Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (710)

Search Parameters:
Keywords = China winter temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3832 KiB  
Article
Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China
by Hafeez Noor, Fida Noor, Zhiqiang Gao, Majed Alotaibi and Mahmoud F. Seleiman
Water 2025, 17(15), 2329; https://doi.org/10.3390/w17152329 - 5 Aug 2025
Abstract
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among [...] Read more.
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among researchers on the most appropriate field management practices regarding WUE, which requires further integrated quantitative analysis. We conducted a meta-analysis by quantifying the effect of agricultural practices surrounding nitrogen (N) fertilizer management. The two experimental cultivars were Yunhan–20410 and Yunhan–618. The subplots included nitrogen 0 kg·ha−1 (N0), 90 kg·ha−1 (N90), 180 kg·ha−1 (N180), 210 kg·ha−1 (N210), and 240 kg·ha−1 (N240). Our results show that higher N rates (up to N210) enhanced water consumption during the node-flowering and flowering-maturity time periods. YH–618 showed higher water use during the sowing–greening and node-flowering periods but decreased use during the greening-node and flowering-maturity periods compared to YH–20410. The N210 treatment under YH–618 maximized water use efficiency (WUE). Increased N rates (N180–N210) decreased covering temperatures (Tmax, Tmin, Taver) during flowering, increasing the level of grain filling. Spike numbers rose with N application, with an off-peak at N210 for strong-gluten wheat. The 1000-grain weight was at first enhanced but decreased at the far end of N180–N210. YH–618 with N210 achieved a harvest index (HI) similar to that of YH–20410 with N180, while excessive N (N240) or water reduced the HI. Dry matter accumulation increased up to N210, resulting in earlier stabilization. Soil water consumption from wintering to jointing was strongly correlated with pre-flowering dry matter biological process and yield, while jointing–flowering water use was linked to post-flowering dry matter and spike numbers. Post-flowering dry matter accumulation was critical for yield, whereas spike numbers positively impacted yield but negatively affected 1000-grain weight. In conclusion, our results provide evidence for determining suitable integrated agricultural establishment strategies to ensure efficient water use and sustainable production in the Loess Plateau region. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

21 pages, 7111 KiB  
Article
Seasonal Variation in Energy Balance, Evapotranspiration and Net Ecosystem Production in a Desert Ecosystem of Dengkou, Inner Mongolia, China
by Muhammad Zain Ul Abidin, Huijie Xiao, Sanaullah Magsi, Fang Hongxin, Komal Muskan, Phuocthoi Hoang and Muhammad Azher Hassan
Water 2025, 17(15), 2307; https://doi.org/10.3390/w17152307 - 3 Aug 2025
Viewed by 70
Abstract
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes [...] Read more.
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes interact in one of the world’s most water-limited environments. This arid research area received an average of 109.35 mm per annum precipitation over the studied period, classifying the region as a typical arid ecosystem. Seasonal patterns were observed in daily air temperature, with extremes ranging from −20.6 °C to 29.6 °C. Temporal variations in sensible heat flux (H), latent heat flux (LE), and net radiation (Rn) peaked during summer season. The average ground heat flux (G) was mostly positive throughout the observation period, indicating heat transmission from atmosphere to soil, but showed negative values during the winter season. The energy balance ratio for the studied period was in the range of 0.61 to 0.80, indicating challenges in achieving energy closure and ecological shifts. ET exhibited two annual peaks influenced by vegetation growth and climate change, with annual ET exceeding annual precipitation, except in 2021. Net ecosystem production (NEP) from 2019 to 2020 revealed that the Dengkou desert were a net source of carbon, indicating the carbon loss from the ecosystem. In 2021, the Dengkou ecosystem shifted to become a net carbon sink, effectively sequestrating carbon. However, this was sharply reversed in 2022, resulting in a significant net release of carbon. The study findings highlight the complex interactions between energy balance components, ET, and NEP in desert ecosystems, providing insights into sustainable water management and carbon neutrality strategies in arid regions under climate change effect. Full article
(This article belongs to the Special Issue The Observation and Modeling of Surface Air Hydrological Factors)
Show Figures

Graphical abstract

37 pages, 7429 KiB  
Article
Study on the Influence of Window Size on the Thermal Comfort of Traditional One-Seal Dwellings (Yikeyin) in Kunming Under Natural Wind
by Yaoning Yang, Junfeng Yin, Jixiang Cai, Xinping Wang and Juncheng Zeng
Buildings 2025, 15(15), 2714; https://doi.org/10.3390/buildings15152714 - 1 Aug 2025
Viewed by 153
Abstract
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio [...] Read more.
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio (WWR), serving as a core parameter in building envelope design, directly influences building energy consumption, with its optimized design playing a decisive role in balancing natural daylighting, ventilation efficiency, and thermal comfort. This study focuses on the traditional One-Seal dwellings (Yikeyin) in Kunming, China, establishing a dynamic wind field-thermal environment coupled analysis framework to investigate the impact mechanism of window dimensions (WWR and aspect ratio) on indoor thermal comfort under natural wind conditions in transitional climate zones. Utilizing the Grasshopper platform integrated with Ladybug, Honeybee, and Butterfly plugins, we developed parametric models incorporating Kunming’s Energy Plus Weather meteorological data. EnergyPlus and OpenFOAM were employed, respectively, for building heat-moisture balance calculations and Computational Fluid Dynamic (CFD) simulations, with particular emphasis on analyzing the effects of varying WWR (0.05–0.20) on temperature-humidity, air velocity, and ventilation efficiency during typical winter and summer weeks. Key findings include, (1) in summer, the baseline scenario with WWR = 0.1 achieves a dynamic thermal-humidity balance (20.89–24.27 °C, 65.35–74.22%) through a “air-permeable but non-ventilative” strategy, though wing rooms show humidity-heat accumulation risks; increasing WWR to 0.15–0.2 enhances ventilation efficiency (2–3 times higher air changes) but causes a 4.5% humidity surge; (2) winter conditions with WWR ≥ 0.15 reduce wing room temperatures to 17.32 °C, approaching cold thresholds, while WWR = 0.05 mitigates heat loss but exacerbates humidity accumulation; (3) a symmetrical layout structurally constrains central ventilation, maintaining main halls air changes below one Air Change per Hour (ACH). The study proposes an optimized WWR range of 0.1–0.15 combined with asymmetric window opening strategies, providing quantitative guidance for validating the scientific value of vernacular architectural wisdom in low-energy design. Full article
Show Figures

Figure 1

17 pages, 5311 KiB  
Article
Projections of Urban Heat Island Effects Under Future Climate Scenarios: A Case Study in Zhengzhou, China
by Xueli Ni, Yujie Chang, Tianqi Bai, Pengfei Liu, Hongquan Song, Feng Wang and Man Jin
Remote Sens. 2025, 17(15), 2660; https://doi.org/10.3390/rs17152660 - 1 Aug 2025
Viewed by 300
Abstract
As global climate change accelerates, the urban heat island (UHI) phenomenon has become increasingly pronounced, posing significant challenges to urban energy balance, atmospheric processes, and public health. This study used the Weather Research and Forecasting (WRF) model to dynamically downscale two CMIP6 scenarios—moderate [...] Read more.
As global climate change accelerates, the urban heat island (UHI) phenomenon has become increasingly pronounced, posing significant challenges to urban energy balance, atmospheric processes, and public health. This study used the Weather Research and Forecasting (WRF) model to dynamically downscale two CMIP6 scenarios—moderate forcing (SSP245) and high forcing (SSP585)—focusing on Zhengzhou, a rapidly urbanizing city in central China. High-resolution simulations captured fine-scale intra-urban temperature patterns and analyze the spatial and seasonal variations in UHI intensity in 2030 and 2060. The results demonstrated significant seasonal variations in UHI effects in Zhengzhou for both 2030 and 2060 under SSP245 and SSP585 scenarios, with the most pronounced warming in summer. Notably, under the SSP245 scenario, elevated autumn temperatures in suburban areas reduced the urban–rural temperature gradient, while intensified rural cooling during winter enhanced the UHI effect. These findings underscore the importance of integrating high-resolution climate modeling into urban planning and developing targeted adaptation strategies based on future UHI patterns to address climate challenges. Full article
Show Figures

Figure 1

24 pages, 6731 KiB  
Article
Combined Impacts of Acute Heat Stress on the Histology, Antioxidant Activity, Immunity, and Intestinal Microbiota of Wild Female Burbot (Lota Lota) in Winter: New Insights into Heat Sensitivity in Extremely Hardy Fish
by Cunhua Zhai, Yutao Li, Ruoyu Wang, Haoxiang Han, Ying Zhang and Bo Ma
Antioxidants 2025, 14(8), 947; https://doi.org/10.3390/antiox14080947 (registering DOI) - 31 Jul 2025
Viewed by 265
Abstract
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. [...] Read more.
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. In January of 2025, we collected wild adult burbot individuals from the Ussuri River (water temperature: about 2 °C), China. The burbot were exposed to 2 °C, 7 °C, 12 °C, 17 °C, and 22 °C environments for 96 h; then, the liver and intestinal contents were subsequently collected for histopathology observation, immunohistochemistry, biochemical index assessment, and transcriptome/16S rDNA sequencing analysis. There was obvious liver damage including hepatocyte necrosis, fat vacuoles, and cellular peripheral nuclei. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were elevated and subsequently decreased. Additionally, the malondialdehyde (MDA) level significantly increased with increasing temperature. These results indicate that 7 °C (heat stress temperature), 12 °C (tipping point for normal physiological metabolism status), 17 °C (tipping point for individual deaths), and 22 °C (thermal limit) are critical temperatures in terms of the physiological response of burbot during their breeding period. In the hepatic transcriptome profiling, 6538 differentially expressed genes (DEGs) were identified, while KEGG enrichment analysis showed that high-temperature stress could affect normal liver function by regulating energy metabolism, immune, and apoptosis-related pathways. Microbiomics also revealed that acute heat stress could change the intestinal microbe community structure. Additionally, correlation analysis suggested potential regulatory relationships between intestinal microbe taxa and immune/apoptosis-related DEGs in the liver. This study revealed the potential impact of environmental water temperature changes in cold habitats in winter on the physiological adaptability of burbot during the breeding period and provides new insights for the ecological protection of burbot in the context of global climate change and habitat warming. Full article
(This article belongs to the Special Issue Antioxidant Response in Aquatic Animals)
Show Figures

Figure 1

12 pages, 3374 KiB  
Article
Activity Patterns of Bharal (Pseudois nayaur) from a Subtropical Forest Area Based on Camera Trap Data
by Zhuo Tang, Wei Chen, Shufeng Wang, Zhouyuan Li, Tianpei Guan and Jian Yang
Diversity 2025, 17(8), 525; https://doi.org/10.3390/d17080525 - 28 Jul 2025
Viewed by 122
Abstract
Understanding the activity patterns of a species is essential for developing sound conservation and management plans. In this study, we used a camera-trapping technique to determine the activity patterns of bharal (Pseudois nayaur) in a marginal population in Wolong National Nature [...] Read more.
Understanding the activity patterns of a species is essential for developing sound conservation and management plans. In this study, we used a camera-trapping technique to determine the activity patterns of bharal (Pseudois nayaur) in a marginal population in Wolong National Nature Reserve, Sichuan, China. Our results showed that these animals preferred to be active in the daytime from 08:00 to 20:00, with an activity peak between 10:00 and 14:00. In addition, we found that the species had a seasonal activity pattern with higher activity frequency in summer than in winter and that bharal were most active in a temperature range of 3–11 °C and at night with a waxing crescent moon, implying that the activity rhythm of the species is an adaptation to a subtropical high-altitude alpine area with vertical zonation in temperature. The pattern of movement and activity was also correlated with the moon phase. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

22 pages, 3231 KiB  
Article
Evapotranspiration in a Small Well-Vegetated Basin in Southwestern China
by Zitong Zhou, Ying Li, Lingjun Liang, Chunlin Li, Yuanmei Jiao and Qian Ma
Sustainability 2025, 17(15), 6816; https://doi.org/10.3390/su17156816 - 27 Jul 2025
Viewed by 295
Abstract
Evapotranspiration (ET) crucially regulates water storage dynamics and is an essential component of the terrestrial water cycle. Understanding ET dynamics is fundamental for sustainable water resource management, particularly in regions facing increasing drought risks under climate change. In regions like southwestern China, where [...] Read more.
Evapotranspiration (ET) crucially regulates water storage dynamics and is an essential component of the terrestrial water cycle. Understanding ET dynamics is fundamental for sustainable water resource management, particularly in regions facing increasing drought risks under climate change. In regions like southwestern China, where extreme drought events are prevalent due to complex terrain and climate warming, ET becomes a key factor in understanding water availability and drought dynamics. Using the SWAT model, this study investigates ET dynamics and influencing factors in the Jizi Basin, Yunnan Province, a small basin with over 71% forest coverage. The model calibration and validation results demonstrated a high degree of consistency with observed discharge data and ERA5, confirming its reliability. The results show that the annual average ET in the Jizi Basin is 573.96 mm, with significant seasonal variations. ET in summer typically ranges from 70 to 100 mm/month, while in winter, it drops to around 20 mm/month. Spring ET exhibits the highest variability, coinciding with the occurrence of extreme hydrological events such as droughts. The monthly anomalies of ET effectively reproduce the spring and early summer 2019 drought event. Notably, ET variation exhibits significant uncertainty under scenarios of +1 °C temperature and −20% precipitation. Furthermore, although land use changes had relatively small effects on overall ET, they played crucial roles in promoting groundwater recharge through enhanced percolation, especially forest cover. The study highlights that, in addition to climate and land use, soil moisture and groundwater conditions are vital in modulating ET and drought occurrence. The findings offer insights into the hydrological processes of small forested basins in southwestern China and provide important support for sustainable water resource management and effective climate adaptation strategies, particularly in the context of increasing drought vulnerability. Full article
Show Figures

Figure 1

14 pages, 7931 KiB  
Article
Characteristics of Surface Temperature Inversion at the Muztagh-Ata Site on the Pamir Plateau
by Dai-Ping Zhang, Wen-Bo Gu, Ali Esamdin, Chun-Hai Bai, Hu-Biao Niu, Li-Yong Liu and Ji-Cheng Zhang
Atmosphere 2025, 16(8), 897; https://doi.org/10.3390/atmos16080897 - 23 Jul 2025
Viewed by 214
Abstract
In this paper, based on all the data from September 2021 to June 2024 collected by a 30 m meteorological tower and a differential image motion monitor (DIMM) at the Muztagh-Ata site located on the Pamir Plateau in western Xinjiang, China, we study [...] Read more.
In this paper, based on all the data from September 2021 to June 2024 collected by a 30 m meteorological tower and a differential image motion monitor (DIMM) at the Muztagh-Ata site located on the Pamir Plateau in western Xinjiang, China, we study the characteristics of the surface temperature inversion and its effect on astronomical seeing at the site. The results show the following: The temperature inversion at the Muztagh-Ata site is highly pronounced at night; it is typically distributed below a height of about 18 m; it weakens and disappears gradually after sunrise, while it forms gradually after sunset and remains stable during the night; and it is weaker in spring and summer but stronger in autumn and winter. Correlation studies with meteorological parameters show the following: increases in both cloud coverage and humidity weaken temperature inversion; the distribution of inversion with wind speed exhibits a bimodal distribution; southwesterly winds prevail at a frequency of 73.76% and are typically accompanied by strong temperature inversions. Finally, by statistical patterns, we found that strong temperature inversion at the Muztagh-Ata site usually bring better seeing by suppressing atmospheric optical turbulence. Full article
Show Figures

Figure 1

19 pages, 8699 KiB  
Article
Study on the Spatio-Temporal Characteristics and Driving Factors of PM2.5 in the Inter-Provincial Border Region of Eastern China (Jiangsu, Anhui, Shandong, Henan) from 2022 to 2024
by Xiaoli Xia, Shangpeng Sun, Xinru Wang and Feifei Shen
Atmosphere 2025, 16(8), 895; https://doi.org/10.3390/atmos16080895 - 22 Jul 2025
Viewed by 249
Abstract
The inter-provincial border region in eastern China, encompassing the junction of Jiangsu, Anhui, Shandong, and Henan provinces, serves as a crucial zone that connects the important economic zones of Beijing–Tianjin–Hebei and the Yangtze River Delta. It is of great significance to study the [...] Read more.
The inter-provincial border region in eastern China, encompassing the junction of Jiangsu, Anhui, Shandong, and Henan provinces, serves as a crucial zone that connects the important economic zones of Beijing–Tianjin–Hebei and the Yangtze River Delta. It is of great significance to study the temporal variation characteristics, spatial distribution patterns, and driving factors of PM2.5 concentrations in this region. Based on the PM2.5 concentration observation data, ground meteorological data, environmental data, and socio-economic data from 2022 to 2024, this study conducted in-depth and systematic research by using advanced methods, such as spatial autocorrelation analysis and geographical detectors. The research results show that the concentration of PM2.5 rose from 2022 to 2023, but decreased from 2023 to 2024. From the perspective of seasonal variations, the concentration of PM2.5 shows a distinct characteristic of being “high in winter and low in summer”. The monthly variation shows a “U”-shaped distribution pattern. In terms of spatial changes, the PM2.5 concentration in the inter-provincial border region of eastern China (Jiangsu, Anhui, Shandong, Henan) forms a gradient difference of “higher in the west and lower in the east”. The high-concentration agglomeration areas are mainly concentrated in the Henan part of the study region, while the low-concentration agglomeration areas are distributed in the eastern coastal parts of the study region. The analysis of the driving factors of the PM2.5 concentration based on geographical detectors reveals that the average temperature is the main factor affecting the PM2.5 concentration. The interaction among the factors contributing to the spatial differentiation of the PM2.5 concentration is very obvious. Temperature and population density (q = 0.92), temperature and precipitation (q = 0.95), slope and precipitation (q = 0.97), as well as DEM and population density (q = 0.96), are the main combinations of factors that have continuously affected the spatial differentiation of the PM2.5 concentration for many years. The research results from this study provide a scientific basis and decision support for the prevention, control, and governance of PM2.5 pollution. Full article
(This article belongs to the Special Issue Atmospheric Pollution Dynamics in China)
Show Figures

Figure 1

17 pages, 3987 KiB  
Article
Predicting Winter Ammonia and Methane Emissions from a Naturally Ventilated Dairy Barn in a Cold Region Using an Adaptive Neural Fuzzy Inference System
by Hualong Liu, Xin Wang, Tana, Tiezhu Xie, Hurichabilige, Qi Zhen and Wensheng Li
Agriculture 2025, 15(14), 1560; https://doi.org/10.3390/agriculture15141560 - 21 Jul 2025
Viewed by 235
Abstract
This study aims to characterize the emissions of ammonia (NH3) and methane (CH4) from naturally ventilated dairy barns located in cold regions during the winter season, thereby providing a scientific basis for optimizing dairy barn environmental management. The target [...] Read more.
This study aims to characterize the emissions of ammonia (NH3) and methane (CH4) from naturally ventilated dairy barns located in cold regions during the winter season, thereby providing a scientific basis for optimizing dairy barn environmental management. The target barn was selected at a commercial dairy farm in Ulanchab, Inner Mongolia, China. Environmental factors, including temperature, humidity, wind speed, and concentrations of NH3, CH4, and CO2, were monitored both inside and outside the barn. The ventilation rate and emission rate were calculated using the CO2 mass balance method. Additionally, NH3 and CH4 emission prediction models were developed using the adaptive neural fuzzy inference system (ANFIS). Correlation analyses were conducted to clarify the intrinsic links between environmental factors and NH3 and CH4 emissions, as well as the degree of influence of each factor on gas emissions. The ANFIS model with a Gaussian membership function (gaussmf) achieved the highest performance in predicting NH3 emissions (R2 = 0.9270), while the model with a trapezoidal membership function (trapmf) was most accurate for CH4 emissions (R2 = 0.8977). The improved ANFIS model outperformed common models, such as multilayer perceptron (MLP) and radial basis function (RBF). This study revealed the significant effects of environmental factors on NH3 and CH4 emissions from dairy barns in cold regions and provided reliable data support and intelligent prediction methods for realizing the precise control of gas emissions. Full article
Show Figures

Figure 1

27 pages, 15353 KiB  
Article
Drought Evolution in the Yangtze and Yellow River Basins and Its Dual Impact on Ecosystem Carbon Sequestration
by Yuanhe Yu, Huan Deng, Shupeng Gao and Jinliang Wang
Agriculture 2025, 15(14), 1552; https://doi.org/10.3390/agriculture15141552 - 19 Jul 2025
Viewed by 262
Abstract
As an extreme event driven by global climate change, drought poses a severe threat to terrestrial ecosystems. The Yangtze River Basin (YZRB) and Yellow River Basin (YRB) are key ecological barriers and economic zones in China, holding strategic importance for exploring the evolution [...] Read more.
As an extreme event driven by global climate change, drought poses a severe threat to terrestrial ecosystems. The Yangtze River Basin (YZRB) and Yellow River Basin (YRB) are key ecological barriers and economic zones in China, holding strategic importance for exploring the evolution of drought patterns and their ecological impacts. Using meteorological station data and Climatic Research Unit Gridded Time Series (CRU TS) data, this study analyzed the spatiotemporal characteristics of drought evolution in the YZRB and YRB from 1961 to 2021 using the standardized precipitation evapotranspiration index (SPEI) and run theory. Additionally, this study examined drought effects on ecosystem carbon sequestration (CS) at the city, county, and pixel scales. The results revealed the following: (1) the CRU data effectively captured precipitation (annual r = 0.94) and temperature (annual r = 0.95) trends in both basins, despite significantly underestimating winter temperatures, with the optimal SPEI calculation accuracy found at the monthly scale; (2) both basins experienced frequent autumn–winter droughts, with the YRB facing stronger droughts, including nine events which exceeded 10 months (the longest lasting 25 months), while the mild droughts increased in frequency and extreme intensity; and (3) the drought impacts on CS demonstrated a significant threshold effect, where the intensified drought unexpectedly enhanced CS in western regions, such as the Garzê Autonomous Prefecture in Sichuan Province and Changdu City in the Xizang Autonomous Region, but suppressed CS in the midstream and downstream plains. The CS responded positively under weak drought conditions but declined once the drought intensity surpassed the threshold. This study revealed a nonlinear relationship between drought and CS across climatic zones, thereby providing a scientific foundation for enhancing ecological resilience. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

17 pages, 8464 KiB  
Article
Spatiotemporal Variations in Observed Rain-on-Snow Events and Their Intensities in China from 1978 to 2020
by Zhiwei Yang, Rensheng Chen, Xiongshi Wang, Zhangwen Liu, Xiangqian Li and Guohua Liu
Water 2025, 17(14), 2114; https://doi.org/10.3390/w17142114 - 16 Jul 2025
Viewed by 268
Abstract
The spatiotemporal changes and driving mechanisms of rain-on-snow (ROS) events and their intensities are crucial for responding to disasters triggered by such events. However, there is currently a lack of detailed assessment of the seasonal variations and driving mechanisms of ROS events and [...] Read more.
The spatiotemporal changes and driving mechanisms of rain-on-snow (ROS) events and their intensities are crucial for responding to disasters triggered by such events. However, there is currently a lack of detailed assessment of the seasonal variations and driving mechanisms of ROS events and their intensities in China. Therefore, this study utilized daily meteorological data and daily snow depth data from 513 stations in China during 1978–2020 to investigate spatiotemporal variations of ROS events and their intensities. Also, based on the detrend and partial correlation analysis model, the driving factors of ROS events and their intensity were explored. The results showed that ROS events primarily occurred in northern Xinjiang, the Qinghai–Tibet Plateau, Northeast China, and central and eastern China. ROS events frequently occurred in the middle and lower Yangtze River Plain in winter but were easily overlooked. The number and intensity of ROS events increased significantly (p < 0.05) in the Changbai Mountains in spring and the Altay Mountains and the southeast part of the Qinghai–Tibet Plateau in winter, leading to heightened ROS flood risks. However, the number and intensity of ROS events decreased significantly (p < 0.05) in the middle and lower Yangtze River Plain in winter. The driving mechanisms of the changes for ROS events and their intensities were different. Changes in the number of ROS events and their intensities in snow-rich regions were driven by rainfall days and quantity of rainfall, respectively. In regions with more rainfall, these changes were driven by snow cover days and snow water equivalent, respectively. Air temperature had no direct impact on ROS events and their intensities. These findings provide reliable evidence for responding to disasters and changes triggered by ROS events. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

27 pages, 3984 KiB  
Article
Spatial and Temporal Expansion of Photovoltaic Sites and Thermal Environmental Effects in Ningxia Based on Remote Sensing and Deep Learning
by Heao Xie, Peixian Li, Fang Shi, Chengting Han, Ximin Cui and Yuling Zhao
Remote Sens. 2025, 17(14), 2440; https://doi.org/10.3390/rs17142440 - 14 Jul 2025
Viewed by 262
Abstract
Ningxia has emerged as a strategic hub for China’s photovoltaic (PV) industry by leveraging abundant solar energy resources and geoclimatic advantages. This study analyzed the spatiotemporal expansion trends and microclimatic impacts of PV installations (2015–2024) using Gaofen-1 (GF-1) and Landsat8 satellite imagery with [...] Read more.
Ningxia has emerged as a strategic hub for China’s photovoltaic (PV) industry by leveraging abundant solar energy resources and geoclimatic advantages. This study analyzed the spatiotemporal expansion trends and microclimatic impacts of PV installations (2015–2024) using Gaofen-1 (GF-1) and Landsat8 satellite imagery with deep learning algorithms and multidimensional environmental metrics. Among semantic segmentation models, DeepLabV3+ had the best performance in PV extraction, and the Mean Intersection over Union, precision, and F1-score were 91.97%, 89.02%, 89.2%, and 89.11%, respectively, with accuracies close to 100% after manual correction. Subsequent land surface temperature inversion and spatial buffer analysis quantified the thermal environmental effects of PV installation. Localized cooling patterns may be influenced by albedo and vegetation dynamics, though further validation is needed. The total PV site area in Ningxia expanded from 59.62 km2 to 410.06 km2 between 2015 and 2024. Yinchuan and Wuzhong cities were primary growth hubs; Yinchuan alone added 99.98 km2 (2022–2023) through localized policy incentives. PV installations induced significant daytime cooling effects within 0–100 m buffers, reducing ambient temperatures by 0.19–1.35 °C on average. The most pronounced cooling occurred in western desert regions during winter (maximum temperature differential = 1.97 °C). Agricultural zones in central Ningxia exhibited weaker thermal modulation due to coupled vegetation–PV interactions. Policy-driven land use optimization was the dominant catalyst for PV proliferation. This study validates “remote sensing + deep learning” framework efficacy in renewable energy monitoring and provides empirical insights into eco-environmental impacts under “PV + ecological restoration” paradigms, offering critical data support for energy–ecology synergy planning in arid regions. Full article
Show Figures

Figure 1

21 pages, 5637 KiB  
Article
Integrated Multi-Omics Reveals DAM-Mediated Phytohormone Regulatory Networks Driving Bud Dormancy in ‘Mixue’ Pears
by Ke-Liang Lyu, Shao-Min Zeng, Xin-Zhong Huang and Cui-Cui Jiang
Plants 2025, 14(14), 2172; https://doi.org/10.3390/plants14142172 - 14 Jul 2025
Viewed by 351
Abstract
Pear (Pyrus pyrifolia) is an important deciduous fruit tree that requires a specific period of low-temperature accumulation to trigger spring flowering. The warmer winter caused by global warming has led to insufficient winter chilling, disrupting floral initiation and significantly reducing pear [...] Read more.
Pear (Pyrus pyrifolia) is an important deciduous fruit tree that requires a specific period of low-temperature accumulation to trigger spring flowering. The warmer winter caused by global warming has led to insufficient winter chilling, disrupting floral initiation and significantly reducing pear yields in Southern China. In this study, we integrated targeted phytohormone metabolomics, full-length transcriptomics, and proteomics to explore the regulatory mechanisms of dormancy in ‘Mixue’, a pear cultivar with an extremely low chilling requirement. Comparative analyses across the multi-omics datasets revealed 30 differentially abundant phytohormone metabolites (DPMs), 2597 differentially expressed proteins (DEPs), and 7722 differentially expressed genes (DEGs). Integrated proteomic and transcriptomic expression clustering analysis identified five members of the dormancy-associated MADS-box (DAM) gene family among dormancy-specific differentially expressed proteins (DEPs) and differentially expressed genes (DEGs). Phytohormone correlation analysis and cis-regulatory element analysis suggest that DAM genes may mediate dormancy progression by responding to abscisic acid (ABA), gibberellin (GA), and salicylic acid (SA). A dormancy-associated transcriptional regulatory network centered on DAM genes and phytohormone signaling revealed 35 transcription factors (TFs): 19 TFs appear to directly regulate the expression of DAM genes, 18 TFs are transcriptionally regulated by DAM genes, and two TFs exhibit bidirectional regulatory interactions with DAM. Within this regulatory network, we identified a novel pathway involving REVEILLE 6 (RVE6), DAM, and CONSTANS-LIKE 8 (COL8), which might play a critical role in regulating bud dormancy in the ‘Mixue’ low-chilling pear cultivar. Furthermore, lncRNAs ONT.19912.1 and ONT.20662.7 exhibit potential cis-regulatory interactions with DAM1/2/3. This study expands the DAM-mediated transcriptional regulatory network associated with bud dormancy, providing new insights into its molecular regulatory mechanisms in pear and establishing a theoretical framework for future investigations into bud dormancy control. Full article
(This article belongs to the Special Issue Molecular, Genetic, and Physiological Mechanisms in Trees)
Show Figures

Figure 1

23 pages, 10215 KiB  
Article
A Simplified Sigmoid-RH Model for Evapotranspiration Estimation Across Mainland China from 2001 to 2018
by Jiahui Fan, Yunjun Yao, Yajie Li, Lu Liu, Zijing Xie, Xiaotong Zhang, Yixi Kan, Luna Zhang, Fei Qiu, Jingya Qu and Dingqi Shi
Forests 2025, 16(7), 1157; https://doi.org/10.3390/f16071157 - 13 Jul 2025
Viewed by 269
Abstract
Accurate terrestrial evapotranspiration (ET) estimation is crucial for understanding land–atmosphere interactions, evaluating ecosystem functions, and supporting water resource management, particularly across climatically diverse regions. To address the limitations of traditional ET models, we propose a simple yet robust Sigmoid-RH model that characterizes the [...] Read more.
Accurate terrestrial evapotranspiration (ET) estimation is crucial for understanding land–atmosphere interactions, evaluating ecosystem functions, and supporting water resource management, particularly across climatically diverse regions. To address the limitations of traditional ET models, we propose a simple yet robust Sigmoid-RH model that characterizes the nonlinear relationship between relative humidity and ET. Unlike conventional approaches such as the Penman–Monteith or Priestley–Taylor models, the Sigmoid-RH model requires fewer inputs and is better suited for large-scale applications where data availability is limited. In this study, we applied the Sigmoid-RH model to estimate ET over mainland China from 2001 to 2018 by using satellite remote sensing and meteorological reanalysis data. Key driving inputs included air temperature (Ta), net radiation (Rn), relative humidity (RH), and the normalized difference vegetation index (NDVI), all of which are readily available from public datasets. Validation at 20 flux tower sites showed strong performance, with R-square (R2) ranging from 0.26 to 0.93, Root Mean Squard Error (RMSE) from 0.5 to 1.3 mm/day, and Kling-Gupta efficiency (KGE) from 0.16 to 0.91. The model performed best in mixed forests (KGE = 0.90) and weakest in shrublands (KGE = 0.27). Spatially, ET shows a clear increasing trend from northwest to southeast, closely aligned with climatic zones, with national mean annual ET of 560 mm/yr, ranging from less than 200 mm/yr in arid zones to over 1100 mm/yr in the humid south. Seasonally, ET peaked in summer due to monsoonal rainfall and vegetation growth, and was lowest in winter. Temporally, ET declined from 2001 to 2009 but increased from 2009 to 2018, influenced by changes in precipitation and NDVI. These findings confirm the applicability of the Sigmoid-RH model and highlight the importance of hydrothermal conditions and vegetation dynamics in regulating ET. By improving the accuracy and scalability of ET estimation, this model can provide practical implications for drought early warning systems, forest ecosystem management, and agricultural irrigation planning under changing climate conditions. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

Back to TopTop