Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,315)

Search Parameters:
Keywords = Charging Infrastructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4043 KB  
Article
A Virtual Power Plant Framework for Dynamic Power Management in EV Charging Stations
by Al Amin, G. M. Shafiullah, Md Shoeb and S. M. Ferdous
World Electr. Veh. J. 2026, 17(1), 14; https://doi.org/10.3390/wevj17010014 - 25 Dec 2025
Abstract
The rapid proliferation of Electric Vehicles (EVs) offers a promising pathway toward reducing greenhouse gas emissions and fostering a sustainable environment. However, the large-scale integration of EVs presents significant challenges to distribution networks, potentially increasing stress on grid infrastructure. To address these challenges, [...] Read more.
The rapid proliferation of Electric Vehicles (EVs) offers a promising pathway toward reducing greenhouse gas emissions and fostering a sustainable environment. However, the large-scale integration of EVs presents significant challenges to distribution networks, potentially increasing stress on grid infrastructure. To address these challenges, this study proposes the integration of a Virtual Power Plant (VPP) framework within EV charging stations as a novel approach to facilitate dynamic power management. The proposed framework integrates electric vehicle (EV) scheduling, battery energy storage (BES) charging, and vehicle-to-grid (V2G) support, while dynamically monitoring energy generation and consumption. This approach aims to enhance voltage regulation and minimize both EV charging durations and waiting periods. A modified IEEE 13-bus test network, equipped with six strategically placed EV charging stations, has been employed to evaluate the performance of the proposed model. Simulation results indicate that the proposed VPP-based method enables dynamic power coordination through EV scheduling, significantly improving the voltage stability margin of the distribution system and efficiently reduces charging times for EV users. Full article
(This article belongs to the Section Charging Infrastructure and Grid Integration)
Show Figures

Figure 1

29 pages, 3643 KB  
Article
Influence of Market and Non-Market Factors on the Growth of Electromobility in Metropolitan, Urban and Rural Regions in the Czech Republic
by Jiří Nedvěd, Petr Hlaváček and Martin Domín
Urban Sci. 2026, 10(1), 9; https://doi.org/10.3390/urbansci10010009 - 25 Dec 2025
Abstract
This research aims to evaluate how socio-economic and environmental factors influence the development of electromobility. To this end, the research was applied to regions of the Czech Republic, divided into metropolitan, urban and rural types. Based on a panel multiple linear regression with [...] Read more.
This research aims to evaluate how socio-economic and environmental factors influence the development of electromobility. To this end, the research was applied to regions of the Czech Republic, divided into metropolitan, urban and rural types. Based on a panel multiple linear regression with fixed effects of regions and years, the influence of socio-economic and infrastructure variables, in particular average gross wages, the development of charging points by region type and other factors, is analysed. The results show that average wages are a consistently statistically significant factor in the growth of new electric vehicle registrations across the regions. In contrast, the current level of charging infrastructure has no direct effect; its influence is only felt after a delay. Interaction models further confirm that the influence of income is relevant in both urban and rural areas. The study provides new insights into the temporal dynamics of electromobility adoption and formulates recommendations for targeted regional transport policy with an emphasis on proactive infrastructure planning. Full article
Show Figures

Figure 1

22 pages, 452 KB  
Article
Electric Vehicle Adoption: Japanese Consumer Attitudes, Inter-Vehicle Transitions, and Effects on Well-Being
by Xiangdan Piao, Akiko Nasuda and Shenghua Li
Sustainability 2026, 18(1), 195; https://doi.org/10.3390/su18010195 - 24 Dec 2025
Abstract
The use of full-battery electric vehicles is an essential strategy for reducing greenhouse gas emissions and mitigating climate change. This study examined the transition to full-battery electric vehicles by conducting a cross-sectional household survey in 2023 that collected information on vehicle preferences, evaluations, [...] Read more.
The use of full-battery electric vehicles is an essential strategy for reducing greenhouse gas emissions and mitigating climate change. This study examined the transition to full-battery electric vehicles by conducting a cross-sectional household survey in 2023 that collected information on vehicle preferences, evaluations, purchase intentions, environmental attitudes, and socioeconomic and demographic characteristics. The results show that among households using a vehicle as their primary mode of transportation, approximately 89% relied on fossil fuel vehicles, whereas only 6% used electric vehicles. The study further finds that acceptance of vehicles during inter-vehicle transitions is closely linked to energy type: households currently owning fossil fuel vehicles exhibited a high likelihood of repurchasing a fossil fuel vehicle, while electric vehicle owners were more inclined to choose another electric vehicle across cities and areas of different sizes. Households that own electric vehicles tend to report higher levels of well-being compared with those that own fossil fuel vehicles. In addition, sufficient charging infrastructure, stronger knowledge of environmental issues, participation in altruistic donation activities, and cooperative behavior positively influenced electric vehicle adoption. These findings suggest several policy implications, including the expansion of charging stations for business and public use, setting reasonable vehicle prices, improving charging speed, developing electric vehicles suitable for large families, and encouraging individuals to gain initial driving experience with electric vehicles to promote adoption. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

18 pages, 16739 KB  
Article
Electrochemical Degradation Mechanism of Desert Sand Concrete Under the Combined Action of Electric Field and Sulfate
by Hong Wu, Yong Huang, Shisong Liu, Yubin Liu, Ting Liu, Baoxi Zuo and Sining Li
Sustainability 2026, 18(1), 176; https://doi.org/10.3390/su18010176 - 23 Dec 2025
Abstract
To promote the sustainable utilization of desert sand as a regional resource in the infrastructure construction of saline-alkali areas, this paper proposes an accelerated test method based on the coupling of an external electric field (60 V) and a 2% Na2SO [...] Read more.
To promote the sustainable utilization of desert sand as a regional resource in the infrastructure construction of saline-alkali areas, this paper proposes an accelerated test method based on the coupling of an external electric field (60 V) and a 2% Na2SO4 solution for rapid evaluation of its sulfate erosion resistance. The optimal mix proportion (FA 10%, water-to-binder ratio 0.33, cement-to-sand ratio 1:1.5, SF 10%) was determined through orthogonal experiments. By employing multi-scale analytical techniques including electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermal analysis (TG-DTG), the differentiated deterioration mechanisms driven by the electric field were systematically revealed. The results show that the charge-transfer resistance (Rct) decreased by about 95% within 28 d, demonstrating the characteristic of “micro-scale deterioration preceding macro-scale strength loss.” The anode region was dominated by dissolution of hydration products (porosity 5.1%), while the cathode region, due to enrichment of sulfate ions (S content 3.37 wt.%), generated a large amount of expansive products, leading to more pronounced structural damage (porosity 8.3%) and greater mass loss (cathode 12.56% > anode 9.85%). This study not only elucidates the deterioration mechanisms of desert sand concrete under coupled environmental action, but also provides a mechanism-explicit, rapid and efficient laboratory evaluation method for its sulfate resistance, offering practical guidance for durability design and prevention in engineering structures exposed to saline-alkali conditions. Full article
Show Figures

Figure 1

23 pages, 3451 KB  
Article
Load Flexibilities from Charging Processes by Electric Vehicles at the Workplace: A Case Study in Southern Germany
by Ronald Opoku and Patrick Jochem
Energies 2026, 19(1), 42; https://doi.org/10.3390/en19010042 - 21 Dec 2025
Viewed by 147
Abstract
The workplace, as a promising location for Electric Vehicle Supply Equipment (EVSE), presents a particular challenge, as different user requirements (e.g., parking and charging durations) meet a spatially and quantitatively limited offer of EVSE. However, integrating electric vehicles synergistically into the energy system [...] Read more.
The workplace, as a promising location for Electric Vehicle Supply Equipment (EVSE), presents a particular challenge, as different user requirements (e.g., parking and charging durations) meet a spatially and quantitatively limited offer of EVSE. However, integrating electric vehicles synergistically into the energy system of the employer can increase the profitability of the system and, correspondingly, increase the number of EVSE. For this, a deep understanding of employees’ charging behavior is key. For providing some evidence of empirical charging patterns at the workplace, this work examined a dataset of 23.9 million observations on empirical charging processes at workplaces in 2023. To identify user groups, a probabilistic model (Gaussian Mixture Model) and a K-Means clustering approach were applied and the results compared. Eight groups were identified, including full-time and part-time employees, pool vehicle users, and opportunists. The group-specific probability distributions are used to publish a synthetic dataset of parking and charging patterns at workplaces. The openly provided dataset helps to identify the right composition of EVSE in the employee context and to optimize potential fields of action. Full article
Show Figures

Figure 1

30 pages, 1345 KB  
Article
Electrification of Road Transport Infrastructure in the Context of Sustainable Transport Development and the Deployment of Alternative Fuels Infrastructure on the TEN-T Network in Poland
by Rafał Szyc, Norbert Chamier-Gliszczynski, Wojciech Musiał, Emilian Szczepański and Piotr Franke-Wąsowski
Energies 2026, 19(1), 15; https://doi.org/10.3390/en19010015 - 19 Dec 2025
Viewed by 106
Abstract
Road transport constitutes a crucial element of the European economy, but it also generates significant external costs. In the process of reducing the impact of road transport on the environment and society, numerous actions are being undertaken to implement the concept of sustainable [...] Read more.
Road transport constitutes a crucial element of the European economy, but it also generates significant external costs. In the process of reducing the impact of road transport on the environment and society, numerous actions are being undertaken to implement the concept of sustainable transport development in the Member States of the European Union. A key measure in this area is the introduction of low- and zero-emission propulsion systems in vehicles intended for passenger and freight transport. This article focuses on electric vehicles powered by battery energy storage systems. An essential component of these efforts is the development of alternative fuels infrastructure, which is expected to enable the operation of such vehicles by providing access to battery charging facilities. The development of infrastructure in the form of electric vehicle charging stations, initially concentrated in urban areas, has been extended to the network of European roads. The driving force behind this expansion is the European Parliament and the Council of the EU, which, on the basis of the Alternative Fuels Infrastructure Regulation (AFIR), stimulate the development of alternative fuels infrastructure along the TEN-T network. The aim of the article is to present selected challenges related to the electrification of road transport infrastructure in the context of the sustainable transport development concept and the construction of alternative fuels infrastructure along the TEN-T network. The research focuses on forecasting the demand for alternative fuels infrastructure along the A1 and A2 motorways, which form part of the TEN-T network within the territory of Poland. The research process stems from the implementation of the AFIR in the EU Member States. Full article
Show Figures

Figure 1

25 pages, 1793 KB  
Article
Sustainable Port Horizontal Transportation: Environmental and Economic Optimization of Mobile Charging Stations Through Carbon-Efficient Recharging
by Jie Qiu, Wenxuan Zhao, Hanlei Tian, Minhui Li and Wei Han
World Electr. Veh. J. 2025, 16(12), 681; https://doi.org/10.3390/wevj16120681 - 18 Dec 2025
Viewed by 131
Abstract
Electrifying port horizontal transportation is constrained by downtime and deadheading from fixed charging/swapping systems, large battery sizes, and the lack of integrated decision tools for life-cycle emissions. This study develops a carbon-efficiency-centered bi-objective optimization framework benchmarking Mobile Charging Stations (MCSs) against Fixed Charging [...] Read more.
Electrifying port horizontal transportation is constrained by downtime and deadheading from fixed charging/swapping systems, large battery sizes, and the lack of integrated decision tools for life-cycle emissions. This study develops a carbon-efficiency-centered bi-objective optimization framework benchmarking Mobile Charging Stations (MCSs) against Fixed Charging Stations (FCSs) and Battery Swapping Stations (BSWSs). The framework integrates operational parameters such as charging power, range, dispatch, and non-operational mileage, along with grid carbon intensity, battery embodied emissions, and carbon-market factors. It generates Pareto fronts using the NSGA-II algorithm with real port data. Port horizontal transportation refers to the movement of goods within the port area, typically involving the use of specialized vehicles to transport containers short distances across the terminal. Results show that MCSs can reuse idle windows to reduce deadheading and infrastructure demand, yielding significant economic improvements. The trade-off between emissions and profitability is context-dependent: at low-to-moderate reuse levels, low-carbon and profitable solutions coexist; beyond a threshold of approximately 0.5–0.75, the Pareto fronts shift to high emissions and high profits, highlighting the context-specific advantages of MCSs for port-infrastructure planning. MCSs thus provide context-dependent advantages over FCSs and BSWSs, offering practical guidance for port infrastructure planning and carbon-informed policy design. Full article
Show Figures

Figure 1

30 pages, 3933 KB  
Review
Next-Generation Electrically Conductive Polymers: Innovations in Solar and Electrochemical Energy Devices
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Polymers 2025, 17(24), 3331; https://doi.org/10.3390/polym17243331 - 17 Dec 2025
Viewed by 343
Abstract
The emergence of electrically conductive polymeric materials has revolutionized the landscape of sustainable energy technologies, presenting unprecedented opportunities for advancing both photovoltaic conversion systems and electrochemical energy-storage platforms. These remarkable macromolecular materials exhibit distinctive characteristics including adjustable electronic band structures, exceptional mechanical adaptability, [...] Read more.
The emergence of electrically conductive polymeric materials has revolutionized the landscape of sustainable energy technologies, presenting unprecedented opportunities for advancing both photovoltaic conversion systems and electrochemical energy-storage platforms. These remarkable macromolecular materials exhibit distinctive characteristics including adjustable electronic band structures, exceptional mechanical adaptability, solution-phase processability, and cost-effective manufacturing potential. This extensive review provides an in-depth examination of the fundamental principles governing charge carrier mobility in conjugated polymer systems, explores diverse synthetic methodologies for tailoring molecular architectures, and analyzes their transformative applications across multiple energy technology domains. In photovoltaic technologies, electrically conductive polymers have driven major advancements in organic solar cells and photoelectrochemical systems, significantly improving energy conversion efficiency while reducing manufacturing costs. In electrochemical energy storage, their integration into supercapacitors and rechargeable lithium-based batteries has enhanced charge storage capability, accelerated charge–discharge processes, and extended operational lifespan compared with conventional electrode materials. This comprehensive analysis emphasizes emerging developments in hybrid composite architectures that combine conductive polymers with carbon-based nanomaterials, metal oxides, and other functional components to create next-generation flexible, lightweight, and wearable energy systems. By synthesizing fundamental materials chemistry with device engineering perspectives, this review illuminates the transformative potential of electrically conductive polymers in establishing sustainable, efficient, and resilient energy infrastructures for future technological landscapes. Full article
Show Figures

Figure 1

30 pages, 16514 KB  
Article
Research on the Supply–Demand Evaluation and Configuration Optimization of Urban Residential Public Charging Facilities Based on Collaborative Service Networks: A Case Study of Hongshan District, Wuhan
by Yanyan Huang, Yunfang Zha, You Zou, Xudong Jia, Zaiyu Fan, Hangyi Ren, Yilun Wei and Daoyuan Chen
World Electr. Veh. J. 2025, 16(12), 675; https://doi.org/10.3390/wevj16120675 - 17 Dec 2025
Viewed by 146
Abstract
The rapid growth of electric vehicles has intensified the spatial mismatch between the layout of charging infrastructure and user demand, resulting in a structural contradiction in which “local oversupply” and “local shortages” coexist. To systematically diagnose and optimize this issue, this study develops [...] Read more.
The rapid growth of electric vehicles has intensified the spatial mismatch between the layout of charging infrastructure and user demand, resulting in a structural contradiction in which “local oversupply” and “local shortages” coexist. To systematically diagnose and optimize this issue, this study develops an innovative analytical framework for a “residential area–charging infrastructure” collaborative service network and conducts an empirical analysis using Hongshan District in Wuhan as a case study. The framework integrates actual facility utilization data, complex network analysis, and spatial clustering methods. The findings reveal that the collaborative service network in the study area is overall sparse, exhibiting a distinct “core–periphery” structure, with noticeable patterns of resource concentration and isolation. Residential areas can be categorized into three types based on their supply–demand characteristics: efficient-collaborative, transitional-mixed, and low-demand peripheral areas. The predominance of the transitional-mixed type indicates that most areas are currently in an unstable state of supply–demand adjustment. A key systemic mechanism identified in this study is the significant “collaborative reinforcement effect” between facility utilization rates and network centrality. Building on these insights, we propose a hierarchical optimization strategy consisting of “overall network optimization—local cluster coordination—individual facility enhancement.” This ultimately forms a comprehensive decision-support framework for “assessment—diagnosis—optimization,” providing scientific evidence and new solutions for the precise planning and efficient operation of urban charging infrastructure. Full article
(This article belongs to the Section Charging Infrastructure and Grid Integration)
Show Figures

Figure 1

15 pages, 7975 KB  
Article
Effect of Electrochemical Hydrogen Degradation on the Bond Microstructure of Explosively Welded Joints
by Michał Gloc, Piotr Maj and Sylwia Przybysz-Gloc
Appl. Sci. 2025, 15(24), 13139; https://doi.org/10.3390/app152413139 - 14 Dec 2025
Viewed by 157
Abstract
This study investigates hydrogen embrittlement mechanisms at the interfaces of explosively welded joints between 304L austenitic stainless steel and carbon/low-alloy steels (St41k, 15HM), focusing on the unique properties of local melting zones (LMZs) formed during joining. Advanced microstructural characterization, including scanning electron microscopy [...] Read more.
This study investigates hydrogen embrittlement mechanisms at the interfaces of explosively welded joints between 304L austenitic stainless steel and carbon/low-alloy steels (St41k, 15HM), focusing on the unique properties of local melting zones (LMZs) formed during joining. Advanced microstructural characterization, including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and microhardness testing, was combined with controlled electrochemical hydrogen charging. Results demonstrate that while base materials suffered substantial hydrogen-induced degradation—blistering in carbon steels and microcracking in stainless steel—the LMZ exhibited exceptional resistance to hydrogen damage. Compositional analyses revealed that the LMZ possessed intermediate chromium (4.8–8.8 wt.%) and nickel (1.7–3.6 wt.%) contents, reflecting mixing from both plates, and significantly higher microhardness compared to adjacent zones. The superior hydrogen resistance of the LMZ is attributed to their refined microstructure, increased density of hydrogen trapping sites, and non-equilibrium phase composition resulting from rapid solidification. These findings indicate that tailoring the process of the LMZ in clad steel joints can be an effective strategy to mitigate hydrogen embrittlement risks in critical hydrogen infrastructure. Full article
(This article belongs to the Special Issue Electrochemistry and Corrosion of Materials)
Show Figures

Figure 1

29 pages, 3393 KB  
Article
Investigating Barriers to EV Adoption in Morocco: Insights from an Emerging Economy
by Sara Meskine, Hayat El Asri and Salah Al-Majeed
World Electr. Veh. J. 2025, 16(12), 672; https://doi.org/10.3390/wevj16120672 - 13 Dec 2025
Viewed by 302
Abstract
The global shift toward sustainable transport electric vehicles (EVs) is at the core of decarbonization efforts. While advanced economies have achieved their rapid adoption through strong policies and incentives, emerging markets face structural and behavioral barriers. This study investigates the paradox in Morocco, [...] Read more.
The global shift toward sustainable transport electric vehicles (EVs) is at the core of decarbonization efforts. While advanced economies have achieved their rapid adoption through strong policies and incentives, emerging markets face structural and behavioral barriers. This study investigates the paradox in Morocco, whereby a significant automotive capacity contrasts with a minimal domestic BEV market share of 0.6%, despite 143% growth from a small base, using a four-dimensional framework encompassing financial, infrastructural and energy, policy and institutional, and behavioral–social factors. The research integrates a literature review, a survey (n = 522), and secondary data on charging infrastructure and EV sales. Findings reveal a strong value–action gap: 69% of respondents acknowledged EVs’ environmental benefits yet only 1.1% owned one and 42% had considered buying. The high upfront costs of EVs influenced over 70% of participants, and a significant association was confirmed between charging availability and purchase intent (χ2 = 34.80, p < 0.05). Urban-centric charging, fragmented governance, and skepticism persist as barriers. The study concludes that industrial strength alone cannot ensure adoption without targeted incentives, equitable infrastructure, and cultural shifts in ownership perception, offering key insights for policymakers in emerging economies pursuing sustainable mobility. Full article
(This article belongs to the Section Marketing, Promotion and Socio Economics)
Show Figures

Graphical abstract

23 pages, 2767 KB  
Article
Assessing the Economic Viability and Reliability of Advanced Truck Powertrains: A California Freight Case Study
by Charbel Mansour, Amarendra Kancharla, Julien Bou Gebrael, Michel Alhajjar, Olcay Sahin, Natalia Zuniga-Garcia, Hoseinali Borhan, Sylvain Pagerit and Vincent Freyermuth
World Electr. Veh. J. 2025, 16(12), 668; https://doi.org/10.3390/wevj16120668 - 11 Dec 2025
Viewed by 229
Abstract
Heavy-duty trucking is central to the U.S. economy, and improving its long-term sustainability requires cost-effective, energy-efficient, and reliable operations. Emerging technologies—advanced powertrains, batteries, and alternative fuels—offer potential solutions, but their economic and operational viability remains uncertain. This study evaluates the performance of Class [...] Read more.
Heavy-duty trucking is central to the U.S. economy, and improving its long-term sustainability requires cost-effective, energy-efficient, and reliable operations. Emerging technologies—advanced powertrains, batteries, and alternative fuels—offer potential solutions, but their economic and operational viability remains uncertain. This study evaluates the performance of Class 8 battery electric (BEV), plug-in hybrid (PHEV), fuel cell electric (FCEV), and diesel trucks in terms of energy use and the levelized cost of driving (LCOD) to determine when these technologies become competitive without compromising operational reliability. The analysis explores how evolving fuel prices and vehicle technology improvements in 2023, 2035, and 2050 influence the cost competitiveness of each powertrain. By comparing the results at both the technology level and the fleet level, the study demonstrates that powertrains that appear cost-effective on individual routes may not always scale to fleet-wide viability, and vice versa. The analysis is based on real-world data from over 15,700 Class 8 truck trips recorded in California in 2022, capturing diverse driving scenarios, payload conditions, and operational constraints. The results show that BEV250 can deliver cost-effective performance in short-haul operations (0–250 miles) under depot electricity prices below USD 0.34/kWh and maintain this advantage through 2050 as battery costs decline. In the 250–500-mile segment, the technology-level analysis indicates that BEV500 often achieves the lowest LCOD on individual tours, particularly under low electricity prices, while the fleet-level results show that FCEVs provide a more consistent cost performance across all tours, especially when the route variability is high. For long-haul operations (>500 miles), where BEVs are assumed to operate without en-route charging, FCEVs emerge as the most cost-effective non-diesel option by 2050, provided hydrogen prices fall below USD 6/kg. PHEVs show a limited long-term competitiveness and are mainly viable under transitional fuel price conditions. Overall, the findings underscore that there is no one-size-fits-all solution. Powertrain adoption must be range-aware, infrastructure-sensitive, and fleet-structured. By integrating technology-level and fleet-level perspectives, this study provides actionable insights for fleet operators, policymakers, and industry stakeholders seeking to balance cost, reliability, and sustainability in heavy-duty freight. Full article
(This article belongs to the Section Vehicle and Transportation Systems)
Show Figures

Figure 1

14 pages, 458 KB  
Article
Analysis of the Willingness to Shift to Electric Vehicles: Critical Factors and Perspectives
by Antonio Comi, Umberto Crisalli, Olesia Hriekova and Ippolita Idone
Vehicles 2025, 7(4), 159; https://doi.org/10.3390/vehicles7040159 - 10 Dec 2025
Viewed by 254
Abstract
Urbanisation and the increasing concentration of populations in cities present significant challenges for achieving sustainable mobility and advancing the energy transition. Private vehicles, particularly those powered by internal combustion engines, remain the primary contributors to urban air pollution and greenhouse gas emissions. This [...] Read more.
Urbanisation and the increasing concentration of populations in cities present significant challenges for achieving sustainable mobility and advancing the energy transition. Private vehicles, particularly those powered by internal combustion engines, remain the primary contributors to urban air pollution and greenhouse gas emissions. This situation has prompted the European Union to accelerate transport decarbonisation through comprehensive policy frameworks, notably the “Fit for 55” package, which aims to reduce net greenhouse gas emissions by 55% by 2030. These measures underscore the urgency of shifting towards low-emission transport modes. In this context, electric vehicles (EVs) play a key role in supporting Sustainable Development Goal 7 by promoting cleaner and more efficient transport solutions, and Sustainable Development Goal 11, aimed at creating more sustainable and liveable cities. Despite growing policy attention, the adoption of EVs remains constrained by users’ concerns regarding purchase costs, driving range, and the availability of charging infrastructure, as shown by the findings of this study. In this context, this study explores the determinants of EV adoption in Italy by employing a combined methodological approach that integrates a stated preference (SP) survey with discrete choice modelling. The analysis aims to quantify the influence of economic, technical, and infrastructural factors on users’ willingness to switch to EVs, providing insights for policymakers and industry stakeholders to design effective strategies for accelerating the transition toward the sustainable mobility. Full article
Show Figures

Graphical abstract

21 pages, 3248 KB  
Article
A Convolutional Sparse Periodic Transformer Network for Electric Vehicle Charging Demand Forecasting
by Lingxia Shi, Xu Lei and Ruinian Gao
Appl. Sci. 2025, 15(24), 12982; https://doi.org/10.3390/app152412982 - 9 Dec 2025
Viewed by 150
Abstract
Electric vehicle (EV) charging behavior exhibits strong spatio-temporal randomness, often leading to transient peak loads and an elevated risk of distribution network overloads. In addition, existing prediction models still face challenges in achieving high accuracy, computational efficiency, and effective modeling of multi-level periodic [...] Read more.
Electric vehicle (EV) charging behavior exhibits strong spatio-temporal randomness, often leading to transient peak loads and an elevated risk of distribution network overloads. In addition, existing prediction models still face challenges in achieving high accuracy, computational efficiency, and effective modeling of multi-level periodic patterns. To address these issues, this study proposes a novel architecture termed the Convolutional Sparse Periodic Transformer Network (CSPT-Net). At the front end of the architecture, the model incorporates a one-dimensional convolutional neural network (1D-CNN) to efficiently capture local temporal features. To improve computational efficiency, the traditional global attention mechanism is replaced with a sparse attention module. Furthermore, a customized periodic time-encoding module is designed to explicitly represent multi-scale temporal regularities such as daily, weekly, and holiday cycles. Extensive experiments on a large-scale dataset containing more than 70,000 real-world charging records demonstrate that CSPT-Net achieves state-of-the-art performance across all evaluation metrics. Specifically, CSPT-Net reduces the Mean Absolute Error (MAE) to 12.21 min and enhances training efficiency by over 58% compared with the standard Transformer baseline. These results confirm that CSPT-Net effectively balances predictive accuracy and computational efficiency while demonstrating superior robustness and generalization in complex real-world environments. Consequently, the proposed framework offers a reliable and high-performance data-driven foundation for power grid load management and charging infrastructure planning. Full article
Show Figures

Figure 1

29 pages, 1216 KB  
Article
From Oil to Electrification: A Qualitative Assessment of E-Mobility Policy in Saudi Arabia
by Saad AlQuhtani
Sustainability 2025, 17(24), 10915; https://doi.org/10.3390/su172410915 - 6 Dec 2025
Viewed by 474
Abstract
The rapid global shift toward transportation electrification has positioned e-mobility as a key part of low-carbon transition strategies. Saudi Arabia, as a major energy producer undergoing economic diversification under Vision 2030, has recently increased its policy efforts for electric mobility. This study performs [...] Read more.
The rapid global shift toward transportation electrification has positioned e-mobility as a key part of low-carbon transition strategies. Saudi Arabia, as a major energy producer undergoing economic diversification under Vision 2030, has recently increased its policy efforts for electric mobility. This study performs a qualitative document analysis of 52 national policies, strategies, and institutional publications issued between 2010 and 2025, creating a longitudinal dataset of 1240 coded references. Using a PRISMA-aligned screening process and NVivo-based thematic coding, the analysis highlights main policy trends, institutional priorities, and implementation challenges influencing the Kingdom’s e-mobility transition. Results show a clear shift from early technology-neutral sustainability rhetoric to a more explicit policy framework focusing on industrial localization, charging infrastructure growth, renewable energy integration, and regulatory development after 2020. Despite these advances, gaps remain in governance coordination, market readiness, charging accessibility, and user adoption incentives. The paper provides a systematically mapped view of Saudi Arabia’s e-mobility policy landscape and places it within global transition trends. The findings offer practical insights for policymakers aiming to strengthen implementation, accelerate adoption, and align transport electrification with national decarbonization goals. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

Back to TopTop