Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (463)

Search Parameters:
Keywords = Cd-exchange

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1365 KiB  
Article
Immobilization of Cd Through Biosorption by Bacillus altitudinis C10-4 and Remediation of Cd-Contaminated Soil
by Tianyu Gao, Chenlu Zhang, Xueqiang Hu, Tianqi Wang, Zhitang Lyu and Lei Sun
Microorganisms 2025, 13(8), 1798; https://doi.org/10.3390/microorganisms13081798 - 1 Aug 2025
Abstract
In this study, a highly cadmium (II)-resistant bacterium strain, C10-4, identified as Bacillus altitudinis, was isolated from a sediment sample collected from Baiyangdian Lake, China. The minimum inhibitory concentration (MIC) of Cd(II) for strain C10-4 was 1600 mg/L. Factors such as the [...] Read more.
In this study, a highly cadmium (II)-resistant bacterium strain, C10-4, identified as Bacillus altitudinis, was isolated from a sediment sample collected from Baiyangdian Lake, China. The minimum inhibitory concentration (MIC) of Cd(II) for strain C10-4 was 1600 mg/L. Factors such as the contact time, pH, Cd(II) concentration, and biomass dosage affected the adsorption of Cd(II) by strain C10-4. The adsorption process fit well to the Langmuir adsorption isotherm model and the pseudo-second-order kinetics model, based on the Cd(II) adsorption data obtained from the cells of strain C10-4. This suggests that Cd(II) is adsorbed by strain C10-4 cells via a single-layer homogeneous chemical adsorption process. According to the Langmuir model, the maximum biosorption capacity was 3.31 mg/g for fresh-strain C10-4 biomass. Cd(II) was shown to adhere to the bacterial cell wall through SEM-EDS analysis. FTIR spectroscopy further indicated that the main functional sites for the binding of Cd(II) ions on the cell surface of strain C10-4 were functional groups such as N-H, -OH, -CH-, C=O, C-O, P=O, sulfate, and phosphate. After the inoculation of strain C10-4 into Cd(II)-contaminated soils, there was a significant reduction (p < 0.01) in the exchangeable fraction of Cd and an increase (p < 0.01) in the sum of the reducible, oxidizable, and residual fractions of Cd. The results show that Bacillus altitudinis C10-4 has good potential for use in the remediation of Cd(II)-contaminated soils. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

22 pages, 2726 KiB  
Article
Eucalyptus-Biochar Application for Mitigating the Combined Effects of Metal Toxicity and Osmotic-Induced Drought in Casuarina glauca Seedlings
by Oumaima Ayadi, Khawla Tlili, Sylvain Bourgerie and Zoubeir Bejaoui
Land 2025, 14(7), 1423; https://doi.org/10.3390/land14071423 - 7 Jul 2025
Viewed by 312
Abstract
Land degradation from trace metal pollution in North Africa severely compromises soil fertility. This study investigates the synergistic remediation potential of Eucalyptus biochar (EuB) and Casuarina glauca in iron mine soil contaminated with Fe, Zn, Mn, Pb, Cd, and As. Seedlings were grown [...] Read more.
Land degradation from trace metal pollution in North Africa severely compromises soil fertility. This study investigates the synergistic remediation potential of Eucalyptus biochar (EuB) and Casuarina glauca in iron mine soil contaminated with Fe, Zn, Mn, Pb, Cd, and As. Seedlings were grown for six months in: non-mining soil (NMS), contaminated soil (CS), and CS amended with 5% EuB (CS + EuB). Comprehensive ecophysiological assessments evaluated growth, water relations, gas exchange, chlorophyll fluorescence, oxidative stress, and metal accumulation. EuB significantly enhanced C. glauca tolerance to multi-trace metal stress. Compared to CS, CS + EuB increased total dry biomass by 14% and net photosynthetic rate by 22%, while improving predawn water potential (from −1.8 to −1.3 MPa) and water-use efficiency (18%). Oxidative damage was mitigated. EuB reduced soluble Fe by 71% but increased Zn, Mn, Pb, and Cd mobility. C. glauca exhibited hyperaccumulation of Fe, Zn, As, Pb, and Cd across treatments, with pronounced Fe accumulation under CS + EuB. EuB enhanced nodule development and amplified trace metals sequestration within nodules (Zn: +1.4×, Mn: +2.4×, Pb: +1.5×, Cd: +2.0×). The EuB-C. glauca synergy enhances stress resilience, optimizes rhizosphere trace metals bioavailability, and leverages nodule-mediated accumulation, establishing a sustainable platform for restoring contaminated lands. Full article
Show Figures

Figure 1

20 pages, 2156 KiB  
Article
Efficient Removal of Toxic Heavy Metals on Kaolinite-Based Clay: Adsorption Characteristics, Mechanism and Applicability Perspectives
by Bianca-Elena Azanfire, Dumitru Bulgariu, Nicanor Cimpoeşu and Laura Bulgariu
Water 2025, 17(13), 1938; https://doi.org/10.3390/w17131938 - 28 Jun 2025
Viewed by 401
Abstract
In this study, kaolinite-based clay (Ka-Clay) was used as an adsorbent for the efficient removal of Pb(II), Cd(II) and Hg(II) ions from aqueous media. The selection of Pb(II), Cd(II) and Hg(II) ions for experimental studies took into account their high toxicity, while the [...] Read more.
In this study, kaolinite-based clay (Ka-Clay) was used as an adsorbent for the efficient removal of Pb(II), Cd(II) and Hg(II) ions from aqueous media. The selection of Pb(II), Cd(II) and Hg(II) ions for experimental studies took into account their high toxicity, while the choice of Ka-Clay, the ease of preparation and high availability of this material were the most important arguments. Ka-Clay exhibits high adsorption performance, with removal percents over 98% for Pb(II) and 93% for Cd(II), even at high concentrations of metal ions (over 150 mg/L, pH = 6.5, 4 g adsorbent/L, 21 ± 1 °C). For Hg(II) ions, the adsorption percent does not exceed 55%, and this moderate value is mainly due to the significant change in pH. The adsorption behavior was in accordance with the Langmuir model (R2 > 0.95) and the pseudo-second order kinetic model (R2 > 0.99), indicating an adsorption process that occurs mainly through chemical interactions at the adsorbent surface between the metal ions and the functional groups. Adsorption processes are spontaneous (ΔG = −8.66 ÷ −15.76 kJ/mol) and endothermic (ΔH = 7.09 ÷ 21.81 kJ/mol), and the adsorption mechanism is the results of elementary processes of electrostatic attraction, ion exchange and superficial complexation. The insignificant effect of other ions (Ca(II), Mg(II), Na(I), K(I)) present in real wastewater samples as well as the desorption behavior of exhausted adsorbent highlight the practical utility of this adsorbent on a large scale. The experimental results included in this study suggest that Ka-Clay can be used as a promising adsorbent for the removal of high concentrations of toxic heavy metals with low cost and high efficiency, and this can contribute to the design of a sustainable wastewater treatment method. Full article
(This article belongs to the Special Issue Advanced Adsorption Technology for Water and Wastewater Treatment)
Show Figures

Figure 1

22 pages, 4991 KiB  
Article
Delineating Soil Management Zones for Site-Specific Nutrient Management in Cocoa Cultivation Areas with a Long History of Pesticide Usage
by Isong Abraham Isong, Denis Michael Olim, Olayinka Ibiwumi Nwachukwu, Mabel Ifeoma Onwuka, Sunday Marcus Afu, Victoria Oko Otie, Peter Ereh Oko, Brandon Heung and Kingsley John
Land 2025, 14(7), 1366; https://doi.org/10.3390/land14071366 - 28 Jun 2025
Viewed by 393
Abstract
Delineating soil management zones in cocoa cultivation areas can help optimize production and minimize ecological and environmental risks. This research assessed the spatial distribution of heavy metal concentration and soil fertility indicators in Cross River State, Nigeria, to delineate soil management zones (MZs). [...] Read more.
Delineating soil management zones in cocoa cultivation areas can help optimize production and minimize ecological and environmental risks. This research assessed the spatial distribution of heavy metal concentration and soil fertility indicators in Cross River State, Nigeria, to delineate soil management zones (MZs). A total of n = 63 georeferenced, composite soil samples were collected at the 0–30 cm depth increment, air-dried, and subjected to physicochemical analysis. The soil data were subjected to principal component analysis (PCA), and the selected principal components (PCs) were used for fuzzy c-means clustering analysis to delineate the MZs. The result indicated that soil pH varied from 4.8 (strongly acidic) to 6.3 (slightly acidic), with high average organic carbon contents. The degree of contamination was low, while the ecological risk indicator (RI) of the environment under cocoa cultivation ranged from low risk (RI = 18.24) to moderate risk (RI = 287.15), with moderate risk areas mostly found in patches around the central and upper regions. Higher pH was associated with increased levels of exchangeable Ca, Mg, and K, and TN and OC. Strong spatial dependence was observed for silt, pH, OC, Mg, Zn, Cu, Pb, Cd, Cr, and DC. The result showed the first six principal components (PCs) with eigenvalues >1 accounting for 83.33% of the cumulative variance, and three MZs were derived via the selected six PCs using fuzzy c-means clustering analysis. The results of this study further indicated that MZ3 had the highest pH (6.06), TN (0.24%), OC (2.79%), exchangeable Ca (10.62 cmol/kg), Mg (4.01 cmol/kg), and K (0.12 cmol/kg). These were significantly (p < 0.05) higher than those observed in MZ2 and MZ1, and they represent the most fertile parts of the study area. Furthermore, 40.6% of the study area had marginal soil (i.e., soil under MZ2). Full article
Show Figures

Figure 1

22 pages, 4877 KiB  
Article
Sponge-like Modified White-Rot Fungi Adsorbent for Rapid Removal of Pb(II) and Cd(II) from Solution: Selective Performance and Mechanistic Insights
by Chunxiao Wang, Zhirong Chen, Nana Wang, Jianqiao Wang, Runshen He, Yu Chen, Haerfosai Nuhu, Hang Chen, Zhixuan Lin, Minqi Fan and Mingdong Chang
Separations 2025, 12(7), 172; https://doi.org/10.3390/separations12070172 - 28 Jun 2025
Viewed by 377
Abstract
Heavy metal pollution, especially from Pb(II) and Cd(II), poses significant risks due to its persistence and bioaccumulation potential. Traditional removal methods face challenges like high costs and secondary pollution. This study developed a novel three-dimensional porous adsorbent XBS, derived from xanthate-modified Phanerochaete sordida [...] Read more.
Heavy metal pollution, especially from Pb(II) and Cd(II), poses significant risks due to its persistence and bioaccumulation potential. Traditional removal methods face challenges like high costs and secondary pollution. This study developed a novel three-dimensional porous adsorbent XBS, derived from xanthate-modified Phanerochaete sordida YK-624 (a white-rot fungus), for the rapid and efficient removal of Pb(II) and Cd(II) from wastewater. Characterization showed that XBS has a sponge-like structure with abundant functional groups, significantly enhancing its adsorption capacity and kinetics. XBS achieved 96% Pb(II) and 32% Cd(II) removal within 1 min at a 0.25 g/L dose, reaching over 95% of the maximum adsorption capacity within 30 min for Pb(II) and 240 min for Cd(II). The maximum capacities were 224.72 mg/g for Pb(II) and 82.99 mg/g for Cd(II). Kinetic and thermodynamic analyses indicated a chemisorption-driven process, which was both endothermic and spontaneous. XBS exhibited high selectivity for Pb(II) over Cd(II) and other metals (Tl(I), Cu(II)), attributed to stronger covalent interactions with sulfur- and nitrogen-containing groups. Mechanistic analyses (XRD, FTIR, and XPS) revealed that removal occurs via ion exchange, complexation, and precipitation, forming stable compounds like PbS/CdS and PbCO3/CdCO3. Given its cost-effectiveness, scalability, and high efficiency, XBS represents a promising adsorbent for heavy metal remediation, particularly in Pb(II)-contaminated wastewater treatment applications. Full article
Show Figures

Graphical abstract

19 pages, 6387 KiB  
Article
Degradation of Low-Molecular-Weight Diesel Fractions (C10−C16 Alkane) Drives Cd Stabilization and Pb Activation in Calcareous Soils from Karst Areas
by Yiting Huang, Yankui Tang, Zhenze Xie, Jipeng Wu, Jiajie Huang and Shaojiang Nie
Toxics 2025, 13(6), 496; https://doi.org/10.3390/toxics13060496 - 13 Jun 2025
Viewed by 525
Abstract
The influence of petroleum hydrocarbons (PHCs) on the transport and transformation of heavy metals may limit bioremediation efficiency. The mechanisms by which PHC degradation intermediates control heavy metal distribution in calcareous soils from karst areas require further exploration. This study systematically investigated how [...] Read more.
The influence of petroleum hydrocarbons (PHCs) on the transport and transformation of heavy metals may limit bioremediation efficiency. The mechanisms by which PHC degradation intermediates control heavy metal distribution in calcareous soils from karst areas require further exploration. This study systematically investigated how compositional changes in diesel fuel during aging regulated the fate of Cd and Pb in calcareous soils. The results demonstrated that the low-molecular-weight fractions of diesel fuel (C10−C16) were preferentially degraded. This degradation process altered zeta potential, cation exchange capacity (CEC), and pH, thereby promoting Cd stabilization through electrostatic attraction and speciation transformation. Particularly, reducible Cd content showed a strong positive correlation with C16 content (r = 0.88, p < 0.05). Furthermore, the degradation of C10−C16 fractions caused Pb transformation from residual to bioavailable fractions by stimulating microbial activity. Residual Pb content was positively correlated with C10−C16 fractions (r = 0.55, p < 0.05). Notably, dissolved organic matter (DOM) and CaCO3 content in calcareous soils enhanced Cd and Pb adsorption, thereby weakening the interactions between these metals and C10−C16 fractions. Consequently, multiple linear regression (MLR) models relying exclusively on C10−C16 degradation parameters showed poor fitting coefficients for Cd/Pb mobility. The present work provides scientific guidance for heavy metal bioremediation in calcareous soils. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

16 pages, 2338 KiB  
Article
Geochemical Regulation of Heavy Metal Speciation in Subtropical Peatlands: A Case Study in Dajiuhu Peatland
by Zhuo Lu, Yongqiang Ning, Chutong Liu, Xiannong Song, Yong Pang, Quanheng Li, Minglong Yang and Liang Zeng
Land 2025, 14(6), 1256; https://doi.org/10.3390/land14061256 - 11 Jun 2025
Viewed by 931
Abstract
Heavy metals in peatland pose significant ecological risks due to their persistence, bioaccumulation, and dynamic mobilization under fluctuating environmental conditions. Understanding heavy metal dynamics in subtropical peatlands is critical for addressing global gaps in wetland metal cycling, as these ecosystems face intensified organic [...] Read more.
Heavy metals in peatland pose significant ecological risks due to their persistence, bioaccumulation, and dynamic mobilization under fluctuating environmental conditions. Understanding heavy metal dynamics in subtropical peatlands is critical for addressing global gaps in wetland metal cycling, as these ecosystems face intensified organic decomposition and climatic fluctuations that amplify mobilization risks—contrasting starkly with stable northern counterparts. This study investigates the geochemistry of heavy metals (Cr, Cu, Cd, and Pb) of Dajiuhu peatland in central China, using sequential extraction, gradient diffusion (DGT), and random forest modeling. The mean concentrations of Cr, Cu, Cd, and Pb in peat samples were 24.6 ± 13.7 mg/kg, 14.9 ± 2.51 mg/kg, 1.15 ± 0.62 mg/kg, and 54.9 ± 16.16 mg/kg. Principal component analysis identified three sources: plant-derived litter, bedrock weathering, and atmospheric deposition. Metal speciation revealed the predominance of residual fractions (Cr: 64%, Cu: 61%, Pb: 65%, Cd: 35%), with Cd exhibiting higher mobility (exchangeable: 20%, reducible: 25%). DGT measurements further confirmed distinct migration behaviors, as Cd stored in peat actively diffuses into the surrounding environment, while Pb present in the environment becomes immobilized within the peat matrix. Environmental factors regulate heavy metal speciation through distinct mechanisms. The exchangeable fractions of Cu and Cr are primarily controlled by the C/N ratio, whereas their oxidizable forms are significantly associated with Al content and pH levels. The exchangeable fractions of Pb and Cd are largely influenced by oxidation-reduction potential (ORP) and Ca concentrations, and their reduced forms are closely linked to total sulfur (TS) content. Furthermore, the reducible fractions of Cr and Cd are not only regulated by ORP but also modulated by TS. Our study highlights that the mobility of heavy metals in subtropical peatlands is likely to increase substantially as a result of environmental changes. Full article
Show Figures

Figure 1

10 pages, 692 KiB  
Article
GM-VGG-Net: A Gray Matter-Based Deep Learning Network for Autism Classification
by Ebenezer Daniel, Anjalie Gulati, Shraya Saxena, Deniz Akay Urgun and Biraj Bista
Diagnostics 2025, 15(11), 1425; https://doi.org/10.3390/diagnostics15111425 - 3 Jun 2025
Viewed by 512
Abstract
Background: Around 1 in 59 individuals is diagnosed with Autism Spectrum Disorder (ASD), according to CDS statistics. Conventionally, ASD has been diagnosed using functional brain regions, regions of interest, or multi-tissue-based training in artificial intelligence models. The objective of the exhibit study is [...] Read more.
Background: Around 1 in 59 individuals is diagnosed with Autism Spectrum Disorder (ASD), according to CDS statistics. Conventionally, ASD has been diagnosed using functional brain regions, regions of interest, or multi-tissue-based training in artificial intelligence models. The objective of the exhibit study is to develop an efficient deep learning network for identifying ASD using structural magnetic resonance imaging (MRI)-based brain scans. Methods: In this work, we developed a VGG-based deep learning network capable of diagnosing autism using whole brain gray matter (GM) tissues. We trained our deep network with 132 MRI T1 images from normal controls and 140 MRI T1 images from ASD patients sourced from the Autism Brain Imaging Data Exchange (ABIDE) dataset. Results: The number of participants in both ASD and normal control (CN) subject groups was not statistically different (p = 0.23). The mean age of the CN subject group was 14.62 years (standard deviation: 4.34), and the ASD group had mean age of 14.89 years (standard deviation: 4.29). Our deep learning model accomplished a training accuracy of 97% and a validation accuracy of 96% over 50 epochs without overfitting. Conclusions: To the best of our knowledge, this is the first study to use GM tissue alone for diagnosing ASD using VGG-Net. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

17 pages, 3217 KiB  
Article
Robust Adsorption of Pb(II) and Cd(II) by GLDA-Intercalated ZnAl-LDH: Structural Engineering, Mechanistic Insights, and Environmental Applications
by Kai Zheng, Zhengkai Guang, Zihan Wang, Yangu Liu, Xiaoling Cheng and Yuan Liu
Coatings 2025, 15(5), 613; https://doi.org/10.3390/coatings15050613 - 21 May 2025
Viewed by 619
Abstract
The rapid pace of industrialization has led to widespread heavy metal contamination in water and soil, highlighting the need for efficient remediation strategies. Among various approaches, adsorption has proven to be an effective method for treating contaminated environments. Layered double hydroxide (LDH) is [...] Read more.
The rapid pace of industrialization has led to widespread heavy metal contamination in water and soil, highlighting the need for efficient remediation strategies. Among various approaches, adsorption has proven to be an effective method for treating contaminated environments. Layered double hydroxide (LDH) is frequently used in such applications. However, its adsorption efficiency remains limited. In this study, glutamic acid diacetate tetrasodium salt (GLDA) was incorporated into ZnAl LDH via a straightforward co-precipitation and ion exchange method, yielding a modified material, GLDA-LDH, which was subsequently applied for the adsorption of Pb(II) and Cd(II). Adsorption behavior was investigated through kinetic and isothermal models, with results indicating that the process followed pseudo-second-order kinetics and fit well with the Langmuir isotherm, suggesting chemisorption onto monolayer surface. The maximum adsorption capacities reached 219.2 mg/g for Pb(II) and 121.9 mg/g for Cd(II). Furthermore, GLDA-LDH exhibited a strong retention capability for metal ions with minimal desorption and remained effective in the presence of hard water and contaminated soils. XPS analysis revealed distinct interaction mechanisms; surface oxygen and carboxyl groups played a key role in Pb(II) adsorption, whereas nitrogen coordination was involved in Cd(II) uptake. These results point to the potential of GLDA-LDH as a reliable material for addressing heavy metal pollution and provide insights into the design of enhanced LDH-based adsorbents. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

26 pages, 2305 KiB  
Review
Alternative Biosorbents Based on Grape Pomace: Reducing Heavy Metals and Pesticides
by Georgiana-Diana Gabur, Anamaria-Ioana Dumitrașcu, Carmen Teodosiu, Valeriu V. Cotea and Iulian Gabur
Toxics 2025, 13(5), 408; https://doi.org/10.3390/toxics13050408 - 17 May 2025
Viewed by 570
Abstract
Heavy metal and pesticide contaminations represent significant environmental and health hazards to humans and animals. Toxic heavy metals such as lead (Pb), cadmium (Cd), mercury (Hg), and copper (Cu) persist in the environment, bioaccumulating in beverages and food products from both natural and [...] Read more.
Heavy metal and pesticide contaminations represent significant environmental and health hazards to humans and animals. Toxic heavy metals such as lead (Pb), cadmium (Cd), mercury (Hg), and copper (Cu) persist in the environment, bioaccumulating in beverages and food products from both natural and anthropogenic sources. Traditional remediation techniques, such as chemical precipitation and ion exchange, are effective but often costly and challenging to apply at a large scale. In recent years, grape pomace—a winemaking by-product rich in bioactive compounds—has emerged as a promising, low-cost biosorbent for the removal of such pollutants. Its high adsorption capacity, environmental friendliness, and availability make it a strong candidate for water and food decontamination processes. This study evaluates grape pomace and its biochar as sustainable biosorbents for heavy metal removal from water and soil, examining their adsorption efficiency, adsorption mechanisms, environmental benefits, advantages, limitations, and perspectives for future industrial-scale applications. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

20 pages, 21249 KiB  
Article
Enhanced Cadmium Adsorption Mechanisms Utilizing Biochar Derived from Different Parts of Wetland Emergent Plants Iris sibirica L.
by Tongtong Li, Yangyang Wang, Yongchao Niu, Zhonglei Zhang, Jin Liu, Xiaoshu Wang, Jingao Wang, Ji Li and Lei Wang
Processes 2025, 13(5), 1520; https://doi.org/10.3390/pr13051520 - 15 May 2025
Viewed by 349
Abstract
Due to their substantial biomass and rapid growth, emergent plants found in wetlands are viewed as excellent sources for biochar production, which has been demonstrated to serve as an effective substitute for absorbite in the effluent treatment. This article systematically contrasted the physicochemical [...] Read more.
Due to their substantial biomass and rapid growth, emergent plants found in wetlands are viewed as excellent sources for biochar production, which has been demonstrated to serve as an effective substitute for absorbite in the effluent treatment. This article systematically contrasted the physicochemical properties of biochar derived from each section of Iris sibirica L. (designated as BCR, BCS, and BCL) under identical pyrolysis conditions, in order to assess their effectiveness in removing cadmium (Cd) from effluent. Experimental results indicated that the removal efficiencies of Cd among the various biochars followed the order BCS (19.92 mg/g) > BCL (19.89 mg/g) > BCR (13.22 mg/g). The removal of Cd2+ by biochar is primarily governed by chemisorption, as described by the Langmuir and Freundlich models. Moreover, different adsorption kinetic models, e.g., first-order kinetics, second-order kinetics, intra-particle diffusion, and the Elovich model, were performed to elucidate the adsorption process. Compared to BCL and BCR, the proportions of ion exchange and precipitation were more superior in BCS, reaching 54% and 31%, respectively, which could serve as an effective adsorbent for metal ions, achieving the maximum adsorption capacity. In addition, precipitation (46%) was predominant during the Cd2+ adsorption process through BCR. Therefore, BCR was more suitable for the acidic wastewater treatment. This study provided an in-depth understanding of the cadmium removal behavior through biochar obtained from different part (roots, stems, and leaves) of wetland plants and introduced a new option for efficient utilization of waste biomass. Full article
(This article belongs to the Special Issue Application of Biochar in Environmental Research)
Show Figures

Figure 1

14 pages, 4616 KiB  
Article
Modification and Application of Natural Clinoptilolite and Mordenite from Almaty Region for Drinking Water Purification
by Mudasir Zahid, Yerlan Doszhanov, Karina Saurykova, Noorahmad Ahmadi, Didar Bolatova, Meruyert Kurmanbayeva, Akbope Aydarbek, Rahmuddin Ihsas, Makpal Seitzhanova, Dana Akhmetzhanova, Almagul Kerimkulova and Ospan Doszhanov
Molecules 2025, 30(9), 2021; https://doi.org/10.3390/molecules30092021 - 30 Apr 2025
Viewed by 528
Abstract
In this paper, the modification of natural clinoptilolite and mordenite zeolites from Almaty using acid treatment is addressed for the purposes of improving adsorption performance and for drinking water purification. Structural chemical transformation was characterized by the use of X-ray diffraction (XRD), Fourier-transform [...] Read more.
In this paper, the modification of natural clinoptilolite and mordenite zeolites from Almaty using acid treatment is addressed for the purposes of improving adsorption performance and for drinking water purification. Structural chemical transformation was characterized by the use of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Scanning electron microscope (SEM) techniques. Acid treatment led to a partial dealumination that was responsible for an increase in the number of surface defects and micropores, improvement in ion exchange capacity, and selectivity toward heavy metals. Additionally, modifications greatly enhance the uptake capacities of Pb2+, Cd2+, and As3+. The clinoptilolite post-modification removal efficiencies reached 94%, 86%, and 84%, respectively, while mordenite zeolites achieved 95%, 90%, and 87% removal efficiencies, respectively. The enhancement of performance was related to the increase in surface area and active sites for ion exchange, verified from analysis of the Brunauer-Emmett-Teller (BET) surface area. The use of different Bhatt and Kothari methods has revealed that adsorption processes followed Langmuir isotherm models for Pb2+ and Cd2+, whereas As3+ adsorption was better described by the Freundlich isotherm model. However, second-order kinetics indicate that chemisorption was the dominant mechanism. Such evidence indicates spontaneity and an endothermic process, as shown from thermodynamic studies. Results showed that modified zeolites indeed had a high degree of reusability, with over 80% of the adsorption capacity retained even after five cycles. Acid-modified zeolites can provide cheaper, greener methods of purification, generating only negligible secondary waste when compared to conventional methods of water purification, for example, activated carbon and membrane filtration. Results from this study proved that modified clinoptilolite and mordenite zeolites have the potential for sustainable heavy metal treatment in drinking water purification systems. Full article
Show Figures

Figure 1

26 pages, 5491 KiB  
Article
Oral Supplementation with Modified Natural Clinoptilolite Protects Against Cadmium Toxicity in ICR (CD-1) Mice
by Michaela Beltcheva, Yana Tzvetanova, Peter Ostoich, Iliana Aleksieva, Tsenka Chassovnikarova, Liliya Tsvetanova and Rusi Rusew
Toxics 2025, 13(5), 350; https://doi.org/10.3390/toxics13050350 - 27 Apr 2025
Viewed by 887
Abstract
For the first time, this study investigates in vivo the potential of Na-modified natural clinoptilolite to mitigate cadmium toxicity in ICR mice, a model relevant to human health. We enhanced natural clinoptilolite to improve its cadmium (Cd) exchange capacity. Mice were exposed to [...] Read more.
For the first time, this study investigates in vivo the potential of Na-modified natural clinoptilolite to mitigate cadmium toxicity in ICR mice, a model relevant to human health. We enhanced natural clinoptilolite to improve its cadmium (Cd) exchange capacity. Mice were exposed to environmentally realistic cadmium nitrate Cd(NO3)2 doses in their drinking water. The detoxification efficacy of the mineral was evaluated over 45 days in four groups: control (no supplementation), Cd(NO3)2 only, clinoptilolite only, and a combination of Cd(NO3)2 and clinoptilolite. We assessed Cd bioaccumulation in the liver and kidneys, genotoxicity (micronucleus assay), hematological parameters, and oxidative stress markers. Cd exposure resulted in significant bioaccumulation, reduced growth, changes in erythrograms, DNA damage, and oxidative stress. Mice receiving clinoptilolite alone showed a significant increase in body mass. Modified clinoptilolite led to a nearly 48% reduction in Cd accumulation and a 30% increase in Cd excretion in the Cd-plus-clinoptilolite group compared to the Cd-only group. Erythrogram and leukogram parameters returned to near-normal levels, with reductions in malondialdehyde (MDA) and increases in glutathione (GSH) observed by the end of the experiment. No elevated levels of micronuclei were found following clinoptilolite supplementation. These results suggest that modified clinoptilolite may be a cost-effective detoxifier in Cd-polluted regions. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Graphical abstract

25 pages, 8500 KiB  
Article
Further Insight in the High Selectivity of Pb2+ Removal over Cd2+ in Natural and Dealuminated Rich-Clinoptilolite
by Yaneth Stephanie Durán-Avendaño, Norge Cruz Hernández, A. Rabdel Ruiz-Salvador and Mohamed Abatal
Int. J. Mol. Sci. 2025, 26(9), 4154; https://doi.org/10.3390/ijms26094154 - 27 Apr 2025
Viewed by 419
Abstract
This research aims to understand the experimental results on the high selectivity of Pb2+ removal over Cd2+ in natural and dealuminated rich-clinoptilolite. For this purpose, we have considered the results of experimental and Density Functional Theory (DFT)-based simulated annealing (SA) on [...] Read more.
This research aims to understand the experimental results on the high selectivity of Pb2+ removal over Cd2+ in natural and dealuminated rich-clinoptilolite. For this purpose, we have considered the results of experimental and Density Functional Theory (DFT)-based simulated annealing (SA) on sorption of Pb2+ and Cd2+ from aqueous solution. The dealumination process of natural clinoptilolite (Nat-CLI) was done by H2SO4 solutions at different concentrations (0.1–1.0 M). The results show that the maximum sorption capacity (q,max) of Pb2+ and Cd2+ varied from 224.554 × 10−3 to 53.827 × 10−3 meq/g, and between 39.044 × 10−3 to 20.529 × 10−3 meq/g, respectively, when the values of Si/Al ratio change from 4.36 to 9.50. From a theoretical point of view, the global minimum energies of natural and dealuminated clinoptilolites before and after sorption of Pb2+ and Cd2+ were calculated by an SA method, where heating-cooling cycles were modeled by ab initio Molecular Dynamics followed by energy minimization. The theoretical results confirmed that for all Si/Al ratios, the sorption of Pb2+ and Cd2+ takes place, and for dealuminated systems, the exchange energy outcomes are more favorable for the Pb2+ cations. Since such energy differences are very small, it is not explained from a thermodynamic point of view. On the other hand, it could be understood from a kinetic perspective. In this way, we set that the atomic structural properties of the zeolite modify the first hydration coordination sphere of metal cations. Full article
(This article belongs to the Special Issue Molecular Modeling: Latest Advances and Applications)
Show Figures

Graphical abstract

13 pages, 3963 KiB  
Article
Marked Spatial Variability in Acidity Characteristics of Purple Soil at Field Scale Induced by Citrus Plantation
by Jiayi Luo, Jingkun Zhao, Jia Zhou and Zhongyi Li
Agronomy 2025, 15(5), 1022; https://doi.org/10.3390/agronomy15051022 - 24 Apr 2025
Cited by 1 | Viewed by 379
Abstract
Purple soil, predominantly found in the Sichuan Basin of China with a favorable climate, is renowned for its fertility, making it an ideal soil for citrus cultivation. To investigate the effect of citrus plantation on the acidification characteristics of purple soil, we selected [...] Read more.
Purple soil, predominantly found in the Sichuan Basin of China with a favorable climate, is renowned for its fertility, making it an ideal soil for citrus cultivation. To investigate the effect of citrus plantation on the acidification characteristics of purple soil, we selected one field where citrus trees coexist with varying ages of 3, 10, and 50 years. The soil is a neutral purple soil developed from Jurassic Shaximiao Formation mudstone. A total of 138 soil samples were collected at different depths (0–20, 20–40, and 40–60 cm) beneath the canopies of these citrus trees for physicochemical property analysis. Our results indicate that citrus cultivation caused significant spatial variability in the purple soil acidity within the same field. The pH values of these soils varied from 3.97 to 7.90. The degree of soil acidification under the citrus canopies adheres to the following order: 10-year-old > 50-year-old > 3-year-old citrus trees. Soil pH values were negatively correlated with the contents of N, P, and K available in the soil, particularly exhibiting a significantly negative correlation with these soil fertility indicators under the canopy of the 10-year-old citrus at p < 0.01, suggesting that the intensive fertilizer application typical in citrus plantations accelerated soil acidification. Additionally, soil acidification was associated with an increase in the exchangeable Al3⁺ (from 0 to 7.03 cmol kg−1) and a decrease in the exchangeable Ca2⁺ (from 25.07 to 6.48 cmol kg−1), exchangeable Mg2⁺ (from1.53 to 0.62 cmol kg−1), base saturation (from 100% to 53.4%), and effective cation exchange capacity (from 24.3 to 13.1 cmol kg−1).The acidification of the purple soil enhanced the extractability of metal elements, increasing the bioavailability of essential plant nutrients, such as Fe, Mn, Cu, Zn, and Ni, as well as enhancing the mobility of harmful heavy metals like Pb and Cd. In conclusion, unlike the widespread acidification observed in Oxisols or Ultisols at the field scale, citrus cultivation caused varying degrees of acidification within purple soil at this scale. This variability in soil acidification at the field scale of purple soil can lead to a series of soil degradation problems and should be given due attention in the management of citrus and similar high-economic-value fruit trees. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

Back to TopTop