexico: Sources and health effects. Environ. Geochem. Health 2023, 4, 3715–3742. [Google Scholar] [CrossRef] [PubMed]
- Morales-McDevitt, M.E.; Dunn, M.; Habib, A.; Vojta, S.; Becanova, J.; Lohmann, R. Poly-and perfluorinated alkyl substances in air and water from Dhaka, Bangladesh. Environ. Toxicol. Chem. 2022, 41, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Moreira, V.R.; Lebron, Y.A.R.; Santos, L.V.d.S.; Amaral, M.C.S. Dead-end ultrafiltration as a cost-effective strategy for improving arsenic removal from high turbidity waters in conventional drinking water facilities. Chem. Eng. J. 2021, 417, 128132. [Google Scholar] [CrossRef]
- Mostafa, A.; Shaaban, H.; Alqarni, A.; Al-Ansari, R.; Alrashidi, A.; Al-Sultan, F.; Alsulaiman, M.; Alsaif, F.; Aga, O. Multi-class determination of pharmaceuticals as emerging contaminants in wastewater from Eastern Province, Saudi Arabia using eco-friendly SPE-UHPLC-MS/MS: Occurrence, removal and environmental risk assessment. Microchem. J. 2023, 187, 108453. [Google Scholar] [CrossRef]
- Mu, H.; Wang, Y.; Zhang, H.; Guo, F.; Li, A.; Zhang, S.; Liu, S.; Liu, T. High abundance of microplastics in groundwater in Jiaodong Peninsula, China. Sci. Total Environ. 2022, 839, 156318. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, M.; Sampath, S.; Muñoz-Arnanz, J.; Jiménez, B.; Chakraborty, P. Plasticizers and bisphenol A in Adyar and Cooum riverine sediments, India: Occurrences, sources and risk assessment. Environ. Geochem. Health 2020, 42, 2789–2802. [Google Scholar] [CrossRef] [PubMed]
- Müller, V.; Kindness, A.; Feldmann, J. Fluorine mass balance analysis of PFAS in communal waters at a wastewater plant from Austria. Water Res. 2023, 244, 120501. [Google Scholar] [CrossRef] [PubMed]
- Munoz, G.; Liu, M.; Duy, S.V.; Liu, J.; Sauvé, S. Target and nontarget screening of PFAS in drinking water for a large-scale survey of urban and rural communities in Québec, Canada. Water Res. 2023, 233, 119750. [Google Scholar] [CrossRef] [PubMed]
- Mussabek, D.; Söderman, A.; Imura, T.; Persson, K.M.; Nakagawa, K.; Ahrens, L.; Berndtsson, R. PFAS in the drinking water source: Analysis of the contamination levels, origin and emission rates. Water 2023, 15, 137. [Google Scholar] [CrossRef]
- Naji, A.; Azadkhah, S.; Farahani, H.; Uddin, S.; Khan, F.R. Microplastics in wastewater outlets of Bandar Abbas city (Iran): A potential point source of microplastics into the Persian Gulf. Chemosphere 2021, 262, 128039. [Google Scholar] [CrossRef] [PubMed]
- Nan, B.; Su, L.; Kellar, C.; Craig, N.J.; Keough, M.J.; Pettigrove, V. Identification of microplastics in surface water and Australian freshwater shrimp Paratya australiensis in Victoria, Australia. Environ. Pollut. 2020, 259, 113865. [Google Scholar] [CrossRef] [PubMed]
- Napper, I.E.; Baroth, A.; Barrett, A.C.; Bhola, S.; Chowdhury, G.W.; Davies, B.F.; Duncan, E.M.; Kumar, S.; Nelms, S.E.; Niloy, N.H.; et al. The abundance and characteristics of microplastics in surface water in the transboundary Ganges River. Environ. Pollut. 2021, 274, 116348. [Google Scholar] [CrossRef] [PubMed]
- Nasri, E.; de la Vega, A.C.S.; Martí, C.B.; Ben Mansour, H.; Diaz-Cruz, M.S. Pharmaceuticals and personal care products in Tunisian hospital wastewater: Occurrence and environmental risk. Environ. Sci. Pollut. Res. 2024, 31, 2716–2731. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sinha, R.; Rakib, M.R.J.; Padha, S.; Ivy, N.; Bhattacharya, S.; Dhar, A.; Sharma, P. Microplastics pollution load in Sundarban delta of Bay of Bengal. J. Hazard. Mater. Adv. 2022, 7, 100099. [Google Scholar] [CrossRef]
- Nayak, V.; Cuhorka, J.; Mikulášek, P. Separation of drugs by commercial nanofiltration membranes and their modelling. Membranes 2022, 12, 528. [Google Scholar] [CrossRef] [PubMed]
- Nazifa, T.H.; Kristanti, R.A.; Ike, M.; Kuroda, M.; Hadibarata, T. Occurrence and distribution of estrogenic chemicals in river waters of Malaysia. Toxicol. Environ. Health. Sci. 2020, 12, 65–74. [Google Scholar] [CrossRef]
- Ngigi, A.N.; Magu, M.M.; Muendo, B.M. Occurrence of antibiotics residues in hospital wastewater, wastewater treatment plant, and in surface water in Nairobi County, Kenya. Environ. Monit. Assess. 2019, 192, 18. [Google Scholar] [CrossRef] [PubMed]
- Ngumba, E.; Gachanja, A.; Nyirenda, J.; Maldonado, J.; Tuhkanen, T. Occurrence of antibiotics and antiretroviral drugs in source-separated urine, groundwater, surface water and wastewater in the peri-urban area of Chunga in Lusaka, Zambia. Water SA 2020, 46, 278–284. [Google Scholar] [CrossRef]
- Nguyen, H.T.; McLachlan, M.S.; Tscharke, B.; Thai, P.; Braeunig, J.; Kaserzon, S.; O’BRien, J.W.; Mueller, J.F. Background release and potential point sources of per- and polyfluoroalkyl substances to municipal wastewater treatment plants across Australia. Chemosphere 2022, 293, 133657. [Google Scholar] [CrossRef] [PubMed]
- Nickel, J.P.; Sacher, F.; Fuchs, S. Up-to-date monitoring data of wastewater and stormwater quality in Germany. Water Res. 2021, 202, 117452. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Juárez, J.I.; Torres-Palma, R.A.; Botero-Coy, A.; Hernández, F. Pharmaceuticals and environmental risk assessment in municipal wastewater treatment plants and rivers from Peru. Environ. Int. 2021, 155, 106674. [Google Scholar] [CrossRef] [PubMed]
- Nikolopoulou, V.; Alygizakis, N.A.; Nika, M.-C.; Oswaldova, M.; Oswald, P.; Kostakis, M.; Koupa, A.; Thomaidis, N.S.; Slobodnik, J. Screening of legacy and emerging substances in surface water, sediment, biota and groundwater samples collected in the Siverskyi Donets River Basin employing wide-scope target and suspect screening. Sci. Total Environ. 2022, 805, 150253. [Google Scholar] [CrossRef] [PubMed]
- Nousheen, R.; Hashmi, I.; Rittschof, D.; Capper, A. Comprehensive analysis of spatial distribution of microplastics in Rawal Lake, Pakistan using trawl net and sieve sampling methods. Chemosphere 2022, 308, 136111. [Google Scholar] [CrossRef] [PubMed]
- Odora, A.T.; Aysha, S.; Sultan, M.B.; Bhuiyan, A.R. Evaluating the sources of microplastic contamination and quantifying its abundance in the Balu River, Dhaka, Bangladesh. Environ. Monit. Assess. 2024, 196, 867. [Google Scholar] [CrossRef] [PubMed]
- Ofrydopoulou, A.; Nannou, C.; Evgenidou, E.; Christodoulou, A.; Lambropoulou, D. Assessment of a wide array of organic micropollutants of emerging concern in wastewater treatment plants in Greece: Occurrence, removals, mass loading and potential risks. Sci. Total Environ. 2022, 802, 149860. [Google Scholar] [CrossRef] [PubMed]
- Oharisi, O.-O.L.; Ncube, S.; Nyoni, H.; Madikizela, M.L.; Olowoyo, O.J.; Maseko, B.R. Occurrence and prevalence of antibiotics in wastewater treatment plants and effluent receiving rivers in South Africa using UHPLC-MS determination. J. Environ. Manag. 2023, 345, 118621. [Google Scholar] [CrossRef] [PubMed]
- Oke, S.A. Contaminant of emerging concerns in Modder River Catchment of Free State: Implication for environmental risk and water sources protection. Water 2024, 16, 2494. [Google Scholar] [CrossRef]
- Oliveira, T.M.A.; Mansano, A.S.; Holanda, C.A.; Pinto, T.S.; Reis, J.B.; Azevedo, E.B.; Verbinnen, R.T.; Viana, J.L.; Franco, T.C.R.S.; Vieira, E.M. Occurrence and environmental risk assessment of contaminants of emerging concern in Brazilian surface waters. Environ. Toxicol. Chem. 2024, 43, 2199–2210. [Google Scholar] [CrossRef] [PubMed]
- Oni, B.A.; Sanni, S.E. Occurrence of microplastics in borehole drinking water and sediments in Lagos, Nigeria. Environ. Toxicol. Chem. 2022, 41, 1721–1731. [Google Scholar] [CrossRef] [PubMed]
- Onipe, T.; Edokpayi, J.N.; Odiyo, J.O. Geochemical characterization and assessment of fluoride sources in groundwater of Siloam area, Limpopo Province, South Africa. Sci. Rep. 2021, 11, 14000. [Google Scholar] [CrossRef] [PubMed]
- Ormaniec, P. Occurrence and analysis of microplastics in municipal wastewater, Poland. Environ. Sci. Pollut. Res. 2024, 31, 49646–49655. [Google Scholar] [CrossRef] [PubMed]
- Paige, T.; De Silva, T.; Buddhadasa, S.; Prasad, S.; Nugegoda, D.; Pettigrove, V. Background concentrations and spatial distribution of PFAS in surface waters and sediments of the greater Melbourne area, Australia. Chemosphere 2024, 349, 140791. [Google Scholar] [CrossRef] [PubMed]
- Paray, B.A.; Yu, J.; Sultana, S.; Banik, P.; Nur, A.-A.U.; Haque, R.; Rahman, M.; Arai, T.; Yan, L.; Hossain, M.B. Contamination, morphological and chemical characterization, and hazard risk analyses of microplastics in drinking water sourced from groundwater in a developing nation. Front. Environ. Sci. 2024, 12, 1379311. [Google Scholar] [CrossRef]
- Park, H.-J.; Oh, M.-J.; Kim, P.-G.; Kim, G.; Jeong, D.-H.; Ju, B.-K.; Lee, W.-S.; Chung, H.-M.; Kang, H.-J.; Kwon, J.-H. National reconnaissance survey of microplastics in municipal wastewater treatment plants in Korea. Environ. Sci. Technol. 2020, 54, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Parto, M.; Aazami, J.; Shamsi, Z.; Zamani, A.; Savabieasfahani, M. Determination of bisphenol-A in plastic bottled water in markets of Zanjan, Iran. Int. J. Environ. Sci. Technol. 2022, 19, 3337–3344. [Google Scholar] [CrossRef]
- Parvin, F.; Hassan, A.; Tareq, S.M. Risk assessment of microplastic pollution in urban lakes and peripheral Rivers of Dhaka, Bangladesh. J. Hazard. Mater. Adv. 2022, 8, 100187. [Google Scholar] [CrossRef]
- Pei, S.; Li, B.; Wang, B.; Liu, J.; Song, X. Distribution and ecological risk assessment of pharmaceuticals and personal care products in sediments of North Canal, China. Water 2022, 14, 1999. [Google Scholar] [CrossRef]
- Pemberthy, D.; Padilla, Y.; Echeverri, A.; Peñuela, G.A. Monitoring pharmaceuticals and personal care products in water and fish from the Gulf of Urabá, Colombia. Heliyon 2020, 6, e04215. [Google Scholar] [CrossRef] [PubMed]
- Perraki, M.; Skliros, V.; Mecaj, P.; Vasileiou, E.; Salmas, C.; Papanikolaou, I.; Stamatis, G. Identification of microplastics using µ-Raman spectroscopy in surface and groundwater bodies of SE Attica, Greece. Water 2024, 16, 843. [Google Scholar] [CrossRef]
- Pétré, M.-A.; Genereux, D.P.; Koropeckyj-Cox, L.; Knappe, D.R.; Duboscq, S.; Gilmore, T.E.; Hopkins, Z.R. Per- and polyfluoroalkyl substance (PFAS) transport from groundwater to streams near a PFAS manufacturing facility in North Carolina, USA. Environ. Sci. Technol. 2021, 55, 5848–5856. [Google Scholar] [CrossRef] [PubMed]
- Picó, Y.; Alvarez-Ruiz, R.; Alfarhan, A.H.; El-Sheikh, M.A.; Alshahrani, H.O.; Barceló, D. Pharmaceuticals, pesticides, personal care products and microplastics contamination assessment of Al-Hassa irrigation network (Saudi Arabia) and its shallow lakes. Sci. Total Environ. 2020, 701, 135021. [Google Scholar] [CrossRef] [PubMed]
- Picó, Y.; Soursou, V.; Alfarhan, A.H.; El-Sheikh, M.A.; Barceló, D. First evidence of microplastics occurrence in mixed surface and treated wastewater from two major Saudi Arabian cities and assessment of their ecological risk. J. Hazard. Mater. 2021, 416, 125747. [Google Scholar] [CrossRef] [PubMed]
- Pompei, C.M.E.; Campos, L.C.; da Silva, B.F.; Fogo, J.C.; Vieira, E.M. Occurrence of PPCPs in a Brazilian water reservoir and their removal efficiency by ecological filtration. Chemosphere 2019, 226, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Porras-Rojas, M.A.; Charry-Vargas, C.; Muñoz-Yustres, J.L.; Martínez-Silva, P.; Gómez-Méndez, L.D. Characterization of microplastics and mesoplastics and presence of biofilms, collected in the Gualí Wetland Cundinamarca, Colombia. Microplastics 2023, 2, 255–267. [Google Scholar] [CrossRef]
- Prajapati, S.; Beal, M.; Maley, J.; Brinkmann, M. Qualitative and quantitative analysis of microplastics and microfiber contamination in effluents of the City of Saskatoon wastewater treatment plant. Environ. Sci. Pollut. Res. 2021, 28, 32545–32553. [Google Scholar] [CrossRef] [PubMed]
- Praveena, S.M.; Ariffin, N.I.S.; Nafisyah, A.L. Microplastics in Malaysian bottled water brands: Occurrence and potential human exposure. Environ. Pollut. 2022, 315, 120494. [Google Scholar] [CrossRef] [PubMed]
- Pugazhenthiran, N.; Murugesan, S.; Valdés, H.; Selvaraj, M.; Sathishkumar, P.; Smirniotis, P.; Anandan, S.; Mangalaraja, R. Photocatalytic oxidation of ceftiofur sodium under UV–visible irradiation using plasmonic porous Ag-TiO2 nanospheres. J. Ind. Eng. Chem. 2022, 105, 384–392. [Google Scholar] [CrossRef]
- Qiao, B.; Chen, H.; Song, D.; Yu, H.; Baqar, M.; Li, X.; Zhao, L.; Yao, Y.; Sun, H. Multimedia distribution and release characteristics of emerging PFAS in wastewater treatment plants in Tianjin, China. J. Hazard. Mater. 2024, 475, 134879. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Li, X.; Qi, T.; Liu, Y. Identification of priority pollutants in groundwater: A case study in Xiong’an New Region, China. Water 2023, 15, 1565. [Google Scholar] [CrossRef]
- Qin, L.-T.; Pang, X.-R.; Zeng, H.-H.; Liang, Y.-P.; Mo, L.-Y.; Wang, D.-Q.; Dai, J.-F. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian karst wetland in Guilin, China. Sci. Total Environ. 2020, 708, 134552. [Google Scholar] [CrossRef] [PubMed]
- Quyen, D.T.T.; Masahiro, O.; Otaki, Y.; Chaminda, T. Sewage markers as determinants to differentiate origins of emerging organic pollutants in an urban Sri Lankan water drainage network. Water 2021, 13, 2898. [Google Scholar] [CrossRef]
- Radwan, E.K.; Ibrahim, M.B.; Adel, A.; Farouk, M. The occurrence and risk assessment of phenolic endocrine-disrupting chemicals in Egypt’s drinking and source water. Environ. Sci. Pollut. Res. 2020, 27, 1776–1788. [Google Scholar] [CrossRef] [PubMed]
- Rapp-Wright, H.; Regan, F.; White, B.; Barron, L.P. A year-long study of the occurrence and risk of over 140 contaminants of emerging concern in wastewater influent, effluent and receiving waters in the Republic of Ireland. Sci. Total Environ. 2023, 860, 160379. [Google Scholar] [CrossRef] [PubMed]
- Rapp-Wright, H.; Rodríguez-Mozaz, S.; Álvarez-Muñoz, D.; Barceló, D.; Regan, F.; Barron, L.P.; White, B. International comparison, risk assessment, and prioritisation of 26 endocrine disrupting compounds in three European river catchments in the UK, Ireland, and Spain. Molecules 2023, 28, 5994. [Google Scholar] [CrossRef] [PubMed]
- Rauert, C.; Vardy, S.; Daniell, B.; Charlton, N.; Thomas, K.V. Tyre additive chemicals, tyre road wear particles and high production polymers in surface water at 5 urban centres in Queensland, Australia. Sci. Total Environ. 2022, 852, 158468. [Google Scholar] [CrossRef] [PubMed]
- Reichert, G.; Mizukawa, A.; Antonelli, J.; Goulart, F.d.A.B.; Filippe, T.C.; de Azevedo, J.C.R. Determination of parabens, triclosan, and lipid regulators in a subtropical urban river: Effects of urban occupation. Water Air Soil Pollut. 2020, 231, 133. [Google Scholar] [CrossRef]
- Reinikainen, J.; Perkola, N.; Äystö, L.; Sorvari, J. The occurrence, distribution, and risks of PFAS at AFFF-impacted sites in Finland. Sci. Total Environ. 2022, 829, 154237. [Google Scholar] [CrossRef] [PubMed]
- Riaz, R.; Junaid, M.; Rehman, M.Y.A.; Iqbal, T.; Khan, J.A.; Dong, Y.; Yue, L.; Chen, Y.; Xu, N.; Malik, R.N. Spatial distribution, compositional profile, sources, ecological and human health risks of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in freshwater reservoirs of Punjab, Pakistan. Sci. Total Environ. 2023, 856, 159144. [Google Scholar] [CrossRef] [PubMed]
- Ridall, A.; Farrar, E.; Dansby, M.; Ingels, J. Influence of wastewater treatment plants and water input sources on size, shape, and polymer distributions of microplastics in St. Andrew Bay, Florida, USA. Mar. Pollut. Bull. 2023, 187, 114552. [Google Scholar] [CrossRef] [PubMed]
- Riya, K.K.; Anisuzzaman, M.; Samad Azad, M.A.; Ujjaman Nur, A.-A.; Banik, P.; Paray, B.A.; Arai, T.; Yu, J.; Hossain, M.B. Characteristics, contamination levels, and ecosystem risk assessment of microplastics in surface water of a highly urbanized river from a developing country. ACS Omega 2024, 9, 50922–50932. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.A.; Silva, S.; Cardoso, V.V.; Benoliel, M.J.; Cardoso, E.; Coelho, M.R.; Martins, A.; Almeida, C.M.M. Screening and seasonal behavior of analgesics, non-steroidal anti-inflammatory drugs, and antibiotics in two urban wastewater treatment plants. Environ. Manag. 2021, 68, 411–425. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mozaz, S.; Vaz-Moreira, I.; Della Giustina, S.V.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T.U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Martinez, J.L.; et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int. 2020, 140, 105733. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, C.E.; Ramírez-Morales, D.; Masis-Mora, M.; Montiel-Mora, J.R.; Soto-Garita, C.; Araya-Valverde, E.; Cambronero-Heinrichs, J.C.; Sànchez-Melsió, A.; Briceño-Guevara, S.; Mendez-Rivera, M.; et al. Occurrence and risk assessment of pharmaceuticals in hospital wastewater in Costa Rica. Chemosphere 2023, 339, 139746. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Varela, M.; Durán-Álvarez, J.C.; Jiménez-Cisneros, B.; Zamora, O.; Prado, B. Occurrence of perfluorinated carboxylic acids in Mexico City’s wastewater: A monitoring study in the sewerage and a mega wastewater treatment plant. Sci. Total Environ. 2021, 774, 145060. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Luna, R.A.; Oquendo-Ruiz, L.; García-Alzate, C.A.; Arana, V.A.; García-Alzate, R.; Trilleras, J. Identification, abundance, and distribution of microplastics in surface water collected from Luruaco Lake, low basin Magdalena River, Colombia. Water 2023, 15, 344. [Google Scholar] [CrossRef]
- Romero-Murillo, P.; Gallego, J.L.; Leignel, V. Marine Pollution and Advances in Biomonitoring in Cartagena Bay in the Colombian Caribbean. Toxics 2023, 11, 631. [Google Scholar] [CrossRef] [PubMed]
- Royano, S.; de la Torre, A.; Navarro, I.; Martínez, M.Á. Pharmaceutically active compounds (PhACs) in surface water: Occurrence, trends and risk assessment in the Tagus River Basin (Spain). Sci. Total Environ. 2023, 905, 167422. [Google Scholar] [CrossRef] [PubMed]
- Rusiniak, P.; Kmiecik, E.; Wątor, K.; Duda, R.; Bugno, R. Pharmaceuticals and personal care products in the urban groundwater –preliminary monitoring (case study: Kraków, Southern Poland). Urban Water J. 2021, 18, 364–374. [Google Scholar] [CrossRef]
- Rusinque-Quintero, L.L.; Montoya-Rojas, G.A.; Moyano-Molano, A.L. Environmental risks due to the presence of microplastics in coastal and marine environments of the Colombian Caribbean. Mar. Pollut. Bull. 2022, 185, 114357. [Google Scholar] [CrossRef] [PubMed]
- Sá, B.; Pais, J.; Antunes, J.; Pequeno, J.; Pires, A.; Sobral, P. Seasonal abundance and distribution patterns of microplastics in the Lis River, Portugal. Sustainability 2022, 14, 2255. [Google Scholar] [CrossRef]
- Saad, D.; Ramaremisa, G.; Ndlovu, M.; Chauke, P.; Nikiema, J.; Chimuka, L. Microplastic abundance and sources in surface water samples of the Vaal River, South Africa. Bull. Environ. Contam. Toxicol. 2024, 112, 23. [Google Scholar] [CrossRef] [PubMed]
- Sabino, J.A.; Salomão, A.L.d.S.; Cunha, P.M.d.O.M.; Coutinho, R.; Marques, M. Occurrence of organic micropollutants in an urbanized sub-basin and ecological risk assessment. Ecotoxicology 2021, 30, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Sabri, N.A.; Schmitt, H.; Van Der Zaan, B.; Gerritsen, H.W.; Zuidema, T.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. J. Environ. Chem. Eng. 2020, 8, 102245. [Google Scholar] [CrossRef]
- Sadia, M.; Nollen, I.; Helmus, R.; ter Laak, T.L.; Béen, F.; Praetorius, A.; van Wezel, A.P. Occurrence, fate, and related health risks of PFAS in raw and produced drinking water. Environ. Sci. Technol. 2023, 57, 3062–3074. [Google Scholar] [CrossRef] [PubMed]
- Sahar, E.; David, I.; Gelman, Y.; Chikurel, H.; Aharoni, A.; Messalem, R.; Brenner, A. The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination 2011, 273, 142–147. [Google Scholar] [CrossRef]
- Salma, U.; Nishimura, Y.; Tokumura, M.; Hossain, A.; Watanabe, K.; Noro, K.; Raknuzzaman, M.; Amagai, T.; Makino, M. Occurrence, seasonal variation, and environmental risk of multiclass antibiotics in the urban surface water of the Buriganga River, Bangladesh. Chemosphere 2025, 370, 143956. [Google Scholar] [CrossRef] [PubMed]
- Samandra, S.; Johnston, J.M.; Jaeger, J.E.; Symons, B.; Xie, S.; Currell, M.; Ellis, A.V.; Clarke, B.O. Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia. Sci. Total Environ. 2022, 802, 149727. [Google Scholar] [CrossRef] [PubMed]
- Samandra, S.; Mescall, O.J.; Plaisted, K.; Symons, B.; Xie, S.; Ellis, A.V.; Clarke, B.O. Assessing exposure of the Australian population to microplastics through bottled water consumption. Sci. Total Environ. 2022, 837, 155329. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S.; Saifullah, A.; Uddin, M.J.; Rahaman, H. Assessment of microplastics in coastal ecosystem of Bangladesh. Ecotoxicol. Environ. Saf. 2024, 281, 116622. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Campos, M.; Ponce-Vélez, G.; Sanvicente-Añorve, L.; Alatorre-Mendieta, M. Microplastic contamination in three environmental compartments of a coastal lagoon in the southern Gulf of Mexico. Environ. Monit. Assess. 2024, 196, 101. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.V.; Couto, C.F.; Lebron, Y.A.R.; Moreira, V.R.; Foureaux, A.F.S.; Reis, E.O.; Santos, L.V.d.S.; de Andrade, L.H.; Amaral, M.C.S.; Lange, L.C. Occurrence and risk assessment of pharmaceutically active compounds in water supply systems in Brazil. Sci. Total Environ. 2020, 746, 141011. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.S.; Anjos, J.S.X.; de Medeiros, J.F.; Montagner, C.C. Impact of agricultural runoff and domestic sewage discharge on the spatial–temporal occurrence of emerging contaminants in an urban stream in São Paulo, Brazil. Environ. Monit. Assess. 2022, 194, 637. [Google Scholar] [CrossRef] [PubMed]
- Šauer, P.; Švecová, H.; Grabicová, K.; Aydın, F.G.; Mackuľak, T.; Kodeš, V.; Blytt, L.D.; Henninge, L.B.; Grabic, R.; Kroupová, H.K. Bisphenols emerging in Norwegian and Czech aquatic environments show transthyretin binding potency and other less-studied endocrine-disrupting activities. Sci. Total Environ. 2021, 751, 141801. [Google Scholar] [CrossRef] [PubMed]
- Säve-Söderbergh, M.; Gyllenhammar, I.; Schillemans, T.; Lindfeldt, E.; Vogs, C.; Donat-Vargas, C.; Ankarberg, E.H.; Glynn, A.; Ahrens, L.; Helte, E.; et al. Per- and polyfluoroalkyl substances (PFAS) and fetal growth: A nation-wide register-based study on PFAS in drinking water. Environ. Int. 2024, 187, 108727. [Google Scholar] [CrossRef] [PubMed]
- Saxena, P.; Hiwrale, I.; Das, S.; Shukla, V.; Tyagi, L.; Pal, S.; Dafale, N.; Dhodapkar, R. Profiling of emerging contaminants and antibiotic resistance in sewage treatment plants: An Indian perspective. J. Hazard. Mater. 2021, 408, 124877. [Google Scholar] [CrossRef] [PubMed]
- Sayed, A.E.-D.H.; Hamed, M.; Badrey, A.E.; Ismail, R.F.; Osman, Y.A.; Osman, A.G.; Soliman, H.A. Microplastic distribution, abundance, and composition in the sediments, water, and fishes of the Red and Mediterranean seas, Egypt. Mar. Pollut. Bull. 2021, 173, 112966. [Google Scholar] [CrossRef] [PubMed]
- Costello, M.C.S.; Asad, N.; Haris, M.; Yousefi, P.; Khan, B.; Lee, L.S. Reconnaissance survey of organic contaminants of emerging concern in the Kabul and Swat Rivers of Pakistan. Environ. Toxicol. Chem. 2023, 42, 2599–2613. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, H.; Marushka, L.; Chan, H.M.; Batal, M.; Sadik, T.; Ing, A.; Fediuk, K.; Tikhonov, C. Pharmaceuticals in source waters of 95 First Nations in Canada. Can. J. Public Health. 2021, 112, 133–153. [Google Scholar] [CrossRef] [PubMed]
- Schwichtenberg, T.; Bogdan, D.; Carignan, C.C.; Reardon, P.; Rewerts, J.; Wanzek, T.; Field, J.A. PFAS and dissolved organic carbon enrichment in surface water foams on a northern U.S. freshwater lake. Environ. Sci. Technol. 2020, 54, 14455–14464. [Google Scholar] [CrossRef] [PubMed]
- Segura, Y.; del Álamo, A.C.; Munoz, M.; Álvarez-Torrellas, S.; García, J.; Casas, J.A.; De Pedro, Z.M.; Martínez, F. A comparative study among catalytic wet air oxidation, Fenton, and Photo-Fenton technologies for the on-site treatment of hospital wastewater. J. Environ. Manag. 2021, 290, 112624. [Google Scholar] [CrossRef] [PubMed]
- Sekudewicz, I.; Dąbrowska, A.M.; Syczewski, M.D. Microplastic pollution in surface water and sediments in the urban section of the Vistula River (Poland). Sci. Total Environ. 2021, 762, 143111. [Google Scholar] [CrossRef] [PubMed]
- Selvam, S.; Jesuraja, K.; Venkatramanan, S.; Roy, P.D.; Kumari, V.J. Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface water of coastal south India. J. Hazard. Mater. 2021, 402, 123786. [Google Scholar] [CrossRef] [PubMed]
- Semerjian, L.; Aissaoui, S.; Shanableh, A.; Okoh, A.; Elhadi, R.; Mousa, M.; Alhameed, R.A.; Hassan, J.A.J.; Akhtar, I.; Semreen, M.H. Occurrence, spatial and seasonal variations of emerging contaminants in the aquatic environment of Sharjah, United Arab Emirates. Chemosphere 2023, 345, 140426. [Google Scholar] [CrossRef] [PubMed]
- Serna-Galvis, E.A.; Botero-Coy, A.M.; Rosero-Moreano, M.; Lee, J.; Hernández, F.; Torres-Palma, R.A. An initial approach to the presence of pharmaceuticals in wastewater from hospitals in Colombia and their environmental risk. Water 2022, 14, 950. [Google Scholar] [CrossRef]
- Setiti, S.; Hamdi, B.; Chernai, S.; Bachari, F.H.; Bachouche, S.; Ghezali, Y.; Suaria, G. Seasonal variation of microplastics density in Algerian surface waters (South-Western Mediterranean Sea). Mediterr. Mar. Sci. 2021, 22, 317–326. [Google Scholar] [CrossRef]
- Shafi, M.; Jan, R.; Gani, K.M. Selection of priority emerging contaminants in surface waters of India, Pakistan, Bangladesh, and Sri Lanka. Chemosphere 2023, 341, 139976. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Jorvekar, S.B.; Bhowmik, S.; Mohapatra, P.; Borkar, R.M. Comprehensive assessment of per and polyfluoroalkyl substances (PFAS) contamination in groundwater of Kamrup, Assam, India: Occurrence, health risks, and metabolomic insights. Environ. Sci. Process. Impacts 2024, 26, 1601–1617. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.; Siedlewicz, G.; Pazdro, K. The toxic effects of antibiotics on freshwater and marine photosynthetic microorganisms: State of the art. Plants 2021, 10, 591. [Google Scholar] [CrossRef] [PubMed]
- Shehab, Z.N.; Jamil, N.R.; Aris, A.Z. Occurrence, environmental implications and risk assessment of Bisphenol A in association with colloidal particles in an urban tropical river in Malaysia. Sci. Rep. 2020, 10, 20360. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, P.; Ni, J.; Wong, T.-Y. Synergistic and antagonistic interactions of triclosan with various antibiotics in bacteria. J. Environ. Sci. Health Part C 2020, 38, 187–203. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Dong, Y.; Shi, Y.; Yin, T.; He, W.; An, T.; Tang, Y.; Hou, X.; Chong, S.; Chen, D.; et al. Groundwater antibiotics and microplastics in a drinking-water source area, northern China: Occurrence, spatial distribution, risk assessment, and correlation. Environ. Res. 2022, 210, 112855. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Xu, L.; Yang, M.; Qin, Z.; Zhang, Q.; Zhang, L. Spatial distribution characteristics and migration of microplastics in surface water, groundwater and sediment in karst areas: The case of Yulong River in Guilin, Southwest China. Sci. Total Environ. 2023, 868, 161578. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Cardoso, V.V.; Duarte, L.; Carneiro, R.N.; Almeida, C.M.M. Characterization of five Portuguese wastewater treatment plants: Removal efficiency of pharmaceutical active compounds through conventional treatment processes and environmental risk. Appl. Sci. 2021, 11, 7388. [Google Scholar] [CrossRef]
- Silver, M.; Phelps, W.; Masarik, K.; Burke, K.; Zhang, C.; Schwartz, A.; Wang, M.; Nitka, A.L.; Schutz, J.; Trainor, T.; et al. Prevalence and source tracing of PFAS in shallow groundwater used for drinking water in Wisconsin, USA. Environ. Sci. Technol. 2023, 57, 17415–17426. [Google Scholar] [CrossRef] [PubMed]
- Sinkway, T.D.; Mehdi, Q.; Griffin, E.K.; Correia, K.; Camacho, C.G.; Aufmuth, J.; Ilvento, C.; Bowden, J.A. Crowdsourcing citizens for statewide mapping of per- and polyfluoroalkyl substances (PFAS) in Florida drinking water. Sci. Total Environ. 2024, 926, 171932. [Google Scholar] [CrossRef] [PubMed]
- Ślósarczyk, K.; Witkowski, A.J. Screening of pharmaceuticals and personal care products in the water environment of a region diversified in land use and urban development (Silesian Province, southern Poland). J. Hydrol. 2024, 635, 131191. [Google Scholar] [CrossRef]
- Snigirova, A.; Mihas, R.; Khutornoi, S.; Vinogradov, A.; Gazyetov, Y.; Gascooke, J.; Snigirov, S.; Leterme, S. Microplastic and ichthyoplankton in the Ukrainian waters of the Black Sea. Reg. Stud. Mar. Sci. 2024, 80, 103884. [Google Scholar] [CrossRef]
- Sol, D.; Menéndez-Manjón, A.; Arias-García, P.; Laca, A.; Laca, A.; Rancaño, A.; Díaz, M. Occurrence of selected emerging contaminants in Southern Europe WWTPs: Comparison of simulations and real data. Processes 2022, 10, 2491. [Google Scholar] [CrossRef]
- Solaun, O.; Rodríguez, J.G.; Borja, Á.; López-García, E.; Zonja, B.; Postigo, C.; Barceló, D.; de Alda, M.L.; Larreta, J. Antibiotics in the Basque coast (N Spain): Occurrence in waste and receiving waters, and risk assessment (2017–2020). Sci. Total Environ. 2022, 847, 157563. [Google Scholar] [CrossRef] [PubMed]
- Sönmez, V.Z.; Akarsu, C.; Sivri, N. Impact of coastal wastewater treatment plants on microplastic pollution in surface seawater and ecological risk assessment. Environ. Pollut. 2023, 318, 120922. [Google Scholar] [CrossRef] [PubMed]
- Sörengård, M.; Bergström, S.; McCleaf, P.; Wiberg, K.; Ahrens, L. Long-distance transport of per- and polyfluoroalkyl substances (PFAS) in a Swedish drinking water aquifer. Environ. Pollut. 2022, 311, 119981. [Google Scholar] [CrossRef] [PubMed]
- Sousa, J.C.; Barbosa, M.O.; Ribeiro, A.R.; Ratola, N.; Pereira, M.F.; Silva, A.M. Distribution of micropollutants in estuarine and sea water along the Portuguese coast. Mar. Pollut. Bull. 2020, 154, 111120. [Google Scholar] [CrossRef] [PubMed]
- Stovall, J.K.; Bratton, S.P. Microplastic pollution in surface waters of urban watersheds in Central Texas, United States: A comparison of sites with and without Treated wastewater effluent. Front. Anal. Sci. 2022, 2. [Google Scholar] [CrossRef]
- Stroski, K.M.; Luong, K.H.; Challis, J.K.; Chaves-Barquero, L.G.; Hanson, M.L.; Wong, C.S. Wastewater sources of per- and polyfluorinated alkyl substances (PFAS) and pharmaceuticals in four Canadian Arctic communities. Sci. Total Environ. 2020, 708, 134494. [Google Scholar] [CrossRef] [PubMed]
- Styszko, K.; Proctor, K.; Castrignanò, E.; Kasprzyk-Hordern, B. Occurrence of pharmaceutical residues, personal care products, lifestyle chemicals, illicit drugs and metabolites in wastewater and receiving surface waters of Krakow agglomeration in South Poland. Sci. Total Environ. 2021, 768, 144360. [Google Scholar] [CrossRef] [PubMed]
- Sui, Q.; Huang, J.; Deng, S.; Yu, G.; Fan, Q. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Res. 2010, 44, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Sulistyowati, L.; Nurhasanah; Riani, E.; Cordova, M.R. The occurrence and abundance of microplastics in surface water of the midstream and downstream of the Cisadane River, Indonesia. Chemosphere 2022, 291, 133071. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Zhou, H.; Xu, B.; Bao, J. Distribution of perfluorinated compounds in drinking water treatment plant and reductive degradation by UV/SO3 2− process. Environ. Sci. Pollut. Res. 2018, 25, 7443–7453. [Google Scholar] [CrossRef] [PubMed]
- Suteja, Y.; Atmadipoera, A.S.; Riani, E.; Nurjaya, I.W.; Nugroho, D.; Cordova, M.R. Spatial and temporal distribution of microplastic in surface water of tropical estuary: Case study in Benoa Bay, Bali, Indonesia. Mar. Pollut. Bull. 2021, 163, 111979. [Google Scholar] [CrossRef] [PubMed]
- Szabo, D.; Marchiandi, J.; Samandra, S.; Johnston, J.M.; Mulder, R.A.; Green, M.P.; Clarke, B.O. High-resolution temporal wastewater treatment plant investigation to understand influent mass flux of per- and polyfluoroalkyl substances (PFAS). J. Hazard. Mater. 2023, 447, 130854. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; He, C.; Thai, P.K.; Heffernan, A.; Vijayasarathy, S.; Toms, L.; Thompson, K.; Hobson, P.; Tscharke, B.J.; O’bRien, J.W.; et al. Urinary concentrations of bisphenols in the Australian population and their association with the per capita mass loads in wastewater. Environ. Sci. Technol. 2020, 54, 10141–10148. [Google Scholar] [CrossRef] [PubMed]
- Tanui, I.C.; Kandie, F.; Krauss, M.; Piotrowska, A.; Finckh, S.; Kiprop, A.; Hollert, H.; Shahid, N.; Liess, M.; Brack, W. Occurrence and potential risk of steroid hormones in selected surface water and wastewater treatment plants in western Kenya. Environ. Pollut. 2025, 367, 125623. [Google Scholar] [CrossRef] [PubMed]
- Tappert, L.; Bunge, M.; Hoehne, D.; Dlugi, I.; Fetters, K.; Fischer, B.; Mueller, G.; Bock, M.; Gestermann, S. Bisphenol A in surface waters in Germany: Part I. Reassessment of sources and emissions pathways for FlowEQ modeling. Integr. Environ. Assess. Manag. 2024, 20, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Tata, T.; Belabed, B.E.; Bououdina, M.; Bellucci, S. Occurrence and characterization of surface sediment microplastics and litter from North African coasts of the Mediterranean Sea: Preliminary research and first evidence. Sci. Total Environ. 2020, 713, 136664. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.C.G.M.; das Chaves, J.R.; Mendonça, N.; Sanson, A.L.; Alves, M.C.P.; Afonso, R.J.C.F.; Aquino, S.F. Occurrence and removal of drugs and endocrine disruptors in the Bolonha Water Treatment Plant in Belém/PA (Brazil). Environ. Monit. Assess. 2021, 193, 246. [Google Scholar] [CrossRef] [PubMed]
- Terzi, Y.; Gedik, K.; Eryaşar, A.R.; Öztürk, R.Ç.; Şahin, A.; Yılmaz, F. Microplastic contamination and characteristics spatially vary in the southern Black Sea beach sediment and sea surface water. Mar. Pollut. Bull. 2022, 174, 113228. [Google Scholar] [CrossRef] [PubMed]
- Thalla, A.K.; Vannarath, A.S. Occurrence and environmental risks of nonsteroidal anti-inflammatory drugs in urban wastewater in the southwest monsoon region of India. Environ. Monit. Assess. 2020, 192, 193. [Google Scholar] [CrossRef] [PubMed]
- Trindade, L.d.S.; Gloaguen, T.V.; Benevides, T.d.S.F.; Valentim, A.C.S.; Bomfim, M.R.; Santos, J.A.G. Microplastics in surface waters of tropical estuaries around a densely populated Brazilian bay. Environ. Pollut. 2023, 323, 121224. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.; Behbehani, M.; Habibi, N.; Karra, M.; Sunderland, E.M. Microplastics in Kuwait’s wastewater streams. Sustainability 2022, 14, 15817. [Google Scholar] [CrossRef]
- Ugboka, U.G.; Ihedioha, J.N.; Ekere, N.R.; Okechukwu, F.O. Human health risk assessment of bisphenol A released from polycarbonate drinking water bottles and carbonated drinks exposed to sunlight in Nigeria. Int. J. Environ. Anal. Chem. 2020, 102, 2830–2840. [Google Scholar] [CrossRef]
- Üstün-Odabaşı, S.; Maryam, B.; Özdemir, N.; Büyükgüngör, H. Occurrence and seasonal variations of pharmaceuticals and personal care products in drinking water and wastewater treatment plants in Samsun, Turkey. Environ. Earth Sci. 2020, 79, 311. [Google Scholar] [CrossRef]
- Üstün, G.E.; Bozdaş, K.; Can, T. Abundance and characteristics of microplastics in an urban wastewater treatment plant in Turkey. Environ. Pollut. 2022, 310, 119890. [Google Scholar] [CrossRef] [PubMed]
- Uurasjärvi, E.; Hartikainen, S.; Setälä, O.; Lehtiniemi, M.; Koistinen, A. Microplastic concentrations, size distribution, and polymer types in the surface waters of a northern European lake. Water Environ. Res. 2020, 92, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Valentić, L.; Kozel, P.; Pipan, T. Microplastic pollution in vulnerable karst environments: Case study from the Slovenian classical karst region. Acta Carsologica 2022, 51, 79–92. [Google Scholar] [CrossRef]
- Vane, C.H.; Kim, A.W.; dos Santos, R.A.L.; Moss-Hayes, V. Contrasting sewage, emerging and persistent organic pollutants in sediment cores from the River Thames estuary, London, England, UK. Mar. Pollut. Bull. 2022, 175, 113340. [Google Scholar] [CrossRef] [PubMed]
- Vanukon, M.S.; Dehm, J.; Pickering, T.; Yabakiva, M.; Rico, C.; Hewavitharane, C. First assessment of microplastic concentrations in oysters, water and sediment in Laucala Bay, Fiji Islands. Int. J. Environ. Sci. Technol. 2025, 22, 1327–1342. [Google Scholar] [CrossRef]
- Vassalle, L.; García-Galán, M.J.; Aquino, S.F.; Afonso, R.J.d.C.F.; Ferrer, I.; Passos, F.; Mota, C.R. Can high rate algal ponds be used as post-treatment of UASB reactors to remove micropollutants? Chemosphere 2020, 248, 125969. [Google Scholar] [CrossRef] [PubMed]
- Vaudreuil, M.-A.; Duy, S.V.; Munoz, G.; Sauvé, S. Pharmaceutical pollution of hospital effluents and municipal wastewaters of Eastern Canada. Sci. Total Environ. 2022, 846, 157353. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Grillini, V. Surface Water and Groundwater Quality in South Africa and Mozambique—Analysis of the Most Critical Pollutants for Drinking Purposes and Challenges in Water Treatment Selection. Water 2020, 12, 305. [Google Scholar] [CrossRef]
- Von Behren, J.; Reynolds, P.; Bradley, P.M.; Gray, J.L.; Kolpin, D.W.; Romanok, K.M.; Smalling, K.L.; Carpenter, C.; Avila, W.; Ventura, A.; et al. Per- and polyfluoroalkyl substances (PFAS) in drinking water in Southeast Los Angeles: Industrial legacy and environmental justice. Sci. Total Environ. 2024, 953, 176067. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huang, P.; Qiu, C.; Li, J.; Hu, S.; Sun, L.; Bai, Y.; Gao, F.; Li, C.; Liu, N.; et al. Occurrence, migration and health risk of phthalates in tap water, barreled water and bottled water in Tianjin, China. J. Hazard. Mater. 2021, 408, 124891. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ye, D.; Li, X.; Jia, Y.; Zhao, L.; Liu, S.; Xu, J.; Du, J.; Tian, L.; Li, J.; et al. Occurrence of pharmaceuticals and personal care products in bottled water and assessment of the associated risks. Environ. Int. 2021, 155, 106651. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Lu, J.; Li, W.; Ning, J.; Zhou, L.; Tong, Y.; Liu, Z.; Zhou, H.; Xiayihazi, N. Seasonal variation and risk assessment of microplastics in surface water of the Manas River Basin, China. Ecotoxicol. Environ. Saf. 2021, 208, 111477. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, C.; Zhang, X.; Wang, S.; Xia, Z.; Zeng, G.; Ding, J.; Ren, N. Construction of Fe3O4@β-CD/g-C3N4 nanocomposite catalyst for degradation of PCBs in wastewater through photodegradation and heterogeneous Fenton oxidation. Chem. Eng. J. 2022, 429, 132445. [Google Scholar] [CrossRef]
- Wang, K.; Zhuang, T.; Su, Z.; Chi, M.; Wang, H. Antibiotic residues in wastewaters from sewage treatment plants and pharmaceutical industries: Occurrence, removal and environmental impacts. Sci. Total Environ. 2021, 788, 147811. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Q.; Hu, L.-X.; Liu, T.; Zhao, J.-H.; Yang, Y.-Y.; Liu, Y.-S.; Ying, G.-G. Per- and polyfluoralkyl substances (PFAS) in drinking water system: Target and non-target screening and removal assessment. Environ. Int. 2022, 163, 107219. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cun, D.; Zhang, Z.; Pu, D.; Li, X.; Liang, W.; Fang, T. Occurrence and risk assessment of triclosan in freshwater lakes in the middle Yangtze River basin (Wuhan, Central China). Water Biol. Secur. 2022, 1, 100063. [Google Scholar] [CrossRef]
- Wei, Z.; Wei, T.; Chen, Y.; Zhou, R.; Zhang, L.; Zhong, S. Seasonal dynamics and typology of microplastic pollution in Huixian karst wetland groundwater: Implications for ecosystem health. J. Environ. Manag. 2024, 358, 120882. [Google Scholar] [CrossRef] [PubMed]
- Wicaksono, E.A.; Werorilangi, S.; Galloway, T.S.; Tahir, A. Distribution and Seasonal Variation of Microplastics in Tallo River, Makassar, Eastern Indonesia. Toxics 2021, 9, 129. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Li, L.-W.; Zu, Y.-X.; Nan, J.; Chen, X.-Q.; Sun, K.; Li, Z.-L. Microplastics contamination in groundwater of a drinking-water source area, northern China. Environ. Res. 2022, 214, 114048. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.-H.; Yeh, H.-Y.; Chou, P.-H.; Hsiao, W.-W.; Yu, C.-P. Algal extracellular organic matter mediated photocatalytic degradation of estrogens. Ecotoxicol. Environ. Saf. 2021, 209, 111818. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Tang, Y.; Dang, M.; Wang, S.; Jin, H.; Liu, Y.; Jing, H.; Zheng, C.; Yi, S.; Cai, Z. Spatial-temporal distribution of microplastics in surface water and sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area. Sci. Total Environ. 2020, 717, 135187. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Tappenbeck, T.H.; Wu, C.; Elser, J.J. Microplastics in Flathead Lake, a large oligotrophic mountain lake in the USA. Environ. Pollut. 2022, 306, 119445. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Jiang, L.; Zhang, Y.; Shen, Y.; Wang, Y.; Wang, S.; Yuan, Q. Microplastic pollution in the offshore sea, rivers and wastewater treatment plants in Jiangsu coastal area in China. Mar. Environ. Res. 2023, 188, 105992. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xu, Y.; Xu, N.; Pan, B.; Ni, J. Pharmaceuticals and personal care products (PPCPs) in water, sediment and freshwater mollusks of the Dongting Lake downstream the Three Gorges Dam. Chemosphere 2022, 301, 134721. [Google Scholar] [CrossRef] [PubMed]
- Yadav, H.; Sethulekshmi, S.; Shriwastav, A. Estimation of microplastic exposure via the composite sampling of drinking water, respirable air, and cooked food from Mumbai, India. Environ. Res. 2022, 214, 113735. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, T.; Zhou, Y.; Shi, B.; Bi, R.; Meng, J. Contamination, source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin, an intensive human intervention area, China. Sci. Total Environ. 2021, 760, 144080. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhou, Y.; Shi, B.; Meng, J.; He, B.; Yang, H.; Yoon, S.J.; Kim, T.; Kwon, B.-O.; Khim, J.S.; et al. Anthropogenic impacts on the contamination of pharmaceuticals and personal care products (PPCPs) in the coastal environments of the Yellow and Bohai seas. Environ. Int. 2020, 135, 105306. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hu, M.; Lu, W.; Xue, L.; Lin, X.; Liu, E. Occurrence, distribution, and risk assessment of PPCPs in water and sediments of Longgang River in Shenzhen City, south China. Desalination Water Treat. 2020, 189, 196–206. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, Y.; Gao, Y.; Lin, Z.; Lin, Y.; Lu, Y.; Zhang, L. Antibiotics and antimycotics in wastewater treatment plants: Concentrations, removal efficiency, spatial and temporal variations, prediction, and ecological risk assessment. Environ. Res. 2022, 215, 114135. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Huang, X.; Hou, J.; Xiong, J.; Qian, Z.; Liu, S.; Zhang, J.; Yin, D.; Li, J.; Su, Q.; et al. Occurrence and distribution of PPCPs in water from two largest urban lakes of China: First perspective from DGT in-situ measurement. Sci. Total Environ. 2023, 904, 166656. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Wang, Y.; Watson, P.; Yang, X.; Liu, H. Application of passive sampling device for exploring the occurrence, distribution, and risk of pharmaceuticals and pesticides in surface water. Sci. Total Environ. 2024, 908, 168393. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yu, F.; Li, Z.; Zhan, J. Occurrence, distribution, and ecological risk assessment of pharmaceuticals and personal care products in the surface water of the middle and lower reaches of the Yellow River (Henan section). J. Hazard. Mater. 2023, 443, 130369. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Corvianawatie, C.; Cordova, M.R.; Surinati, D.; Li, Y.; Wang, Z.; Li, X.; Li, R.; Wang, J.; He, L.; et al. Microplastics in the tropical Northwestern Pacific Ocean and the Indonesian seas. J. Sea Res. 2023, 194. [Google Scholar] [CrossRef]
- Yuan, X.; Hu, J.; Li, S.; Yu, M. Occurrence, fate, and mass balance of selected pharmaceutical and personal care products (PPCPs) in an urbanized river. Environ. Pollut. 2020, 266, 115340. [Google Scholar] [CrossRef] [PubMed]
- Yüksel, S.; Kabay, N.; Yüksel, M. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. J. Hazard. Mater. 2013, 263, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Zafar, R.; Bashir, S.; Nabi, D.; Arshad, M. Occurrence and quantification of prevalent antibiotics in wastewater samples from Rawalpindi and Islamabad, Pakistan. Sci. Total Environ. 2021, 764, 142596. [Google Scholar] [CrossRef] [PubMed]
- Zainab, S.M.; Junaid, M.; Rehman, M.Y.A.; Lv, M.; Yue, L.; Xu, N.; Malik, R.N. First insight into the occurrence, spatial distribution, sources, and risks assessment of antibiotics in groundwater from major urban-rural settings of Pakistan. Sci. Total Environ. 2021, 791, 148298. [Google Scholar] [CrossRef] [PubMed]
- Zeri, C.; Adamopoulou, A.; Koi, A.; Koutsikos, N.; Lytras, E.; Dimitriou, E. Rivers and Wastewater-Treatment Plants as Microplastic Pathways to Eastern Mediterranean Waters: First Records for the Aegean Sea, Greece. Sustainability 2021, 13, 5328. [Google Scholar] [CrossRef]
- Zhai, Y.; Dai, Y.; Guo, J.; Zhou, L.; Chen, M.; Yang, H.; Peng, L. Novel biochar@CoFe2O4/Ag3PO4 photocatalysts for highly efficient degradation of bisphenol a under visible-light irradiation. J. Colloid Interface Sci. 2020, 560, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Zhan, S.; Huang, H.; He, C.; Xiong, Y.; Li, P.; Tian, S. Controllable synthesis of substitutional and interstitial nitrogen-doped ceria: The effects of doping sites on enhanced catalytic ozonation of organic pollutants. Appl. Catal. B Environ. 2023, 321, 122040. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Xie, Y.; Zhong, S.; Yang, B.; Lu, D.; Zhong, Q. Distribution of microplastics in surface water and sediments of Qin river in Beibu Gulf, China. Sci. Total Environ. 2020, 708, 135176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Liu, S.; Tan, X.; Liu, Y.; Zeng, G.; Yin, Z.; Ye, S.; Zeng, Z. Microwave-assisted chemical modification method for surface regulation of biochar and its application for estrogen removal. Process. Saf. Environ. Prot. 2019, 128, 329–341. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, S.; Zhao, Q.; Qu, L.; Ma, D.; Wang, J. Spatio-temporal distribution of plastic and microplastic debris in the surface water of the Bohai Sea, China. Mar. Pollut. Bull. 2020, 158, 111343. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dong, R.; Ge, F.; Hong, M.; Chen, Z.; Zhou, Y.; Wei, J.; Gu, C.; Kong, D. Removal of 48 per- and polyfluoroalkyl substances (PFAS) throughout processes in domestic and general industrial wastewater treatment plants: Implications for emerging alternatives risk control. J. Hazard. Mater. 2024, 480, 136130. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Yu, B.; Wang, Y.; Ma, C.; Chen, T. Removal of triclosan during wastewater treatment process and sewage sludge composting—A case study in the middle reaches of the Yellow River. Environ. Int. 2020, 134, 105300. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhou, C.; Wu, F.; Xu, H.; Zhao, Z.; Han, Z.; Zhang, H.; Yang, S. Enhanced removal of organic, nutrients, and PFCs in the iron-carbon micro-electrolysis constructed wetlands: Mechanism and iron cycle. Chem. Eng. J. 2023, 457, 141174. [Google Scholar] [CrossRef]
- Zhong, S.-F.; Yang, B.; Lei, H.-J.; Xiong, Q.; Zhang, Q.-Q.; Liu, F.; Ying, G.-G. Transformation products of tetracyclines in three typical municipal wastewater treatment plants. Sci. Total Environ. 2022, 830, 154647. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, Z.; El-Dakhakhni, W.; Smyth, S.A. Prediction of bisphenol A contamination in Canadian municipal wastewater. J. Water Process. Eng. 2022, 50, 103304. [Google Scholar] [CrossRef]
- Zhou, X.-J.; Wang, J.; Li, H.-Y.; Zhang, H.-M.; Jiang, H.; Zhang, D.L. Microplastic pollution of bottled water in China. J. Water Process. Eng. 2021, 40, 101884. [Google Scholar] [CrossRef]
- Zhu, N.; Li, C.; Bu, L.; Tang, C.; Wang, S.; Duan, P.; Yao, L.; Tang, J.; Dionysiou, D.D.; Wu, Y. Bismuth impregnated biochar for efficient estrone degradation: The synergistic effect between biochar and Bi/Bi2O3 for a high photocatalytic performance. J. Hazard. Mater. 2020, 384, 121258. [Google Scholar] [CrossRef] [PubMed]
- Ziajahromi, S.; Neale, P.A.; Silveira, I.T.; Chua, A.; Leusch, F.D. An audit of microplastic abundance throughout three Australian wastewater treatment plants. Chemosphere 2021, 263, 128294. [Google Scholar] [CrossRef] [PubMed]
- Zwart, N.; Jonker, W.; Ten Broek, R.; de Boer, J.; Somsen, G.; Kool, J.; Hamers, T.; Houtman, C.J.; Lamoree, M.H. Identification of mutagenic and endocrine disrupting compounds in surface water and wastewater treatment plant effluents using high-resolution effect-directed analysis. Water Res. 2020, 168, 115204. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, Y.; Zhang, S.; Gao, T.; Gao, Z.; Lai, C.W.; Xiang, P.; Yang, F. Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review. Toxics 2025, 13, 616. https://doi.org/10.3390/toxics13080616
Li Y, Li Y, Zhang S, Gao T, Gao Z, Lai CW, Xiang P, Yang F. Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review. Toxics. 2025; 13(8):616. https://doi.org/10.3390/toxics13080616
Chicago/Turabian StyleLi, Yue, Yihui Li, Siyuan Zhang, Tianyi Gao, Zhaoyi Gao, Chin Wei Lai, Ping Xiang, and Fengqi Yang. 2025. "Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review" Toxics 13, no. 8: 616. https://doi.org/10.3390/toxics13080616
APA StyleLi, Y., Li, Y., Zhang, S., Gao, T., Gao, Z., Lai, C. W., Xiang, P., & Yang, F. (2025). Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review. Toxics, 13(8), 616. https://doi.org/10.3390/toxics13080616