Energy-Related Carbon Emissions in Mega City in Developing Country: Patterns and Determinants Revealed by Hong Kong
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Materials
3.2. Total Carbon Emissions Accounting
3.3. The Extended Kaya Identity
3.4. The Logarithmic Mean Divisia Index
4. Results
4.1. Energy Consumption in Hong Kong
4.2. Total Carbon Emissions and Carbon Emission Structure in Hong Kong
4.3. Decomposition Analysis of Carbon Emission Based on LMDI
5. Conclusions and Discussion
5.1. Conclusions
5.2. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tollefson, J. Diagnosing Earth: The science behind the IPCC’s upcoming climate report. Nature 2021. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Li, H.; Luijkx, I.T.; Olsen, A.; et al. Global Carbon Budget 2024. Earth Syst. Sci. Data 2025, 17, 965–1039. [Google Scholar] [CrossRef]
- Chong, W.H.B.; Guan, D.; Guthrie, P. Comparative Analysis of Carbonization Drivers in China’s Megacities. J. Ind. Ecol. 2012, 16, 564–575. [Google Scholar] [CrossRef]
- Meinshausen, M.; Lewis, J.; McGlade, C.; Gütschow, J.; Nicholls, Z.; Burdon, R.; Cozzi, L.; Hackmann, B. Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature 2022, 604, 304–309. [Google Scholar] [CrossRef]
- Elmqvist, T.; Andersson, E.; Frantzeskaki, N.; McPhearson, T.; Olsson, P.; Gaffney, O.; Takeuchi, K.; Folke, C. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2019, 2, 267–273. [Google Scholar] [CrossRef]
- Keith, M.; Birch, E.; Buchoud, N.J.A.; Cardama, M.; Cobbett, W.; Cohen, M.; Elmqvist, T.; Espey, J.; Hajer, M.; Hartmann, G.; et al. A new urban narrative for sustainable development. Nat. Sustain. 2023, 6, 115–117. [Google Scholar] [CrossRef]
- Dhakal, S. Urban energy use and carbon emissions from cities in China and policy implications. Energy Policy 2009, 37, 4208–4219. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Huang, G.; Wang, Y.; Zhang, X.; Ye, Y.; Lin, X.; Zhang, Z. Examining the Dynamics and Determinants of Energy Consumption in China’s Megacity Based on Industrial and Residential Perspectives. Sustainability 2021, 13, 764. [Google Scholar] [CrossRef]
- Parrish, D.D.; Zhu, T. Clean Air for Megacities. Science 2009, 326, 674–675. [Google Scholar] [CrossRef]
- Acuto, M.; Parnell, S.; Seto, K.C. Building a global urban science. Nat. Sustain. 2018, 1, 2–4. [Google Scholar] [CrossRef]
- Duren, R.M.; Miller, C.E. Measuring the carbon emissions of megacities. Nat. Clim. Change 2012, 2, 560–562. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Solecki, W.; Hammer, S.A.; Mehrotra, S. Cities lead the way in climate-change action. Nature 2010, 467, 909–911. [Google Scholar] [CrossRef]
- Li, Y.; Lin, J.; Wang, Q.; Zhuang, X.; Zhang, Q.; Chen, D.; Zhou, T.; Dang, N. Evolutionary Analysis of the Spatial and Temporal Patterns of Coupled Coordination between Environmental Regulation Intensity and Net Carbon Emissions from Land Use in the Bohai Rim Region. J. Fujian Norm. Univ. (Nat. Sci. Ed.) 2024, 40, 29–39. [Google Scholar]
- Zhang, Q.; Lin, J.; Wang, Q.; Chen, D.; Zhou, T.; Dang, N.; Zhuang, X.; Li, Y.; Luo, D. The Impact of Main Functional Area Strategy on Regional Energy Consumption Carbon Emission: A Case Study of Fujian Province. J. Fujian Norm. Univ. (Nat. Sci. Ed.) 2024, 40, 30–43. [Google Scholar]
- Wang, C.; Wu, K.; Zhang, X.; Wang, F.; Zhang, H.; Ye, Y.; Wu, Q.; Huang, G.; Wang, Y.; Wen, B. Features and drivers for energy-related carbon emissions in mega city: The case of Guangzhou, China based on an extended LMDI model. PLoS ONE 2019, 14, e0210430. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.; Lai, J. Energy Transitions in Cities: A Comparative Analysis of Policies and Strategies in Hong Kong, London, and Melbourne. Energies 2025, 18, 37. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, L. Transition towards carbon neutrality: Forecasting Hong Kong’s buildings carbon footprint by 2050 using a machine learning approach. Sustain. Prod. Consum. 2023, 35, 633–642. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; You, K. Revealing the Historical Peak Situation of CO2 Emissions from Buildings in the Great Bay Area. Buildings 2025, 15, 1927. [Google Scholar] [CrossRef]
- Cai, M.; Shi, Y.; Ren, C. Developing a high-resolution emission inventory tool for low-carbon city management using hybrid method—A pilot test in high-density Hong Kong. Energy Build. 2020, 226, 110376. [Google Scholar] [CrossRef]
- Chen, L.; Huo, C. Impact of Green Innovation Efficiency on Carbon Emission Reduction in the Guangdong-Hong Kong-Macao GBA. Sustainability 2021, 13, 13450. [Google Scholar] [CrossRef]
- Wang, C.; Ye, Y.; Huang, Z. Synergistic development in the Guangdong-Hong Kong-Macao Greater Bay Area: Index measurement and systematic evaluation based on industry-innovation-infrastructure-institution perspectives. J. Clean. Prod. 2024, 434, 140093. [Google Scholar] [CrossRef]
- Luo, Y.; Shen, J.; Liang, H.; Sun, L.; Dong, L. Supporting building life cycle carbon monitoring, reporting and verification: A traceable and immutable blockchain-empowered information management system and application in Hong Kong. Resour. Conserv. Recycl. 2024, 208, 107736. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Lee, Y.T. Greenhouse gas emissions in Hong Kong. Atmos. Environ. 2000, 34, 4487–4498. [Google Scholar] [CrossRef]
- To, W.M. Greenhouse gases emissions from the logistics sector: The case of Hong Kong, China. J. Clean. Prod. 2015, 103, 658–664. [Google Scholar] [CrossRef]
- To, W.M.; Lee, P.K.C. GHG emissions from electricity consumption: A case study of Hong Kong from 2002 to 2015 and trends to 2030. J. Clean. Prod. 2017, 165, 589–598. [Google Scholar] [CrossRef]
- Zhou, Y.; Shan, Y.; Liu, G.; Guan, D. Emissions and low-carbon development in Guangdong-Hong Kong-Macao Greater Bay Area cities and their surroundings. ApEn 2018, 228, 1683–1692. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, K.; Liang, S.; Zeng, X.; Cai, Y.; Meng, J.; Shan, Y.; Guan, D.; Yang, Z. Trends, Drivers, and Mitigation of CO2 Emissions in the Guangdong–Hong Kong–Macao Greater Bay Area. Engineering 2023, 23, 138–148. [Google Scholar] [CrossRef]
- To, W.-M.; Lee, P.K.C. Energy Consumption and Economic Development in Hong Kong, China. Energies 2017, 10, 1883. [Google Scholar] [CrossRef]
- Huang, R.; Lv, G.; Chen, M.; Zhu, Z. CO2 emissions embodied in trade: Evidence for Hong Kong SAR. J. Clean. Prod. 2019, 239, 117918. [Google Scholar] [CrossRef]
- Dou, X.; Deng, Z.; Sun, T.; Ke, P.; Zhu, B.; Shan, Y.; Liu, Z. Global and local carbon footprints of city of Hong Kong and Macao from 2000 to 2015. Resour. Conserv. Recycl. 2021, 164, 105167. [Google Scholar] [CrossRef]
- Cao, J.; Zhan, X.; Zhang, W.; Zhang, Y. The return predictability of carbon emissions: Evidence from Hong Kong and Singapore. Pac.-Basin Financ. J. 2023, 82, 102177. [Google Scholar] [CrossRef]
- Zheng, J.; Li, X.; Nam, K.-M. Impacts of local and regional carbon markets in Hong Kong and China’s Greater Bay Area: A dynamic CGE analysis. Energy Policy 2025, 204, 114651. [Google Scholar] [CrossRef]
- Peng, W.; Chen, Y.; Wang, S. Synergistic decarbonization strategies for high-density cities and their neighboring areas: A case for Hong Kong and Guangdong’s power system. ApEn 2025, 396, 126173. [Google Scholar] [CrossRef]
- Arioli, M.S.; D’Agosto, M.d.A.; Amaral, F.G.; Cybis, H.B.B. The evolution of city-scale GHG emissions inventory methods: A systematic review. Environ. Impact Assess. Rev. 2020, 80, 106316. [Google Scholar] [CrossRef]
- Chen, G.; Shan, Y.; Hu, Y.; Tong, K.; Wiedmann, T.; Ramaswami, A.; Guan, D.; Shi, L.; Wang, Y. Review on City-Level Carbon Accounting. Environ. Sci. Technol. 2019, 53, 5545–5558. [Google Scholar] [CrossRef]
- Waggoner, P.E.; Ausubel, J.H. A framework for sustainability science: A renovated IPAT identity. Proc. Natl. Acad. Sci. USA 2002, 99, 7860–7865. [Google Scholar] [CrossRef]
- Chertow, M.R. The IPAT Equation and Its Variants. J. Ind. Ecol. 2000, 4, 13–29. [Google Scholar] [CrossRef]
- York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Liddle, B. Urban density and climate change: A STIRPAT analysis using city-level data. J. Transp. Geogr. 2013, 28, 22–29. [Google Scholar] [CrossRef]
- Liddle, B. What are the carbon emissions elasticities for income and population? Bridging STIRPAT and EKC via robust heterogeneous panel estimates. Glob. Environ. Change 2015, 31, 62–73. [Google Scholar] [CrossRef]
- Ang, B.W.; Choi, K.H. Decomposition of aggregate energy and gas emission intensities for industry: A refined Divisia index method. Energy J. 1997, 18, 59–73. [Google Scholar] [CrossRef]
- Ang, B.W.; Zhang, F.Q. A survey of index decomposition analysis in energy and environmental studies. Energy 2000, 25, 1149–1176. [Google Scholar] [CrossRef]
- Fujii, H.; Okamoto, S.; Kagawa, S.; Managi, S. Decomposition of toxicity emission changes on the demand and supply sides: Empirical study of the US industrial sector. Environ. Res. Lett. 2017, 12, 124008. [Google Scholar] [CrossRef]
- Gerveni, M.; Fernandes Tomon Avelino, A.; Dall’erba, S. Drivers of Water Use in the Agricultural Sector of the European Union 27. Environ. Sci. Technol. 2020, 54, 9191–9199. [Google Scholar] [CrossRef]
- Ang, B.W. LMDI decomposition approach: A guide for implementation. Energy Policy 2015, 86, 233–238. [Google Scholar] [CrossRef]
- Wang, H.; Ang, B.W.; Su, B. Assessing drivers of economy-wide energy use and emissions: IDA versus SDA. Energy Policy 2017, 107, 585–599. [Google Scholar] [CrossRef]
- Zhao, R.; Huang, X.; Zhong, T.; Liu, Y.; Chuai, X. Carbon flow of urban system and its policy implications: The case of Nanjing. Renew. Sustain. Energy Rev. 2014, 33, 589–601. [Google Scholar] [CrossRef]
- Li, J.S.; Chen, G.Q. Energy and greenhouse gas emissions review for Macao. Renew. Sustain. Energy Rev. 2013, 22, 23–32. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, W.; Tu, W.; Zhao, Q.; Yu, Q. A study on carbon emissions in Shanghai 2000–2008, China. Environ. Sci. Policy 2013, 27, 151–161. [Google Scholar] [CrossRef]
- Bi, J.; Zhang, R.; Wang, H.; Liu, M.; Wu, Y. The benchmarks of carbon emissions and policy implications for China’s cities: Case of Nanjing. Energy Policy 2011, 39, 4785–4794. [Google Scholar] [CrossRef]
- Li, J.S.; Chen, G.Q.; Lai, T.M.; Ahmad, B.; Chen, Z.M.; Shao, L.; Ji, X. Embodied greenhouse gas emission by Macao. Energy Policy 2013, 59, 819–833. [Google Scholar] [CrossRef]
- Cai, B.; Lu, J.; Wang, J.; Dong, H.; Liu, X.; Chen, Y.; Chen, Z.; Cong, J.; Cui, Z.; Dai, C.; et al. A benchmark city-level carbon dioxide emission inventory for China in 2005. ApEn 2019, 233–234, 659–673. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, T. Managing urban energy system: A case of Suzhou in China. Energy Policy 2011, 39, 2910–2918. [Google Scholar] [CrossRef]
- Sugar, L.; Kennedy, C.; Leman, E. Greenhouse Gas Emissions from Chinese Cities. J. Ind. Ecol. 2012, 16, 552–563. [Google Scholar] [CrossRef]
- Chen, G.Q.; Guo, S.; Shao, L.; Li, J.S.; Chen, Z.-M. Three-scale input–output modeling for urban economy: Carbon emission by Beijing 2007. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2493–2506. [Google Scholar] [CrossRef]
- Vause, J.; Gao, L.; Shi, L.; Zhao, J. Production and consumption accounting of CO2 emissions for Xiamen, China. Energy Policy 2013, 60, 697–704. [Google Scholar] [CrossRef]
- Mi, Z.; Zhang, Y.; Guan, D.; Shan, Y.; Liu, Z.; Cong, R.; Yuan, X.-C.; Wei, Y.-M. Consumption-based emission accounting for Chinese cities. ApEn 2016, 184, 1073–1081. [Google Scholar] [CrossRef]
- Cai, B.; Cui, C.; Zhang, D.; Cao, L.; Wu, P.; Pang, L.; Zhang, J.; Dai, C. China city-level greenhouse gas emissions inventory in 2015 and uncertainty analysis. ApEn 2019, 253, 113579. [Google Scholar] [CrossRef]
- Wang, H.; Lu, X.; Deng, Y.; Sun, Y.; Nielsen, C.P.; Liu, Y.; Zhu, G.; Bu, M.; Bi, J.; McElroy, M.B. China’s CO2 peak before 2030 implied from characteristics and growth of cities. Nat. Sustain. 2019, 2, 748–754. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, Y.; Hang, Y.; Zheng, H.; Li, Y.; Guan, D.; Li, J.; Zhou, Y.; Li, L.; Hubacek, K. City-level emission peak and drivers in China. Sci. Bull. 2022, 67, 1910–1920. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ruan, J.; Zhang, Z.; Qin, Z.; Lei, Z.; Cai, B.; Wang, S.; Tang, L. City-level pathways to carbon peak and neutrality in China. Cell Rep. Sustain. 2024, 1, 100102. [Google Scholar] [CrossRef]
- Su, Y.; Chen, X.; Li, Y.; Liao, J.; Ye, Y.; Zhang, H.; Huang, N.; Kuang, Y. China’s 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines. Renew. Sustain. Energy Rev. 2014, 35, 231–243. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, S. Examining the determinants and the spatial nexus of city-level CO2 emissions in China: A dynamic spatial panel analysis of China’s cities. J. Clean. Prod. 2018, 171, 917–926. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef]
- Wang, F.; Wang, C.; Lin, X.; Li, Z.; Sun, C. County-Level Spatiotemporal Dynamics and Driving Mechanisms of Carbon Emissions in the Pearl River Delta Urban Agglomeration, China. Land 2024, 13, 1829. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, X.; Chen, M. Spatiotemporal dynamics and driving forces of city-level CO2 emissions in China from 2000 to 2019. J. Clean. Prod. 2022, 377, 134358. [Google Scholar] [CrossRef]
- Liu, Z.; Zhong, J.; Liu, Y.; Liang, Y.; Li, Z. Dynamic simulation of street-level carbon emissions in megacities: A case study of Wuhan City, China (2015–2030). Sustain. Cities Soc. 2024, 115, 105853. [Google Scholar] [CrossRef]
- Wang, J.; Wei, J.; Zhang, W.; Liu, Z.; Du, X.; Liu, W.; Pan, K. High-resolution temporal and spatial evolution of carbon emissions from building operations in Beijing. J. Clean. Prod. 2022, 376, 134272. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, W.; Jiang, L.; Yuan, C.; Xiao, T.; Wang, R.; Cai, M.; Hong, H. Spatial modelling of street-level carbon emissions with multi-source open data: A case study of Guangzhou. Urban Clim. 2024, 55, 101974. [Google Scholar] [CrossRef]
- Shao, S.; Yang, L.; Gan, C.; Cao, J.; Geng, Y.; Guan, D. Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China). Renew. Sustain. Energy Rev. 2016, 55, 516–536. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, S.; Geng, Y.; Xue, B.; Xi, F.; Pan, Y.; Zhang, T.; Fujita, T. Features, trajectories and driving forces for energy-related GHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai and Chongqing. Energy 2012, 37, 245–254. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, F.; Zhang, Y.; Zhang, X. An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China. ApEn 2012, 100, 277–284. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, H.; Li, L.; Liu, Z.; Liang, S. Carbon dioxide emission drivers for a typical metropolis using input–output structural decomposition analysis. Energy Policy 2013, 58, 312–318. [Google Scholar] [CrossRef]
- Wang, M.; Che, Y.; Yang, K.; Wang, M.; Xiong, L.; Huang, Y. A local-scale low-carbon plan based on the STIRPAT model and the scenario method: The case of Minhang District, Shanghai, China. Energy Policy 2011, 39, 6981–6990. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W. Determinants of CO2 emissions from household daily travel in Beijing, China: Individual travel characteristic perspectives. ApEn 2015, 158, 292–299. [Google Scholar] [CrossRef]
- Tan, X.; Dong, L.; Chen, D.; Gu, B.; Zeng, Y. China’s regional CO2 emissions reduction potential: A study of Chongqing city. ApEn 2016, 162, 1345–1354. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y. Features and influencing factors of carbon emissions indicators in the perspective of residential consumption: Evidence from Beijing, China. Ecol. Indic. 2016, 61 Pt 2, 634–645. [Google Scholar] [CrossRef]
- Yang, S.; Cao, D.; Lo, K. Analyzing and optimizing the impact of economic restructuring on Shanghai’s carbon emissions using STIRPAT and NSGA-II. Sustain. Cities Soc. 2018, 40, 44–53. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Wang, H.; Liu, M.; Zhang, Y.; Zhang, R.; Yang, J.; Bi, J. Mitigating greenhouse gas emissions from China’s cities: Case study of Suzhou. Energy Policy 2014, 68, 482–489. [Google Scholar] [CrossRef]
- Feng, K.; Hubacek, K.; Sun, L.; Liu, Z. Consumption-based CO2 accounting of China’s megacities: The case of Beijing, Tianjin, Shanghai and Chongqing. Ecol. Indic. 2014, 47, 26–31. [Google Scholar] [CrossRef]
- Gu, Y.; Li, C. Shanghai Transport Carbon Emission Forecasting Study Based on CEEMD-IWOA-KELM Model. Sustainability 2024, 16, 8140. [Google Scholar] [CrossRef]
- Zeng, Y.; Yuan, X.; Hou, B. Analysis of Carbon Emission Reduction at the Port of Integrated Logistics: The Port of Shanghai Case Study. Sustainability 2023, 15, 10914. [Google Scholar] [CrossRef]
- Kang, J.; Zhao, T.; Liu, N.; Zhang, X.; Xu, X.; Lin, T. A multi-sectoral decomposition analysis of city-level greenhouse gas emissions: Case study of Tianjin, China. Energy 2014, 68, 562–571. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, R.; He, Q. A city-scale decomposition and decoupling analysis of carbon dioxide emissions: A case study of China. J. Clean. Prod. 2019, 238, 117824. [Google Scholar] [CrossRef]
- Ding, R.; Tian, D.; Wei, Y. Driving Factors and Decoupling Effect of Energy-Related Carbon Emissions in Beijing, 2013–2020. Sustainability 2025, 17, 3940. [Google Scholar] [CrossRef]
- Li, Y.; Dai, J.; Zhao, H. Analysis of collaborative emission reduction of air pollutants and greenhouse gases under carbon neutrality target: A case study of Beijing, China. Clean Technol. Environ. Policy 2024, 26, 3995–4008. [Google Scholar] [CrossRef]
- Chung, W.; Kam, M.S.; Ip, C.Y. A study of residential energy use in Hong Kong by decomposition analysis, 1990–2007. ApEn 2011, 88, 5180–5187. [Google Scholar] [CrossRef]
- Harris, P.G.; Chow, A.S.Y.; Symons, J. Greenhouse gas emissions from cities and regions: International implications revealed by Hong Kong. Energy Policy 2012, 44, 416–424. [Google Scholar] [CrossRef]
- Pasinetti, L.L. Causality and interdependence in econometric analysis and in economic theory. Struct. Change Econ. Dynam. 2019, 49, 357–363. [Google Scholar] [CrossRef]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of coupled human and natural systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef]
- Taylor, P.J.; Hoyler, M.; Verbruggen, R. External Urban Relational Process: Introducing Central Flow Theory to Complement Central Place Theory. Urban Stud. 2010, 47, 2803–2818. [Google Scholar] [CrossRef]
- Wiedmann, T.; Chen, G.; Owen, A.; Lenzen, M.; Doust, M.; Barrett, J.; Steele, K. Three-scope carbon emission inventories of global cities. J. Ind. Ecol. 2021, 25, 735–750. [Google Scholar] [CrossRef]
- Cui, C.; Li, S.; Zhao, W.; Liu, B.; Shan, Y.; Guan, D. Energy-related CO2 emission accounts and datasets for 40 emerging economies in 2010–2019. Earth Syst. Sci. Data 2023, 15, 1317–1328. [Google Scholar] [CrossRef]
- Guan, D.; Liu, Z.; Geng, Y.; Lindner, S.; Hubacek, K. The gigatonne gap in China’s carbon dioxide inventories. Nat. Clim. Change 2012, 2, 672–675. [Google Scholar] [CrossRef]
- Nakicenovic, N.; Alcamo, J.; Davis, G.; Vries, B.D. Special Report on Emissions Scenarios: A Special Report of the Working Group III of the Intergovernmental Panel on Climate Change; United Nations Digital Library System: New York, NY, USA, 2000. [Google Scholar]
- Raupach, M.R.; Marland, G.; Ciais, P.; Le Quere, C.; Canadell, J.G.; Klepper, G.; Field, C.B. Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. USA 2007, 104, 10288–10293. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.J.; Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl. Acad. Sci. USA 2010, 107, 5687–5692. [Google Scholar] [CrossRef]
- Lin, B.; Moubarak, M. Decomposition analysis: Change of carbon dioxide emissions in the Chinese textile industry. Renew. Sustain. Energy Rev. 2013, 26, 389–396. [Google Scholar] [CrossRef]
- González-Torres, M.; Pérez-Lombard, L.; Coronel, J.F.; Maestre, I.R. Revisiting Kaya Identity to define an Emissions Indicators Pyramid. J. Clean. Prod. 2021, 317, 128328. [Google Scholar] [CrossRef]
- Tavakoli, A. A journey among top ten emitter country, decomposition of “Kaya Identity”. Sustain. Cities Soc. 2018, 38, 254–264. [Google Scholar] [CrossRef]
- Lima, F.; Nunes, M.L.; Cunha, J.; Lucena, A.F.P. A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach. Energy 2016, 115 Pt 2, 1361–1374. [Google Scholar] [CrossRef]
- Remuzgo, L.; Sarabia, J.M. International inequality in CO2 emissions: A new factorial decomposition based on Kaya factors. Environ. Sci. Policy 2015, 54, 15–24. [Google Scholar] [CrossRef]
- Mahony, T.O. Decomposition of Ireland’s carbon emissions from 1990 to 2010: An extended Kaya identity. Energy Policy 2013, 59, 573–581. [Google Scholar] [CrossRef]
Authors | Time Period | Methodology | Cities |
---|---|---|---|
The calculation methods for energy-related carbon emissions in cities | |||
Zhao et al. [47] | 2000–2009 | Emissions Inventories of cities | Nanjing |
Li et al. [48] | 2000–2010 | Emissions Inventories of cities | Macao |
Wang et al. [49] | 2002–2008 | Emissions Inventories of cities | Shanghai |
Bi et al. [50] | 2002–2009 | Emissions Inventories of cities | Nanjing |
Li et al. [51] | 2005–2009 | Emissions Inventories of cities | Macao |
Cai et al. [52] | 2005 | Emissions Inventories of cities | Totaling 287 cities in China |
Liang et al. [53] | 2005 | Emissions Inventories of cities | Suzhou |
Sugar et al. [54] | 2006 | Emissions Inventories of cities | Beijing, Shanghai, and Tianjin |
Chen et al. [55] | 2007 | Emissions Inventories of cities | Beijing |
Vause et al. [56] | 2007 | Emissions Inventories of cities | Xiamen |
Mi et al. [57] | 2007 | Emissions Inventories of cities | Totaling 13 cities in China |
Cai et al. [58] | 2015 | Emissions Inventories of cities | Totaling 305 cities in China |
Wang et al. [59] | 2000–2016 | Emissions Inventories of cities | Totaling 50 cities in China |
Zhou et al. [27] | 2000–2019 | Emissions Inventories of cities | Totaling 11 cities in the Great Bay Area in China |
Shan et al. [60] | 2001–2019 | Emissions Inventories of cities | Totaling 287 cities in China |
Zhang et al. [61] | 2005–2020 | Emissions Inventories of cities | Totaling 339 cities in China |
Su et al. [62] | 1992–2010 | Emissions Simulation of cities | Totaling 314 cities in China |
Zhou et al. [63] | 1992–2013 | Emissions Simulation of cities | Totaling 283 cities in China |
Chen et al. [64] | 1997–2017 | Emissions Simulation of cities | Totaling 2735 counties in China |
Wang et al. [65] | 2000–2020 | Emissions Simulation of cities | Totaling 9 cities in the Pearl River Delta in China |
Gao et al. [66] | 2000–2019 | Emissions Simulation of cities | Totaling 286 cities in China |
Liu et al. [67] | 2015 | Emissions Simulation of cities | Wuhan |
Wang et al. [68] | 2020 | Emissions Simulation of cities | Beijing |
Zheng et al. [69] | 2021 | Emissions Simulation of cities | Guangzhou |
The analysis of carbon emission influencing factors in cities | |||
Shao et al. [70] | 1994–2011 | LMDI | Shanghai |
Liu et al. [71] | 1995–2009 | LMDI | Beijing, Shanghai, Tianjin, and Chongqing |
Wang et al. [72] | 1997–2010 | STIRPAT | Beijing |
Wang et al. [73] | 1997–2010 | SDA | Beijing |
Wang et al. [74] | 1998–2009 | STIRPAT | Shanghai |
Wang et al. [75] | 2000–2012 | LMDI | Beijing |
Tan et al. [76] | 2000–2012 | LMDI | Chongqing |
Wang et al. [77] | 2000–2010 | LMDI and SDA | Beijing |
Yang et al. [78] | 2000–2014 | STIRPAT | Shanghai |
Wang et al. [79] | 2005–2010 | LMDI | Suzhou |
Feng et al. [80] | 2007 | MRIO | Beijing, Shanghai, Tianjin, and Chongqing |
Gu et al. [81] | 1995–2019 | STIRPAT | Shanghai |
Zeng et al. [82] | 2008–2022 | STIRPAT | Shanghai |
Meng et al. | 2012 | LMDI | Beijing, Shanghai, Tianjin, and Chongqing |
Kang et al. [83] | 2001–2009 | LMDI | Tianjin |
Zheng et al. [84] | 2005–2016 | LMDI | Shijiazhuang |
Ding et al. [85] | 2013–2020 | LMDI | Beijing |
Li et al. [86] | 2010–2019 | LMDI | Beijing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Sun, C.; Chen, S.; Zhou, Q.; Wang, C. Energy-Related Carbon Emissions in Mega City in Developing Country: Patterns and Determinants Revealed by Hong Kong. Sustainability 2025, 17, 6854. https://doi.org/10.3390/su17156854
Wang F, Sun C, Chen S, Zhou Q, Wang C. Energy-Related Carbon Emissions in Mega City in Developing Country: Patterns and Determinants Revealed by Hong Kong. Sustainability. 2025; 17(15):6854. https://doi.org/10.3390/su17156854
Chicago/Turabian StyleWang, Fei, Changlong Sun, Si Chen, Qiang Zhou, and Changjian Wang. 2025. "Energy-Related Carbon Emissions in Mega City in Developing Country: Patterns and Determinants Revealed by Hong Kong" Sustainability 17, no. 15: 6854. https://doi.org/10.3390/su17156854
APA StyleWang, F., Sun, C., Chen, S., Zhou, Q., & Wang, C. (2025). Energy-Related Carbon Emissions in Mega City in Developing Country: Patterns and Determinants Revealed by Hong Kong. Sustainability, 17(15), 6854. https://doi.org/10.3390/su17156854