Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Soil Moisture
2.3. Grain Filling Dynamics and Post-Flowering Dry Matter Mass
2.4. Plant Carbohydrates
2.5. Computing Method
2.6. Investigation of Basic Seedlings and Total Stem Numbers of the Population
2.7. Yield and Its Components
2.8. Statistical Analyses
3. Results
3.1. Sources of Soil–Water Interaction and Management
3.2. Water Consumption in Stage
3.3. Effects of Cultivars and Nitrogen Treatments on Water Use Efficiency
3.4. Effects of Cultivars and Nitrogen Treatments on Temperature Characteristics
3.5. Yield and Components
3.6. Dry Matter Accumulation and Transport
3.7. Correlation Between Soil Moisture Changes, Dry Matter Before and After Flowering, Yield, and Its Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duan, J.; Shao, Y.; He, L.; Li, X.; Hou, G.; Li, S.; Feng, W.; Zhu, Y.; Wang, Y.; Xie, Y. Optimizing nitrogen management to achieve high yield, high nitrogen efficiency and low nitrogen emission in winter wheat. Sci. Total Environ. 2019, 697, 134088. [Google Scholar] [CrossRef]
- Biradar, C.; Thenkabail, P.; Noojipady, P.; Li, Y.; Dheeravath, V.; Turral, H.; Velpuri, M.; Gumma, M.K.; Gangalakunta, O.R.P.; Cai, X.L.; et al. A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing. Int. J. Appl. Earth Obs. 2009, 11, 114–129. [Google Scholar] [CrossRef]
- Wang, J.; Hussain, S.; Sun, X.; Zhang, P.; Chen, X. Effects of Nitrogen Application Rate Under Straw Incorporation on Photosynthesis, Productivity and Nitrogen Use Efficiency in Winter Wheat. Front. Plant Sci. 2022, 13, 862088. [Google Scholar] [CrossRef]
- Groos, C.; Robert, N.; Bervas, E.; Charmet, G. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor. Appl. Genet. 2003, 106, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Noor, H.; Shah, A.A.; Ding, P.; Ren, A.; Sun, M.; Gao, Z. Long-term nutrient cycle inimproved grain yield of dryland winter wheat (Triticum aestivum L.) under hydrological process of plant ecosystem distribution in the loess plateau of China. Plants 2023, 12, 2369. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shen, Y.; Zeng, C.; Zhang, J.; Shi, S.; Xue, L.; Jia, Y.; Li, J.; Liang, X. Effects of Sowing Time on Yield and Quality of Winter and Spring Wheat Varieties. Sustainability 2025, 17, 2479. [Google Scholar] [CrossRef]
- Tosi, P.; Parker, M.; Gritsch, C.; Carzaniga, R.; Martin, B.; Shewry, P.R. Trafficking of storage proteins in developing grain of wheat. Exp. Bot. 2009, 60, 979–991. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, A.; Jacobsen, E.; Visser, R. Formation and deposition of amylose in the potato tuber affected by the reduction of granule- bound starch synthase gene expression. Plant Cell 1994, 6, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, F. Effect of elevated CO2 and heat on wheat grain quality. Plants 2021, 10, 1027. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, F.; Cao, S.; Zhang, K. Genomic and functional genomics analyses of gluten proteins and prospect for simultaneous improvement of end-use and health-related traits in wheat. Theor. Appl. Genet. 2020, 133, 1521–1539. [Google Scholar] [CrossRef]
- Noor, H.; Sun, M.; Gao, Z. Effects of Nitrogen Fertilizer on Photosynthetic Characteristics and Yield. Agronomy 2023, 13, 1550. [Google Scholar] [CrossRef]
- Govindasamy, P.; Muthusamy, S.K.; Bagavathiannan, M.; Tiwari, G. Nitrogen use efficiency—A key to enhance crop productivity under a changing climate. Front. Plant Sci. 2023, 14, 1121073. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Noor, H.; Noor, F. Effects of different winter wheat (Triticum aestivum L.) varieties addressing the agriculture climate interactions in temperature regions of yield. Atmosphere 2025, 16, 189. [Google Scholar] [CrossRef]
- Lee, M.; Swanson, B.; Bailk, B. Influence of anylise content on properties of wheat starch and bread making quality of starch and gluten blends. Cereal Chem. 2001, 78, 701–706. [Google Scholar] [CrossRef]
- Li, R.; Hou, X.; Jia, Z.; Han, Q.; Ren, X. Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China. Agric. Water Manag. 2013, 116, 101–109. [Google Scholar] [CrossRef]
- Morita, N.; Maeda, T.; Miyazaki, M. Dough and baking properties of high-anylose and waxy wheat flours. Cereal Chem. 2002, 79, 491–495. [Google Scholar] [CrossRef]
- Amalia, Z.; Jeroen, L.; Stijn, S. Electronic nose systems to study shelf life and cultivar effect on tomato aroma profile. Sensor. Actuators B-Chem. 2004, 97, 324–333. [Google Scholar]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D’AMico, A. Nonspecific sensor arrays (electronic tongue) for chemical analysis of liquids (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 1965–1983. [Google Scholar] [CrossRef]
- Sliwinska, M.; Wisniewska, P.; Dymerski, T.; Namieśnik, J.; Wardencki, W. Food analysis using artificial senses. J. Agric. Food Chem. 2014, 62, 1423–1448. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Delgado, R.; Mercader-Trejo, F.; Sielemann, S.; de Bruyn, W.; Arce, L.; Valcárcel, M. Direct classification of olive oils by using two types of ion mobility spectrometers. Anal. Chim. Acta 2011, 696, 108–115. [Google Scholar] [CrossRef]
- Garrido-Delgado, R.; Dobao-Prieto, M.; Arce, L.; Aguilar, J.; Cumplido, J.L.; Valcárcel, M. Ion mobility spectrometry versus classical physic-chemical analysis for assessing the shelf life of extra virgin olive oil according to container type and storage conditions. J. Agric. Food Chem. 2015, 63, 2179–2188. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; Martin-Gomez, A.; Juradocampos, N.; Garrido-Delgado, R.; Arce, C.; Arce, L. Target vs. spectral fingerprint data analysis of Iberian ham samples for avoiding labeling fraud using headspace-gas chromatography-ion mobility spectrometry. Food Chem. 2018, 246, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Noor, H.; Yan, Z.; Sun, P.; Zhang, L.; Ding, P.; Li, L.; Ren, A.; Sun, M.; Gao, Z. Effects of Nitrogen on Photosynthetic Productivity and Yield Quality of Wheat (Triticum aestivum L.). Agronomy 2023, 13, 1448. [Google Scholar] [CrossRef]
- Xi, J.; Zha, Q.; Xu, D.; Jin, Y.; Wu, F.; Jin, Z.; Xu, X. Volatile compounds in Chinese steamed bread influenced by fermentation time, yeast level and steaming time. LWT 2021, 141, 110861. [Google Scholar] [CrossRef]
- Riccardo, D.; Giampiero, S.; Dino, M. Wheat classification according to its origin by an implemented volatile organic compounds analysis. Food Chem. 2021, 341, 128217. [Google Scholar] [CrossRef]
- Senapati, N.; Semenov, M. Large genetic yield potential and genetic yield gap estimated for wheat in Europe. Glob. Food Secur. 2020, 24, 100340. [Google Scholar] [CrossRef] [PubMed]
- Noor, H.; Sun, M.; Lin, W.; Gao, Z. Effect of different sowing methods on water use efficiency and grain yield of wheat in the Loess Plateau, China. Water 2022, 14, 577. [Google Scholar] [CrossRef]
- GB/T 21986-2008; Assessment of Agroclimate Impact: Classfication Method of Annual Crop Climate Types. Standardization Administration of China (SAC): Beijing, China, 2008.
- Mbuthia, L.W.; Acoata-martinez, V.; Debruyn, J.; Schaeffer, S.; Tyler a, D.; Odoi, E.; Mpheshea, M.; Walker, F.; Eash, N. Long term tillage, cover crop, and fertilization Effect on microbial community structure, activity: Implications for soil quality. Soil Biol. Biochem. 2015, 89, 24–34. [Google Scholar] [CrossRef]
- Qi, Y.; Ossowicki, A.; Yang, X.; Lwanga, E.H.; Dini-Andreote, F.; Geissen, V.; Garbeva, P. Effect of plastic mulch film residues on wheat rhizosphere and soil properties. J. Hazard. Mater. 2020, 387, 121711. [Google Scholar] [CrossRef]
- Rasmussen, I.; Thorup-Kristensen, K. Does earlier sowing of winter wheat improve root growth and N uptake. Field Crops Res. 2016, 196, 10–21. [Google Scholar] [CrossRef]
- Cetin, O.; Akinci, C. Effects of drought on optimizing nitrogen use of winter wheat in a semi-arid region. Agric. For. 2015, 61, 287–293. [Google Scholar] [CrossRef]
- Cao, H.; Wang, Z.; He, G.; Dai, J. Tailoring NPK Fertilizer Rates to Precipitation for Dryland Winter Wheat in the Loess Plateau. Field Crops Res. 2017, 209, 88–95. [Google Scholar] [CrossRef]
- Ehdaie, B.; Waines, J.G. Sowing date and nitrogen rate Effect on dry matter and nitrogen partitioning in bread and durum wheat. Field Crops Res. 2001, 73, 47–61. [Google Scholar] [CrossRef]
- Hirel, B.; Le Gouis, J.; Ney, B.; Gallais, A. The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches. J. Exp. Bot. 2007, 58, 2369–2387. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, S.; Liu, R.; Jin, J. Effect of nitrogen application on flavor compounds of cherry tomato fruits. J. Soil Sci. Plant Nut. 2007, 170, 461–468. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, F.; Dai, T.; Jin, J. Characteristics of dry matter accumulation and translocation during the wheat genetic improvement and their relationship to grain yield. Sci. Agric. Sin. 2012, 45, 801–808. [Google Scholar]
- Luo, C.; Zhang, X.; Duan, H.; Mburu, D.M.; Kavagi, L.; Naseer, M.; Dai, R.-Z.; Nyende, A.B.; Batool, A.; Xiong, Y.-C. Allometricrelation ship and yield formation in response to planting density under ridge-furrow plastic mulching in rainfed wheat. Field Crops Res. 2020, 251, 107785. [Google Scholar] [CrossRef]
- Yu, S.; Chen, Y.; Yu, S.; Dong, Q.Y.; Zhou, X.B.; Li, Q.Q.; Wu, W.; Sun, N.N. Study on Dynamic Changes of Soil Water in Winter Wheat Field of Furrow Planting and Bed Planting. J. Soil Water Conserv. 2005, 19, 133–137. [Google Scholar]
- Hu, G.-P.; Zou, J.G.; Zheng, W.; Zhu, Z.W.; Gao, C.B. Effect of planting methods on the growth and yield of wheat in rice-wheat rotation. Hubei Agric. Sci. 2014, 53, 4814–4816. [Google Scholar]
- Han, J.; Jia, Z.; Wu, W.; Li, C.; Han, Q.; Zhang, J. Modeling impacts of film mulching on rainfed crop yield in Northern China with DNDC. Field Crops Res. 2014, 155, 202–212. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, T.; Tian, X.; Wang, X.; Li, M.; Wang, S.; Wang, Z. Effect of plastic film combined with straw mulch on grain yield and water use efficiency of winter wheat in Loess Plateau. Field Crops Res. 2015, 172, 53–58. [Google Scholar] [CrossRef]
Year | Soil Depth (cm) | Organic Matter (g·kg−1) | Total Nitrogen (g·kg−1) | Alkaline Hydrolysis N (mg·kg−1) | Available P (mg·kg−1) | Available K (mg·kg−1) | pH |
---|---|---|---|---|---|---|---|
2021–2022 | 0–20 | 12.50 | 0.75 | 67.39 | 9.68 | 99.32 | 6.92 |
2022–2023 | 0–20 | 13.54 | 0.78 | 68.50 | 10.06 | 96.25 | 6.88 |
2023–2024 | 0–20 | 12.88 | 0.74 | 69.17 | 7.89 | 106.20 | 7.04 |
Year | Cultivars | Nitrogen Application Rate | Soil Water | Precipitation | |||
---|---|---|---|---|---|---|---|
Consumption Amount (mm) | Ratio (%) | Amount of Precipitation (mm) | Ratio (%) | Total Water Consumption (mm) | |||
2021–2022 | YH–20410 | N0 | 170.6 g | 40.1 g | 104.5 | 24.4 e | 424.0 c |
N90 | 180.2 f | 41.4 f | 104.5 | 23.9 f | 433.7 b | ||
N180 | 192.1 e | 43.0 e | 104.5 | 23.3 g | 445.6 a | ||
N210 | 197.7 de | 43.7 e | 104.5 | 23.0 g | 451.2 a | ||
N240 | 196.2 de | 43.6 e | 104.5 | 23.0 g | 450.7 a | ||
YH–618 | N0 | 197.7 d | 52.6 d | 104.5 | 27.5 a | 377.2 g | |
N90 | 204.5 c | 53.4 c | 104.5 | 27.0 b | 383.10 f | ||
N180 | 215.3 b | 54.7 b | 104.5 | 26.3 c | 394.8 e | ||
N210 | 232.4 a | 56.6 a | 104.5 | 25.2 d | 411.9 d | ||
N240 | 234.0 a | 56.7 a | 104.5 | 25.1 d | 413.5 d | ||
2022–2023 | YH–20410 | N0 | 168.7 e | 40.4 e | 98.3 | 23.7 d | 418.10 b |
N90 | 173.8 e | 41.1 e | 98.3 | 23.5 d | 424.01 b | ||
N180 | 186.0 d | 42.7 d | 98.3 | 22.8 e | 436.3 a | ||
N210 | 189.0 d | 43.1 d | 98.3 | 22.6 e | 439.3 a | ||
N240 | 188.6 d | 43.1 d | 98.3 | 22.7 e | 438.9 a | ||
YH–618 | N0 | 197.6 c | 53.1 c | 98.3 | 26.7 a | 372.9 e | |
N90 | 199.7 c | 53.4 c | 98.3 | 26.5 a | 373.10 e | ||
N180 | 214.7 b | 55.2 b | 98.3 | 25.5 b | 389.9 d | ||
N210 | 231.0 a | 57.0 a | 98.3 | 24.5 c | 406.3 c | ||
N240 | 229.2 a | 56.8 a | 98.3 | 24.6 c | 404.5 c | ||
2023–2024 | YH–20410 | N0 | 96.0 e | 21.3 e | 206.01 | 45.5 c | 452.2 c |
N90 | 105.7 d | 22.9 d | 206.01 | 44.5 c | 461.8 b | ||
N180 | 118.1 c | 25.0 c | 206.01 | 43.3 d | 474.2 a | ||
N210 | 121.6 c | 25.5 c | 206.01 | 43.0 d | 477.7 a | ||
N240 | 119.1 c | 25.1 c | 206.01 | 43.2 d | 475.2 a | ||
YH–618 | N0 | 131.5 b | 32.0 b | 206.01 | 49.8 a | 412.6 e | |
N90 | 136.9 b | 32.8 b | 206.01 | 49.2 a | 417.10 e | ||
N180 | 151.4 a | 35.1 a | 206.01 | 47.5 b | 432.5 d | ||
N210 | 155.6 a | 35.7 a | 206.01 | 47.1 b | 436.7 d | ||
N240 | 159.2 a | 36.2 a | 206.01 | 46.7 b | 440.3 d | ||
ANOVA | Year (Y) | ns | ** | ** | ** | ** | |
Cultivars (C) | ns | * | * | ** | ** | ||
Nitrogen (N) | ** | ** | ** | ** | ** | ||
Y × C | ns | ns | ns | ** | ** | ||
Y × N | ns | ns | ns | ns | ns | ||
C × N | ns | * | ns | ** | ** | ||
Y × C × N | ns | ns | ns | ns | ns |
Source of Variation | ΔS | I/ET | ΔS/ET | I/ET | ET | WUE | WUE |
---|---|---|---|---|---|---|---|
Year (Y) | ** | ** | ** | ** | ** | ** | ** |
Cultivars (C) | ** | ** | ** | ** | ** | ** | ** |
Nitrogen (N) | ** | ** | ** | ** | ** | ** | ** |
Y × C | ns | ** | ** | ** | ns | * | ** |
Y × N | ns | ns | ns | * | ns | ** | ** |
C × N | ** | ** | * | ** | ** | ** | ** |
Y × C × N | ns | ns | ns | ns | ns | ns | ns |
Year | Cultivars | Nitrogen Application Rate | Spike Number (×104·ha−1) | Grain per Spike | 1000-Grain Weight (g) | Harvest Index (HI) | Grain Yield (kg·ha−1) |
---|---|---|---|---|---|---|---|
2021–2022 | YH–20410 | N0 | 605.1 e | 32.8 c | 33.3 cd | 0.431 cd | 4893.35 e |
N90 | 765.1 d | 34.8 ab | 35.9 b | 0.435 cd | 4155.40 c | ||
N180 | 470.2 bc | 34.7 ab | 37.0 a | 0.462 a | 5144.6 ab | ||
N210 | 529.7 a | 34.8 ab | 36.0 b | 0.463 a | 5520.21 a | ||
N240 | 799.9 ab | 34.1 b | 35.2 b | 0.442 bc | 5235.14 ab | ||
YH–618 | N0 | 579.0 e | 32.0 d | 32.1 e | 0.409 e | 4969.85 f | |
N90 | 757.5 d | 34.4 ab | 32.4 de | 0.421 de | 5356.90 d | ||
N180 | 743.1 c | 34.7 ab | 32.8 de | 0.426 cd | 6188.45 c | ||
N210 | 524.1 a | 35.0 a | 34.0 c | 0.454 ab | 7227.06 ab | ||
N240 | 500.2 ab | 34.9 ab | 33.8 c | 0.436 cd | 6946.55 b | ||
2022–2023 | YH–20410 | N0 | 391.1 f | 32.6 d | 33.2 b | 0.442 cd | 4864.61 e |
N90 | 422.6 de | 34.1 ab | 34.3 a | 0.443 cd | 5242.32 c | ||
N180 | 430.8 bc | 34.3 ab | 34.5 a | 0.459 ab | 6393.36 ab | ||
N210 | 504.8 a | 34.8 a | 33.4 b | 0.469 a | 6749.34 a | ||
N240 | 485.2 ab | 34.5 a | 33.4 b | 0.452 bc | 6550.11 ab | ||
YH–618 | N0 | 561.7 f | 31.4 e | 31.0 e | 0.424 e | 4012.24 f | |
N90 | 312.8 e | 34.7 a | 31.9 d | 0.431 de | 5569.96 d | ||
N180 | 383.5 cd | 34.1 ab | 32.2 cd | 0.427 de | 6431.79 c | ||
N210 | 480.3 ab | 33.3 cd | 32.9 bc | 0.465 ab | 7476.14 ab | ||
N240 | 466.6 ab | 33.6 bc | 31.9 d | 0.443 cd | 7143.71 b | ||
2023–2024 | YH–20410 | N0 | 336.0 e | 34.0 cd | 34.7 d | 0.450 c | 4707.89 e |
N90 | 345.0 d | 35.6 a | 37.2 a | 0.474 ab | 5815.89 c | ||
N180 | 441.7 bc | 34.6 bc | 37.1 a | 0.482 a | 7501.11 ab | ||
N210 | 468.1 ab | 33.7 cd | 36.8 ab | 0.457 bc | 7380.55 b | ||
N240 | 466.9 ab | 33.3 d | 35.4 c | 0.441 c | 6839.45 c | ||
YH–618 | N0 | 492.7 f | 34.7 abc | 35.0 cd | 0.456 bc | 5499.40 e | |
N90 | 318.7 d | 35.0 ab | 36.3 b | 0.473 ab | 6297.65 d | ||
N180 | 429.6 c | 34.1 bcd | 37.4 a | 0.474 ab | 6831.34 c | ||
N210 | 496.9 a | 33.6 d | 37.2 a | 0.482 a | 7734.65 a | ||
N240 | 479.6 a | 33.4 d | 36.3 b | 0.460 bc | 7235.93 b | ||
ANOVA | Year (Y) | * | * | ** | ** | * | |
Cultivars (C) | * | * | ** | ** | ** | ||
Nitrogen (N) | ** | ** | ** | ** | ** | ||
Y × C | * | * | ** | ** | ** | ||
Y × N | ** | ** | ** | * | ** | ||
C × N | ns | ns | ** | ** | ** | ||
Y × C × N | ** | ** | ** | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noor, H.; Noor, F.; Gao, Z.; Alotaibi, M.; Seleiman, M.F. Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China. Water 2025, 17, 2329. https://doi.org/10.3390/w17152329
Noor H, Noor F, Gao Z, Alotaibi M, Seleiman MF. Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China. Water. 2025; 17(15):2329. https://doi.org/10.3390/w17152329
Chicago/Turabian StyleNoor, Hafeez, Fida Noor, Zhiqiang Gao, Majed Alotaibi, and Mahmoud F. Seleiman. 2025. "Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China" Water 17, no. 15: 2329. https://doi.org/10.3390/w17152329
APA StyleNoor, H., Noor, F., Gao, Z., Alotaibi, M., & Seleiman, M. F. (2025). Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China. Water, 17(15), 2329. https://doi.org/10.3390/w17152329