A Simplified Sigmoid-RH Model for Evapotranspiration Estimation Across Mainland China from 2001 to 2018
Abstract
1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Ground-Based ET Observations
2.2.2. Satellites and Reanalysis Data
3. Method
3.1. Sigmoid-RH ET Model
3.2. Significance Evaluation and Trend Analysis
3.3. Validation Method
4. Results
4.1. Validation of Sigmoid-RH ET Model at Site Scale
4.2. Spatial Distribution of ET over Mainland China
4.2.1. Annual
4.2.2. Seasonal
4.3. Temporal Features of ET Trends Across Mainland China
4.3.1. Annual
4.3.2. Seasonal
4.4. Spatial Variation Trends of ET over the Seven Climatic Regions of Mainland China
4.4.1. Annual
4.4.2. Seasonal
5. Discussion
5.1. Spatial and Temporal Variability in ET of Mainland China
5.2. Limitations, Uncertainties, and Outlooks for Future Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A. Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science 2020, 367, 1252–1255. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef]
- Jasechko, S.; Sharp, Z.D.; Gibson, J.J.; Jean Birks, S.; Yi, Y.; Fawcett, P.J. Terrestrial water fluxes dominated by transpiration. Nature 2013, 496, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [PubMed]
- Mariano, D.A.; Santos, C.a.C.D.; Wardlow, B.D.; Anderson, M.C.; Schiltmeyer, A.V.; Tadesse, T.; Svoboda, M.D. Use of remote sensing indicators to assess effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil. Remote Sens. Environ. 2018, 213, 129–143. [Google Scholar] [CrossRef]
- Senay, G.B.; Schauer, M.; Friedrichs, M.; Velpuri, N.M.; Singh, R.K. Satellite-based water use dynamics using historical Landsat data (1984–2014) in the southwestern United States. Remote Sens. Environ. 2017, 202, 98–112. [Google Scholar] [CrossRef]
- Morillas, L.; Pangle, R.E.; Maurer, G.E.; Pockman, W.T.; McDowell, N.; Huang, C.-W.; Krofcheck, D.J.; Fox, A.M.; Sinsabaugh, R.L.; Rahn, T.A.; et al. Tree Mortality Decreases Water Availability and Ecosystem Resilience to Drought in Piñon-Juniper Woodlands in the Southwestern U.S. J. Geophys. Res.-Biogeosci. 2017, 122, 3343–3361. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; Jeu, R.D.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef]
- Fu, J.; Gong, Y.; Zheng, W.; Zou, J.; Zhang, M.; Zhang, Z.; Qin, J.; Liu, J.; Quan, B. Spatial-temporal variations of terrestrial evapotranspiration across China from 2000 to 2019. Sci. Total Environ. 2022, 825, 153951. [Google Scholar] [CrossRef]
- Niu, Z.; He, H.; Zhu, G.; Ren, X.; Zhang, L.; Zhang, K. A spatial-temporal continuous dataset of the transpiration to evapotranspiration ratio in China from 1981–2015. Sci. Data 2020, 7, 369. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, G.; Sun, S.; Hagan, D.F.T.; Chen, T.; Dolman, H.; Liu, Y. Long-term changes in evapotranspiration over China and attribution to climatic drivers during 1980–2010. J. Hydrol. 2021, 595, 126037. [Google Scholar] [CrossRef]
- Wang, K.; Li, Z.; Cribb, M. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley–Taylor parameter. Remote Sens. Environ. 2006, 102, 293–305. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops-an energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Allen, R.; Irmak, A.; Trezza, R. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach. J. Am. Water Res. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef]
- Bonan, G.B.; Lawrence, P.J.; Oleson, K.W.; Levis, S.; Jung, M.; Reichstein, M.; Lawrence, D.M.; Swenson, S.C. Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J. Geophys. Res.-Biogeosci. 2011, 116, G02014. [Google Scholar] [CrossRef]
- Niu, G.-Y.; Yang, Z.-L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res.-Atmos. 2011, 116, D12109. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.; Chem, J.; Davis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F.; et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; Schalie, R.; Jeu, R.A.M.; Fernadez-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.; Lievens, H.; Fernandez-Prieto, D.; Verhoest, N.E.C. Improving terrestrial evaporation estimates over continental Australia through assimilation of SMOS soil moisture. Int. J. Appl. Earth Obs. 2016, 48, 146–162. [Google Scholar] [CrossRef]
- Liang, S.; Cheng, J.; Jia, K.; Jiang, B.; Liu, Q.; Xiao, Z.; Yao, Y.; Yuan, W.; Zhang, X.; Zhao, X.; et al. The Global Land Surface Satellite (GLASS) Product Suite. Bull. Am. Meteorol. Soc. 2021, 102, E323–E337. [Google Scholar] [CrossRef]
- Liang, S.; Xiang, Z.; Suhong, L.; Wenping, Y.; Xiao, C.; Zhiqiang, X.; Qiang, L.; Jie, C.; Tang, H.; Yancheng, B.; et al. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth 2013, 6, 5–33. [Google Scholar] [CrossRef]
- Gan, R.; Zhang, Y.; Shi, H.; Yang, Y.; Eamus, D.; Cheng, L.; Chiew, F.H.S.; Yu, Q. Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology 2018, 11, e1974. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.H.S.; McVicar, T.R.; Zhang, Q.; Yang, Y. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Yao, J.; Li, C.; Yang, H.; Liu, Z. Assessments of three evapotranspiration products over China using extended triple collocation and water balance methods. J. Hydrol. 2022, 614, 0022–1694. [Google Scholar]
- Zhang, Y.; Peña-Arancibia, J.L.; Mcvicar, T.R.; Chiew, F.H.S.; Vaze, J.; Liu, C.; Lu, X.; Zheng, H.; Wang, Y.; Liu, Y.Y.; et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 2016, 6, 19124. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Sun, F.; Wang, T.; Wang, H. Estimation and validation of high-resolution evapotranspiration products for an arid river basin using multi-source remote sensing data. Agric. Water Manag. 2024, 298, 108864. [Google Scholar] [CrossRef]
- Piao, S.; Yin, G.; Tan, J.; Cheng, L.; Huang, M.; Li, Y.; Liu, R.; Mao, J.; Myneni, R.B.; Peng, S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Change Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Ryu, Y.; Fang, H.; Myneni, R.; Claverie, M.; Zhu, Z. Inconsistencies of interannual variability and trends in long-term satellite leaf area index products. Glob. Change Biol. 2017, 23, 4133–4146. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Lin, Y.; Shi, W.; Song, Y.; He, X. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar] [CrossRef]
- Fisher, J.B.; Whittaker, R.J.; Malhi, Y. ET come home: Potential evapotranspiration in geographical ecology. Glob. Ecol. Biogeogr. 2011, 20, 1–18. [Google Scholar] [CrossRef]
- Qiu, R.; Liu, C.; Cui, N.; Wu, Y.; Wang, Z.; Li, G. Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system. Agric. Water Manag. 2019, 224, 105755. [Google Scholar] [CrossRef]
- Szilagyi, J. On the inherent asymmetric nature of the complementary relationship of evaporation. Geophys. Res. Lett. 2007, 34, L02405. [Google Scholar] [CrossRef]
- Yan, H.; Shugart, H.H. An air relative-humidity-based evapotranspiration model from eddy covariance data. J. Geophys. Res.-Atmos. 2010, 115, D16106. [Google Scholar] [CrossRef]
- Rouse, W.R. Microclimate at Arctic Tree Line 3. The Effects of Regional Advection on the Surface Energy Balance of Upland Tundra. Water Resour. Res. 1984, 20, 74–78. [Google Scholar] [CrossRef]
- Halliwell, D.H.; Rouse, W.R. Soil heat flux in permafrost: Characteristics and accuracy of measurement. Int. J. Climatol. 1987, 7, 571–584. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Mu, Q.; Jones, L.A.; Goetz, S.J.; Running, S.W. Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. J. Hydrol. 2009, 379, 92–110. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Cheng, J.; Liu, S.; Fisher, J.B.; Zhang, X.; Jia, K.; Zhao, X.; Qin, Q.; Zhao, B.; et al. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm. Agric. For. Meteorol. 2013, 171–172, 187–202. [Google Scholar] [CrossRef]
- Yang, J.; Yao, Y.; Shao, C.; Li, Y.; Fisher, J.B.; Cheng, J.; Chen, J.; Jia, K.; Zhang, X.; Shang, K.; et al. A novel TIR-derived three-source energy balance model for estimating daily latent heat flux in mainland China using an all-weather land surface temperature product. Agric. For. Meteorol. 2022, 323, 109066. [Google Scholar] [CrossRef]
- Mo, X.; Liu, S.; Lin, Z.; Wang, S.; Hu, S. Trends in land surface evapotranspiration across China with remotely sensed NDVI and climatological data for 1981–2010. Hydrolog. Sci. J. 2015, 60, 2163–2177. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, S.; Chen, J.; Feng, X.; Ju, W.; Wu, W. The Spatial-Temporal Characteristics of Evapotranspiration of China’s Terrestrial Ecosystems during 1991~2000. Resour. Sci. 2009, 31, 962–972. [Google Scholar]
- Gao, G.; Chen, D.; Xu, C.-Y.; Simelton, E. Trend of estimated actual evapotranspiration over China during 1960–2002. J. Geophys. Res.-Atmos. 2007, 112, D11120. [Google Scholar] [CrossRef]
- Yao, J.; Zhao, L.; Ding, Y.; Gu, L.; Jiao, K.; Qiao, Y.; Wang, Y. The surface energy budget and evapotranspiration in the Tanggula region on the Tibetan Plateau. Cold Reg. Sci. Technol. 2008, 52, 326–340. [Google Scholar] [CrossRef]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Chang. 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.a.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef]
- Zhang, T.; Qiu, R.; Ding, R.; Wu, J.; Clothier, B. Multi-scale spectral characteristics of latent heat flux over flooded rice and winter wheat rotation system. Agric. Water Manag. 2023, 288, 108471. [Google Scholar] [CrossRef]
- Jamieson, P.D. Comparison of methods of estimating maximum evapotranspiration from a barley crop: A correction. N. Z. J. Sci. 1982, 22, 175–181. [Google Scholar]
- Sun, X.; Zhang, B.; Dai, M.; Gao, R.; Jing, C.; Ma, K.; Gu, S.; Gu, L.; Zhen, W.; Gu, X.; et al. Research on methods for estimating reference crop evapotranspiration under incomplete meteorological indicators. Front. Plant Sci. 2024, 15, 1354913. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Y.; Liu, Q.; Liu, S.; Jia, K.; Zhang, X.; Xu, Z.; Xu, T.; Chen, J.; Fisher, J.B.; et al. Evaluation of a satellite-derived model parameterized by three soil moisture constraints to estimate terrestrial latent heat flux in the Heihe River basin of Northwest China. Sci. Total Environ. 2019, 695, 133787. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, H.; Gui, D. Actual evapotranspiration estimation of Xinjiang based on PT—Fi model and its responses of climatic and environmental factors. J. Water Resour. Water Eng. 2020, 31, 193–198. [Google Scholar]
- Cheng, Q.; Xu, Q.; Chen, C.; Sun, Y.; Wang, Z.; Xue, X. Applicable Analysis and Parameter Modification of Evapotranspiration Models during Wintertime. Trans. Chin. Soc. Agric. Mach. 2018, 49, 317–325. [Google Scholar]
Site Name | IGBP | Lon (E) | Lat (N) | Time Period |
---|---|---|---|---|
Changbaishan (CBS) | MIF | 128.09° | 42.4° | 2002–2007 |
Dinghushan (DHS) | EBF | 112.53° | 23.17° | 2002–2007 |
Fukang (FK) | BAR | 87.92° | 44.28° | 2007 |
Guantao (GT) | CRO | 115.13° | 36.52° | 2009 |
Haibei (HB) | OSH | 101.32° | 37.62° | 2003–2005 |
Huazhaizi (HZZ) | BAR | 100.32° | 38.77° | 2015–2018 |
Inner Mongolia (IM) | GRA | 117.17° | 44.50° | 2003–2007 |
Jinzhou (JZ) | CRO | 121.21° | 41.18° | 2008–2009 |
Laoshan (LS) | DNF | 127.58° | 45.28° | 2005 |
Maqu (MQ) | GRA | 102.14° | 33.89° | 2009 |
Miyun (MY) | CRO | 117.32° | 40.63° | 2008–2009 |
Qianyanzhou (QYZ) | ENF | 115.05° | 26.74° | 2003–2007 |
Shenshawo (SSW) | BAR | 100.49° | 38.79° | 2012–2014 |
Tongyu (TY) | CRO | 122.88° | 44.56° | 2008–2009 |
XIshuangbanna (XSBN) | EBF | 101.27° | 21.95° | 2004–2007 |
Yucheng (YC) | CRO | 116.57° | 36.83° | 2003–2007 |
Naqu (NQ) | GRA | 91.90° | 31.37° | 2008–2010 |
Huaining (HN) | DBF | 117.00° | 33.00° | 2005–2006 |
Yueyang (YY) | DBF | 112.51° | 29.31° | 2005–2006 |
Dongtan (DT) | WET | 121.90° | 31.58° | 2005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Yao, Y.; Li, Y.; Liu, L.; Xie, Z.; Zhang, X.; Kan, Y.; Zhang, L.; Qiu, F.; Qu, J.; et al. A Simplified Sigmoid-RH Model for Evapotranspiration Estimation Across Mainland China from 2001 to 2018. Forests 2025, 16, 1157. https://doi.org/10.3390/f16071157
Fan J, Yao Y, Li Y, Liu L, Xie Z, Zhang X, Kan Y, Zhang L, Qiu F, Qu J, et al. A Simplified Sigmoid-RH Model for Evapotranspiration Estimation Across Mainland China from 2001 to 2018. Forests. 2025; 16(7):1157. https://doi.org/10.3390/f16071157
Chicago/Turabian StyleFan, Jiahui, Yunjun Yao, Yajie Li, Lu Liu, Zijing Xie, Xiaotong Zhang, Yixi Kan, Luna Zhang, Fei Qiu, Jingya Qu, and et al. 2025. "A Simplified Sigmoid-RH Model for Evapotranspiration Estimation Across Mainland China from 2001 to 2018" Forests 16, no. 7: 1157. https://doi.org/10.3390/f16071157
APA StyleFan, J., Yao, Y., Li, Y., Liu, L., Xie, Z., Zhang, X., Kan, Y., Zhang, L., Qiu, F., Qu, J., & Shi, D. (2025). A Simplified Sigmoid-RH Model for Evapotranspiration Estimation Across Mainland China from 2001 to 2018. Forests, 16(7), 1157. https://doi.org/10.3390/f16071157