Alternative Biosorbents Based on Grape Pomace: Reducing Heavy Metals and Pesticides
Abstract
1. Introduction
2. Methodology
3. Grape Pomace as a Biosorbent for Heavy Metals Removal
3.1. Biosorption Mechanisms for Pollutant Removal from Water
Biosorbent | Heavy Metals | Parameters | Kinetics/ Isotherm | Adsorption Capacity | References | |||
---|---|---|---|---|---|---|---|---|
Dose | pH | Time | Temp (°C) | |||||
Green tea waste | As (III) | 0.3 g | 3 | 3 h | 33 | Pseudo-second-order/ Langmuir | 0.4212 mg/g | [32] |
Ni (II) | 7 | 0.3116 mg/g | ||||||
Plum waste | Cr (III) | 4 g/L | 6 | 30 min | 22 | Pseudo-second-order/ Langmuir | 14.024 mg/g | [42] |
Pb (II) | 12.689 mg/g | |||||||
Apricot waste | Cr (III) | 4 g/L | 6 | 30 min | 22 | Pseudo-second-order/ Freundlich | 28.799 mg/g | [42] |
Pb (II) | 23.890 mg/g | |||||||
Banana peels | Pb (II) | 0.1 g | 6 | 24 h | 25 | Pseudo-second-order/ Freundlich | 241 mg/g | [43] |
Pomegranate peel | Cd (II) | 0.1 g | 5 | 480 min | 25 | Pseudo-second-order/ Langmuir | 132.5 mg/g | [44] |
Litchi peel | Cd (II) | 0.1 g | 5 | 480 min | 25 | Pseudo-second-order/ Langmuir | 230.5 mg/g | [44] |
Lemon peel | Ni (II) | 5 g/L | 5 | 180 min | 25 | Pseudo-first-order/ Langmuir | 36.74 mg/g | [45] |
Jackfruit seed waste | Mn (VII) | 1 g/L | 7 | - | 35 | Pseudo-second-order/ Langmuir | 79.8 mg/g | [46] |
Pb (II | 79.9 mg/g | |||||||
Cu (II) | 97.9 mg/g | |||||||
Cd (II) | 79.4 mg/g | |||||||
Fe (III) | 76.4 mg/g | |||||||
Dragon fruit peel | Pb (II) | 0.25 g/L | 4 | 3 h | 60 | Pseudo-second-order/ Langmuir | 97.087 mg/g | [47] |
Cd (II) | 86.207 mg/g | |||||||
Melon peel | Cu | 0.0015 g/L | 6 | 1 h | 30 | Pseudo-second-order/ Langmuir | 77.76 mg/g | [48] |
Pb | 191.93 mg/g | |||||||
Cd | 76.16 mg/g | |||||||
Watermelon rind | As (III) | 1 g/L | 8.2 | 72 h | 65 | Pseudo-first o-der/ Langmuir | 99% | [49] |
As (V) | 4.6 | 98% | ||||||
Cabbage leaves | Cd (II) | 0.5 g | 6 | 150 min | 50 | Pseudo-second-order/Langmuir | 88.92% | [50] |
Cu (II) | 92.42% | |||||||
Pb (II) | 95.67% | |||||||
Soy waste biomass | Ni (II) | 5.0 g/L | 5.5 | 4 h | 20 | Pseudo-second-order/ Freundlich | 128% | [51] |
Cu (II) | 131% | |||||||
Pb (II) | 196% | |||||||
Waste biomass biochar | Fe | 1.0 g/L | 6 | 20 min | 450 | Pseudo-second-order/Langmuir | 10.95% | [52] |
Ni | 99.01% | |||||||
Cu | 91.60% | |||||||
Cr | 99.06% | |||||||
Cd | 99.24% | |||||||
Pb | 95.52% |
3.2. Heavy Metal Removal from Aqueous Solutions
3.2.1. Lead and Cadmium Removal
3.2.2. Nickel Removal
3.2.3. Copper Removal
3.2.4. Chromium Removal
3.2.5. Mercury Removal
3.2.6. Nickel and Zinc Removal
3.2.7. Grape Pomace for More Heavy Metals Removal
3.3. Grape Pomace and Biochar for Reducing Heavy Metal Bioavailability in Soils
4. Grape Pomace-Derived Biochar for Pesticide Adsorption and Soil Enhancement
5. Benefits and Drawbacks of Using Grape Pomace as a Biosorbent
6. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dumitriu, G.-D.; Teodosiu, C.; Morosanu, I.; Jitar, O.; Cotea, V.V. Quantification of toxic metals during different winemaking stages. In Proceedings of the 42nd World Congress of Vine and Wine, Geneva, Switzerland, 15–19 July 2019; Volume 15, p. 02024. [Google Scholar]
- Dumitriu (Gabur), G.D.; Teodosiu, C.; Morosanu, I.; Plavan, O.; Gabur, I.; Cotea, V.V. Heavy metals assessment in the major stages of winemaking: Chemometric analysis and impacts on human health and environment. J. Food Compost. Anal. 2021, 100, 103935. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Naila, A.; Meerdink, G.; Jayasena, V.; Sulaiman, A.Z.; Ajit, A.B.; Berta, G. A review on global metal accumulators—Mechanism, enhancement, commercial application, and research trend. Environ. Sci. Pollut. Res. 2019, 26, 26449–26471. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xie, Z.; Li, F. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale. Environ. Pollut. 2015, 206, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Bharagava, R.N.; More, N.; Yadav, A.; Zainith, S.; Mani, S.; Chowdhary, P. Heavy Metal Contamination: An Alarming Threat to Environment and Human Health. In Environmental Biotechnology: For Sustainable Future; Springer: Singapore, 2019; pp. 103–125. [Google Scholar] [CrossRef]
- Lefrancq, M.; Imfeld, G.; Payraudeau, S.; Millet, M. Kresoxim methyl deposition, drift and runoff in a vineyard catchment. Sci. Total Environ. 2013, 442, 503–508. [Google Scholar] [CrossRef]
- Özkara, A.; Akyıl, D.; Konuk, M. Pesticides, environmental pollution, and health. In Environmental Health Risk-Hazardous Factors to Living Species; Larramendy, M.L., Soloneski, S., Eds.; IntechOpen: London, UK, 2016. [Google Scholar]
- McKinlay, R.; Plant, J.A.; Bell, J.N.B.; Voulvoulis, N. Endocrine disrupting pesticides: Implications for risk assessment. Environ. Int. 2008, 34, 168–183. [Google Scholar] [CrossRef] [PubMed]
- Van Maele-Fabry, G.; Lantin, A.-C.; Hoet, P.; Lison, D. Residential exposure to pesticides and childhood leukaemia: A systematic review and meta-analysis. Environ. Int. 2011, 37, 280–291. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Ni, Z.; Qu, M.; Zhong, D.; Ye, C.; Tang, F. Pesticides in persimmons, jujubes and soil from China: Residue levels, risk assessment and relationship between fruits and soils. Sci. Total Environ. 2016, 542, 620–628. [Google Scholar] [CrossRef]
- Razzak, S.A.; Farooque, M.O.; Alsheikh, Z.; Alsheikhmohamad, L.; Alkuroud, D.; Alfayez, A.; Hossain, S.Z.; Hossain, M.M. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ. Adv. 2022, 7, 100168. [Google Scholar] [CrossRef]
- Iora, S.R.F.; Maciel, G.M.; Zielinski, A.A.F.; da Silva, M.V.; Pontes, P.V.d.A.; Haminiuk, C.W.I.; Granato, D. Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. Int. J. Food Sci. Technol. 2014, 50, 62–69. [Google Scholar] [CrossRef]
- OIV. State of the World Vine and Wine Sector in 2024. Available online: https://www.oiv.int/sites/default/files/2024-04/2024_OIV_April_PressConference_PPT.pdf (accessed on 10 January 2025).
- Machado, N.F.L.; Domínguez-Perles, R. Addressing Facts and Gaps in the Phenolics Chemistry of Winery By-Products. Molecules 2017, 22, 286. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Khanashyam, A.C.; Mundanat, A.S.; Shah, K.; Babu, K.S.; Thorakkattu, P.; Al-Asmari, F.; Pandiselvam, R. Valorization of Fruit Waste for Bioactive Compounds and Their Applications in the Food Industry. Foods 2023, 12, 556. [Google Scholar] [CrossRef] [PubMed]
- Muhlack, R.A.; Potumarthi, R.; Jeffery, D.W. Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. Waste Manag. 2018, 72, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Mendes, J.A.S.; Prozil, S.O.; Evtuguin, D.V.; Lopes, L.P.C. Towards comprehensive utilization of winemaking residues: Characterization of grape skins from red grape pomaces of variety Touriga Nacional. Ind. Crops Prod. 2013, 43, 25–32. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Rev. Food Sci. Food Saf. 2016, 16, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.; Bhushan, B.; Gupta, V.; Rodriguez-Turienzo, L. Development of a green and sustainable clean up system from grape pomace for heavy metal remediation. J. Environ. Chem. Eng. 2016, 4, 4342–4353. [Google Scholar] [CrossRef]
- Ilyas, T.; Chowdhary, P.; Chaurasia, D.; Gnansounou, E.; Pandey, A.; Chaturvedi, P. Sustainable green processing of grape pomace for the production of value-added products: An overview. Environ. Technol. Innov. 2021, 23, 101592. [Google Scholar] [CrossRef]
- Feng, Z.; Zhu, L. Sorption of phenanthrene to biochar modified by base. Front. Environ. Sci. Eng. 2017, 12, 1. [Google Scholar] [CrossRef]
- Abbas, T.; Rizwan, M.; Ali, S.; Adrees, M.; Mahmood, A.; Rehman, M.Z.; Ibrahim, M.; Arshad, M.; Qayyum, M. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol. Environ. Saf. 2018, 148, 825–833. [Google Scholar] [CrossRef]
- Shi, X.; Yang, W.; Li, J.; Yao, Z. The Application of Biochar as Heavy Metals Adsorbent: The Preparation, Mechanism, and Perspectives. Int. J. Environ. Res. 2024, 18, 41. [Google Scholar] [CrossRef]
- Reza, M.T.; Andert, J.; Herklotz, B.; Busch, D.; Pielert, J.; Lynam, J.; Mumme, J. Review Article: Hydrothermal Carbonization of Biomass for Energy and Crop Production. Appl. Bioenergy 2014, 1, 1. [Google Scholar] [CrossRef]
- Brazesh, B.; Mousavi, S.M.; Zarei, M.; Ghaedi, M.; Bahrani, S.; Hashemi, S.A. Biosorption. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2021; Volume 33, pp. 587–628. [Google Scholar]
- Priya, A.K.; Gnanasekaran, L.; Dutta, K.; Rajendran, S.; Balakrishnan, D.; Soto-Moscoso, M. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere 2022, 307, 135957. [Google Scholar] [CrossRef]
- Isıldar, A.; van Hullebusch, E.D.; Lenz, M.; Du Laing, G.; Marra, A.; Cesaro, A.; Panda, S.; Akcil, A.; Kucuker, M.A.; Kuchta, K. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE)—A review. J. Hazard. Mater. 2019, 362, 467–481. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.K.; Sengupta, A.; Gupta, A.; Sonawane, J.R.; Sahoo, H. Biosorption-an alternative method for nuclear waste management: A critical review. J. Environ. Chem. Eng. 2018, 6, 2159–2175. [Google Scholar] [CrossRef]
- Krstic, V.; Urosevic, T.; Pesovski, B. A review on adsorbents for treatment of water and wastewaters containing copper ions. Chem. Eng. Sci. 2018, 192, 273–287. [Google Scholar] [CrossRef]
- Ali, M.; Song, X.; Ding, D.; Wang, Q.; Zhang, Z.; Tang, Z. Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. Environ. Pollut. 2022, 295, 118686. [Google Scholar] [CrossRef]
- Verma, S.; Bhatt, P.; Verma, A.; Mudila, H.; Prasher, P.; Rene, E.R. Microbial technologies for heavy metal remediation: Effect of process conditions and current practices. Clean Technol. Environ. Policy 2021, 12, 1485–1507. [Google Scholar] [CrossRef]
- Kumar, M.; Nandi, M.; Pakshirajan, K. Recent advances in heavy metal recovery from wastewater by biogenic sulfide precipitation. J. Environ. Manag. 2021, 278, 111555. [Google Scholar] [CrossRef]
- Ezziat, L.; Elabed, A.; Ibnsouda, S.; El Abed, S. Challenges of microbial fuel cell architecture on heavy metal recovery and removal from wastewater. Front. Energy Res. 2019, 7, 12–45. [Google Scholar] [CrossRef]
- de Oliveira, A.P.; Módenes, A.N.; Bragião, M.E.; Hinterholz, C.L.; Trigueros, D.E.G.; Bezerra, I.G.O. Use of grape pomace as a biosorbent for the removal of the Brown KROM KGT dye. Bioresour. Technol. Rep. 2018, 2, 92–99. [Google Scholar] [CrossRef]
- Kumar, K.K.; Prasad, M.K.; Lakshmi, G.R.; Murthy, C.V.R. Studies on biosorption of cadmium on grape pomace using response surface methodology. Desalination Water Treat. 2013, 51, 5592–5598. [Google Scholar] [CrossRef]
- Kokkinomagoulos, E.; Kandylis, P. Sustainable Wine Fining: Evaluating Grape Pomace as a Natural Alternative to Commercial Agents. Beverages 2025, 11, 31. [Google Scholar] [CrossRef]
- Gupta, N.K.; Gupta, A.; Ramteke, P.; Sahoo, H.; Sengupta, A. Biosorption-a green method for the preconcentration of rare earth elements (REEs) from waste solutions: A review. J. Mol. Liq. 2019, 274, 148–164. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.M.; Flora, J.R.; Park, C.M.; Yoon, Y. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 2019, 229, 142–159. [Google Scholar] [CrossRef] [PubMed]
- Medfu Tarekegn, M.; Zewdu Salilih, F.; Ishetu, A.I. Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric. 2020, 6, 1783174. [Google Scholar] [CrossRef]
- Khamwichit, A.; Dechapanya, W.; Dechapanya, W. Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell. Heliyon 2022, 8, e09610. [Google Scholar] [CrossRef]
- Pap, S.; Bezanovic, V.; Radonic, J.; Babic, A.; Saric, S.; Adamovic, D.; Sekulic, M.T. Synthesis of highly-efficient functionalized biochars from fruit industry waste biomass for the removal of chromium and lead. J. Mol. Liq. 2018, 268, 315–325. [Google Scholar] [CrossRef]
- Zhou, N.; Chen, H.; Feng, Q.; Yao, D.; Chen, H.; Wang, H.; Zhou, Z.; Li, H.; Tian, Y.; Lu, X. Effect of phosphoric acid on the surface properties and Pb (II) adsorption mechanisms of hydrochars prepared from fresh banana peels. J. Clean. Prod. 2017, 165, 221–230. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Zhao, W.; Huang, S. Four different kinds of peels as adsorbents for the removal of Cd (II) from aqueous solution: Kinetics, isotherm and mechanism. J. Taiwan Inst. Chem. Eng. 2018, 88, 146–151. [Google Scholar] [CrossRef]
- Villen-Guzman, M.; Gutierrez-Pinilla, D.; Gomez-Lahoz, C.; Vereda-Alonso, C.; Rodriguez-Maroto, J.M.; Arhoun, B. Optimization of Ni (II) biosorption from aqueous solution on modified lemon peel. Environ. Res. 2019, 179, 108849. [Google Scholar] [CrossRef]
- Khadem, M.; Husni Ibrahim, A.; Mokashi, I.; Hasan Fahmi, A.; Noeman Taqui, S.; Mohanavel, V.; Hossain, N.; Baba Koki, I.; Elfasakhany, A.; Dhaif-Allah, M.A.; et al. Removal of heavy metals from wastewater using low-cost biochar prepared from jackfruit seed waste. Biomass Convers. Biorefin. 2022, 13, 14447–14456. [Google Scholar] [CrossRef]
- Wattanakornsiri, A.; Rattanawan, P.; Sanmueng, T.; Satchawan, S.; Jamnongkan, T.; Phuengphai, P. Local fruit peel biosorbents for lead(II) and cadmium(II) ion removal from waste aqueous solution: A kinetic and equilibrium study. S. Afr. J. Chem. Eng. 2022, 42, 306–317. [Google Scholar] [CrossRef]
- Akinhanmi, T.F.; Ofudje, E.A.; Adeogun, A.I.; Aina, P.; Joseph, I.M. Orange peel as low-cost adsorbent in the elimination of Cd(II) ion: Kinetics, isotherm, thermodynamic and optimization evaluations. Bioresour. Bioprocess. 2020, 7, 34. [Google Scholar] [CrossRef]
- Shakoor, M.B.; Niazi, N.K.; Bibi, I.; Shahid, M.; Sharif, F.; Bashir, S.; Shaheen, S.M.; Wang, H.; Tsang, D.C.; Ok, Y.S.; et al. Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater. Sci. Total Environ. 2018, 645, 1444–1455. [Google Scholar] [CrossRef] [PubMed]
- Anastopoulos, I.; Robalds, A.; Tran, H.N.; Mitrogiannis, D.; Giannakoudakis, D.A.; Hosseini-Bandegharaei, A.; Dotto, G.L. Removal of heavy metals by leaves- derived biosorbents. Environ. Chem. Lett. 2019, 17, 755–766. [Google Scholar] [CrossRef]
- Bulgariu, L.; Bulgariu, D. Functionalized soy waste biomass—A novel environmental-friendly biosorbent for the removal of heavy metals from aqueous solution. J. Clean. Prod. 2018, 197, 875–885. [Google Scholar] [CrossRef]
- Singh, E.; Kumar, A.; Mishra, R.; You, S.; Singh, L.; Kumar, S.; Kumar, R. Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution. Bioresour. Technol. 2021, 320, 124278. [Google Scholar] [CrossRef]
- Ungureanu, G.; Patras, A.; Cara, I.G.; Sturza, R.; Ghendov Mosanu, A. Innovative Recovery of Winemaking Waste for Effective Lead Removal from Wastewater. Agronomy 2022, 12, 604. [Google Scholar] [CrossRef]
- Petrović, J.T.; Stojanović, M.D.; Milojković, J.V.; Petrović, M.S.; Šoštarić, T.D.; Laušević, M.D.; Mihajlović, M.L. Alkali modified hydrochar of grape pomace as a perspective adsorbent of Pb 2+ from aqueous solution. J. Environ. Manag. 2020, 182, 292–300. [Google Scholar] [CrossRef]
- Jin, Q.; Wang, Z.; Feng, Y.; Kim, Y.-T.; Stewart, A.C.; O’Keefe, S.F.; Neilson, A.P.; He, Z.; Huang, H. Grape pomace and its secondary waste management: Biochar production for a broad range of lead (Pb) removal from water. Environ. Res. 2020, 186, 109442. [Google Scholar] [CrossRef]
- Melia, P.M.; Busquets, R.; Ray, S.; Cundy, A.B. Agricultural wastes from wheat, barley, flax and grape for the efficient removal of Cd from contaminated water. RSC Adv. 2018, 8, 40378–40386. [Google Scholar] [CrossRef]
- Trakal, L.; Veselská, V.; Šafařík, I.; Vítková, M.; Číhalová, S.; Komárek, M. Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour. Technol. 2015, 203, 318–324. [Google Scholar] [CrossRef]
- Michálková, Z.; Komárek, M.; Šillerová, H.; Della Puppa, L.; Joussein, E.; Bordas, F.; Vaněk, A.; Vaněk, O.; Ettler, V. Evaluating the potential of three Fe- and Mn-(nano)oxides for the stabilization of Cd, Cu and Pb in contaminated soils. J. Environ. Manag. 2014, 146, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, E.; Szczerkowska, D. Sorption from multicomponent solutions on freeze dried chitosan. Ecol. Chem. Eng. A 2010, 17, 313–322. [Google Scholar]
- Shishehgarha, F.; Makhlouf, J.; Ratti, C. Freeze-drying characteristics of strawberries. Dry. Technol. 2002, 20, 131–145. [Google Scholar] [CrossRef]
- Chakraborty, R.; Saha, A.K.; Bhattacharya, P. Modeling and simulation of parametric sensivity in primary freeze-drying of foodstuffs. Sep. Purif. Technol. 2006, 49, 258–263. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Lenart, A.; Kawka, P. Influence of freeze-drying temperature and drying methods on selected properties of dried pumpkin. Acta Agrophysica 2013, 20, 39–51. [Google Scholar]
- Krol, S.; Nawirska, A. Co-removal of heavy metal ions with pomace in a dynamic system. Acta Sci. Pol. Technol. Aliment. 2003, 2, 21–29. [Google Scholar]
- Farinella, N.V.; Matos, G.D.; Arruda, M.A.Z. Grape bagasse as a potential biosorbent of metals in effluent treatments. Bioresour. Technol. 2007, 98, 1940–1946. [Google Scholar] [CrossRef]
- Ring, T.A. Fundamentals of Ceramic Powder Processing and Synthesis, 1st ed.; Academic Press: Cambridge, MA, USA, 1996; ISBN 978-0125889308. [Google Scholar]
- Martínez, M.; Miralles, N.; Hidalgo, S.; Fiol, N.; Villaescusa, I.; Poch, J. Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste. J. Hazard. Mater. 2006, 133, 203–211. [Google Scholar] [CrossRef]
- Miralles, N.; Valderrama, C.; Casas, I.; Martínez, M.; Florido, A. Cadmium and Lead Removal from Aqueous Solution by Grape Stalk Wastes: Modeling of a Fixed-Bed Column. J. Chem. Eng. Data 2010, 55, 3548–3554. [Google Scholar] [CrossRef]
- Li, H.Y.; Yao, D.H.; Feng, Q.J.; Zeng, H.B.; Liang, J.M.; Zhou, Z.; Tian, Y.; Zhou, N.; Lu, X.Y. Adsorption of Cd(II) and Pb(II) on biochars derived from grape vine shoots. Desalination Water Treat. 2018, 118, 195–204. [Google Scholar] [CrossRef]
- Sardella, M.F.; Gimenez, M.; Navas, C.; Morandi, C.; Deiana, C.; Sapag, K. Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium. J. Environ. Chem. Eng. 2015, 3, 253–260. [Google Scholar] [CrossRef]
- Liu, C.-C.; Kuang-Wang, M.; Li, Y.-S. Removal of Nickel from Aqueous Solution Using Wine Processing Waste Sludge. Ind. Eng. Chem. Res. 2005, 44, 1438–1445. [Google Scholar] [CrossRef]
- Villaescusa, I.; Fiol, N.; Martínez, M.; Miralles, N.; Poch, J.; Serarols, J. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res. 2004, 38, 992–1002. [Google Scholar] [CrossRef]
- da Silva, C.M.S.; da Boit Martinello, K.; Lütke, S.F.; Godinho, M.; Perondi, D.; Silva, L.F.O.; Dotto, G.L. Pyrolysis of grape bagasse to produce char for Cu(II) adsorption: A circular economy perspective. Biomass Convers. Biorefinery 2024, 14, 3947–3964. [Google Scholar] [CrossRef]
- Chand, R.; Narimura, K.; Kawakita, H.; Ohto, K.; Watari, T.; Inoue, K. Grape waste as a biosorbent for removing Cr(VI) from aqueous solution. J. Hazard. Mater. 2009, 163, 245–250. [Google Scholar] [CrossRef]
- Vikrant, K.; Kim, K.-H. Nanomaterials for the Adsorptive Treatment of Hg(II) Ions from Water. Chem. Eng. J. 2019, 358, 264–282. [Google Scholar] [CrossRef]
- Zúñiga-Muro, N.M.; Bonilla-Petriciolet, A.; Mendoza-Castillo, D.I.; Reynel-Ávila, H.E.; Duran-Valle, C.J.; Ghalla, H.; Sellaoui, L. Recovery of grape waste for the preparation of adsorbents for water treatment: Mercury removal. J. Environ. Chem. Eng. 2020, 8, 103738. [Google Scholar] [CrossRef]
- del Sole, R.; Alvaro, M.; Lucia, M. Green grape marc biosorbents preparation for mercury removal in aqueous media. Chem. Ind. Chem. Eng. Q. 2023, 29, 1–10. [Google Scholar] [CrossRef]
- Carvalho, F.L.; Pinto, D.; Schio, R.R.; dos Santos, J.P.; Ketzer, F.; Silva, L.F.O.; Dotto, G.L. Polishing of painting process effluents through adsorption with biochar from winemaking residues. Environ. Sci. Pollut. Res. 2022, 29, 66348–66358. [Google Scholar] [CrossRef] [PubMed]
- Gelain, L.; Antunes, M.; Crespo, J.S.; Giovanela, M. Removal of Zinc(II) from Aqueous Solutions using an Eco-Friendly Biosorbent Originating from the Winery Industry. Sep. Sci. Technol. 2014, 49, 2212–2220. [Google Scholar] [CrossRef]
- Sen, T.K.; Gomez, D. Adsorption of zinc (Zn2+) from aqueous solution on natural bentonite. Desalination 2011, 267, 286. [Google Scholar] [CrossRef]
- Sánchez-Ponce, L.; Díaz-de-Alba, M.; Casanueva-Marenco, M.J.; Gestoso-Rojas, J.; Ortega-Iguña, M.; Galindo-Riaño, M.D.; Granado-Castro, M.D. Potential Use of Low-Cost Agri-Food Waste as Biosorbents for the Removal of Cd(II), Co(II), Ni(II) and Pb(II) from Aqueous Solutions. Separations 2022, 9, 309. [Google Scholar] [CrossRef]
- Rodríguez-Ramos, F.; Cañas-Sarazúa, R.; Briones-Labarca, V. Pisco grape pomace: Iron/copper speciation and antioxidant properties, towards their comprehensive utilization. Food Biosci. 2022, 47, 101781. [Google Scholar] [CrossRef]
- McKay, G.; Porter, J.F. Equilibrium parameters for the sorption of copper, cadmium and zinc ions onto peat. J. Chem. Technol. Biotechnol. 1997, 69, 309–320. [Google Scholar] [CrossRef]
- Xu, X.; Cao, X.; Zhao, L.; Wang, H.; Yu, H.; Gao, B. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ. Sci. Pollut. Res. 2013, 20, 358–368. [Google Scholar] [CrossRef]
- Trakal, L.; Bingol, D.; Pohorely, M.; Hruska, M.; Komarek, M. Geochemical and spectroscopic investigations of Cd and Pb sorption mechanisms on contrasting biochars: Engineering implications. Bioresour. Technol. 2014, 171, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Demiral, H.; Güngör, C. Adsorption of Copper(II) from Aqueous Solutions on Activated Carbon Prepared from Grape Bagasse. J. Clean. Prod. 2016, 124, 103–113. [Google Scholar] [CrossRef]
- Karimi, H.; Mahdavi, S.; Hasanzadeh, N.; Karimi, R. The effect of biochar on relative water content, ion leakage, chlorophyll, phosphorus and rhizosphere soil cadmium availability in two grape varieties in the exposure of cadmium stress. Agric. Eng. 2024, 46, 4. [Google Scholar] [CrossRef]
- Karaca, A. Effect of organic wastes on the extractability of cadmium, copper, nickel, and zinc in soil. Geoderma 2004, 122, 297–303. [Google Scholar] [CrossRef]
- Korz, S.; Parvin, S.; Aponte, H.; Buchmann, C.; Diehl, D.; Muñoz, K. The Use of Grape Pomace as Soil Fertilizer: A Microcosm Study on Available C and N and Consequences for Microbial Biomass, Structure, and Catabolic Responses. ACS Sustain. Resour. Manag. 2024, 1, 2428–2438. [Google Scholar] [CrossRef]
- Ohashi, T.; Sugimoto, K.; Sasaki, Y.; Hisamoto, M. Effect of wine pomace extract on dechlorination of chloroethenes in soil suspension. Bioresour. Bioprocess. 2023, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Marín-Benito, J.M.; Brown, C.D.; Herrero-Hernandez, E.; Arienzo, M.; S’anchez-Martín, M.J.; Rodríguez-Cruz, M.S. Use of raw or incubated organic wastes as amendments in reducing pesticide leaching through soil columns. Sci. Total Environ. 2013, 463–464, 589–599. [Google Scholar] [CrossRef]
- Kulkarni, S.R.; Nighojkar, A.; Kandasubramanian, B. Aqueous Adsorption of Pharmaceutical Pollutants on Biochar: A Review on Physicochemical Characteristics, Classical Sorption Models, and Advancements in Machine Learning Techniques. Water Air Soil. Pollut. 2023, 234, 684. [Google Scholar] [CrossRef]
- Yoon, J.-Y.; Kim, J.E.; Song, H.J.; Oh, K.B.; Jo, J.W.; Yang, Y.-H.; Lee, S.H.; Kang, G.; Kim, H.J.; Choi, Y.-K. Assessment of adsorptive behaviors and properties of grape pomace-derived biochar as adsorbent for removal of cymoxanil pesticide. Environ. Technol. Innov. 2021, 21, 101242. [Google Scholar] [CrossRef]
- Gavrilas, S.; Calinovici, I.; Chis, S.; Ursachi, C.-S.; Rat, M.; Munteanu, F.-D. White Grape Pomace Valorization for Remediating Purposes. Appl. Sci. 2022, 12, 1997. [Google Scholar] [CrossRef]
- Rodríguez-Cruz, M.S.; Herrero-Hernández, E.; Ordax, J.M.; Marín-Benito, J.M.; Draoui, K.; Sánchez-Martín, M.J. Adsorption of pesticides by sewage sludge, grape marc, spent mushroom substrate and by amended soils. Int. J. Environ. Anal. Chem. 2012, 92, 933–948. [Google Scholar] [CrossRef]
- Tucker, S.; Dumitriu, G.-D.; Teodosiu, C. Pesticides Identification and Sustainable Viticulture Practices to Reduce Their Use: An Overview. Molecules 2022, 27, 8205. [Google Scholar] [CrossRef]
- Benkhemkhem, K.N.; Bourahla, S.; Belayachi, H.; Nemchi, F.; Belhakem, M. Study of the adsorption isotherm of 2-mercaptobenzothiazole by activated carbon based on grape marc: Linear and non-linear method. J. Dispers. Sci. Technol. 2024, 1–13. [Google Scholar] [CrossRef]
- Takeshita, V.; Mendes, K.F.; Pimpinato, R.F.; Tornisielo, V.L. Adsorption Isotherms of Diuron and Hexazinone in Drinking Water Using Four Agro-Industrial Residues. Planta Daninha 2020, 38, e020216260. [Google Scholar] [CrossRef]
- Marín-Benito, J.M.; Herrero-Hernández, E.; Andrades, M.S.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Effect of different organic amendments on the dissipation of linuron, diazinon and myclobutanil in an agricultural soil incubated for different time periods. Sci. Total Environ. 2014, 476–477, 611–621. [Google Scholar] [CrossRef]
- Gabur, G.-D.; Teodosiu, C.; Fighir, D.; Cotea, V.V.; Gabur, I. From Waste to Value in Circular Economy: Valorizing Grape Pomace Waste through Vermicomposting. Agriculture 2024, 14, 1529. [Google Scholar] [CrossRef]
Biomass | Thermal Process | Carbonaceous Materials | Contaminants | Conditions | Initial Concentration | Maximum Adsorption Capacities | Observations | Adsorption Isotherms | References |
---|---|---|---|---|---|---|---|---|---|
Merlot grape marc | Biorefinery | Raw feedstock | Pb2+ | pH 5.5, 22 °C | 20 mg/L | 40.14 mg/g | - | Langmuir, non-linear | [53] |
Sauvignon Blanc grape marc | Biorefinery | Raw feedstock | Pb2+ | pH 5.5, 22 °C | 20 mg/L | 63.76 mg/g | - | Langmuir, non-linear | [53] |
Grape pomace | Hydrothermal | KOH-activated hydrochar | Pb2+ | pH 5 | 40–180 mg/L | 137 mg/g | - | Langmuir, Freudlich and Sips | [54] |
Grape pomace | Pyrolysis | Biochar | Pb2+ | 700 °C, 0.5 h | 300 mg/L | 300 mg/L | - | Langmuir, Freudlich and Temkin | [55] |
Grape pomace | Pyrolysis | Biochar | Cd2+ | Magnetization | 43 mg/L | - | Even when multiple metals were present, | - | [58] |
Grape pomace | Oven-dried | Raw feedstock | Pb2+, Cd2+ | pH 7.0 for Cd2+; pH 3.0 for Pb2+ | 5–600 mg/L | - | Pb2+ showed a slower but higher adsorption affinity than Cd2+ | Langmuir, linear | [64] |
Grape pomace | Oven-dried | Raw feedstock | Pb2+, Cd2+ | pH 5, 45 °C, 2 h | 300 mg/L | 357.14 mg/g—Pb2+, 156.25 mg/g—Cd2+ | - | Langmuir and Freundlich | [20] |
Grape pomace | Oven-dried | Raw feedstock | Pb2+, Cd2+ | pH 5.5, 20 °C | 0.05 mmol/L—Pb2+ 0.07 mmol/L—Cd2+ | 0.24 mmol/g for Pb2+, Cd2+ | The presence of NaCl and NaClO4 reduced metal sorption | Langmuir and Freundlich | [66] |
Grape pomace | Pyrolysis | Biochar | Pb2+, Cd2+ | 300 °C, 450 °C, 600 °C, pH > 3 | 5–1000 mg/L | 250.81, 327.31, 377.36 mg/g for Cd2+, 156.12, 237.25, 258.86 mg/g for Pb2+. | - | Langmuir and Freundlich | [68] |
Grape pomace | Carbonization | Raw feedstock | Pb2+, Cd2+ | pH 5.5—Pb2+, pH 6—Cd2+, 800 °C, 1.75 h | 1.31 mg/L | 98% | - | Langmuir and Freundlich | [69] |
Wine processing waste sludge | Air-dried | Raw feedstock | Ni | 50 °C | 30, 45, 60, 75, 90 mg/L | 66.55 μmol/g | - | Langmuir and Freundlich | [70] |
Grape bagasse | Dried | H3PO4 -activated | Cu2+ | - | 10–100 mg/L | 43.47 mg/g | Langmuir, Freundlich, Temkin and Dubinin–Radushkevich | [85] | |
Grape bagasse | Pyrolysis | Char | Cu2+ | pH 5.5, adsorbent dose of 1.5 g/L | 30, 50, 80, 120, 200 mg/L | 42 mg/g | Char synthesized at 700 °C is most effective | Langmuir and Freundlich | [72] |
Grape waste | - | Gel | Cr6+ | pH 4 | - | 1.91 mol/kg | The adsorption capacity increases with increasing solute concentration | Langmuir | [73] |
Grape bagasse | Pyrolysis | Char | Hg2+ | pH 4, 40 °C | 100 and 200 mg/L | 45.9 mg/g | - | Langmuir | [75] |
Green grape marc | Sun-dried | Raw feedstock | Hg2+ | pH 5–7 | 78 mg/L | 36.39 mg/g | - | Langmuir, Freundlich, Temkin, and D-R | [76] |
Grape pomace | Pyrolysis | Biochar | Ni2+, Zn2+ | 1 h | 0.2 mg/L of Ni2+, 2.0 mg/L of Zn2+ | - | - | [77] | |
Isabel grape bagasse | Freeze-dried | Raw feedstock | Zn2+ | pH 3–5, 22 °C, 20 mg biosorbent mass | 100 mg/L | 192.3 mg/L at pH 3 246.3 mg/L at pH 5 | - | Langmuir and Freundlich, linear | [78] |
Cabernet Sauvignon grape pomace | Dried | Raw feedstock | Cd2+, Ni2+, Co2+, Pb2+ | 24 h, 10 g/L biosorbent | 1 mmol/L | 0.34 mg/g Cd2+, 0.54 mg/g Ni2+, 0.28 mg/g Co2+, 15.12 mg/g Pb2+ | - | - | [80] |
Biomass | Thermal Process | Carbonaceous Materials | Contaminants | Conditions | Maximum Adsorption Capacities | Observations | References |
---|---|---|---|---|---|---|---|
Grape pomace | Pyrolysis | Biochar | Cymoxanil | 350 °C, 2 h 550 °C, 2 h 750 °C, 2 h | 161.02 mg CM/g BC for 350 °C 77.57 mg CM/g BC for 550 °C 45.64 mg CM/g BC for 750 °C | - | [92] |
White grape pomace | Refrigeration Dried | - | - | 30 °C | the lowest pesticide content present in the final extract | grape pomace can be used as well for obtaining extracts with different conditions | [93] |
Grape marc | Air-dried | Raw feedstock | Diazinon Linuron Myclobutanil | 1 and 12 months outdoor incubation | highest adsorption of linuron and diazinon | showed the highest adsorption of diazinon, linuron | [94] |
Muscat Bailey wine pomace extract | - | Extract | tetrachloroethene (PCE), trichloroethene (TCE), dichloroethene (DCE), vinyl chloride (VC) | Microbial degradation with Dehalococcoides spp, pH 7–8 | - | lactic acid, and tartaric acid in wine pomace extract function as hydrogen donors in the anaerobic microbial degradation of chloroethene | [89] |
Grape pomace | - | Raw feedstock | Diazinon Linuron Myclobutanil | - | - | grape pomace prevents diazinon from leaching through its lignin and cellulose | [90] |
Grape marc | Pyrolysis | H3PO4—activated biochar | 2-mercaptobenzothiazole | pH = 8, 45 °C, adsorbent dose 0.8 g/L | 99% | - | [95] |
White grape bagasse | - | Raw feedstock | Diuron hexazinone | 0.1 g quantity of grape bagasse was added to 10 mL of potable water contaminated with herbicide | 51.15% 21.48% | great potentials in the adsorption of polar-type herbicides | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabur, G.-D.; Dumitrașcu, A.-I.; Teodosiu, C.; Cotea, V.V.; Gabur, I. Alternative Biosorbents Based on Grape Pomace: Reducing Heavy Metals and Pesticides. Toxics 2025, 13, 408. https://doi.org/10.3390/toxics13050408
Gabur G-D, Dumitrașcu A-I, Teodosiu C, Cotea VV, Gabur I. Alternative Biosorbents Based on Grape Pomace: Reducing Heavy Metals and Pesticides. Toxics. 2025; 13(5):408. https://doi.org/10.3390/toxics13050408
Chicago/Turabian StyleGabur, Georgiana-Diana, Anamaria-Ioana Dumitrașcu, Carmen Teodosiu, Valeriu V. Cotea, and Iulian Gabur. 2025. "Alternative Biosorbents Based on Grape Pomace: Reducing Heavy Metals and Pesticides" Toxics 13, no. 5: 408. https://doi.org/10.3390/toxics13050408
APA StyleGabur, G.-D., Dumitrașcu, A.-I., Teodosiu, C., Cotea, V. V., & Gabur, I. (2025). Alternative Biosorbents Based on Grape Pomace: Reducing Heavy Metals and Pesticides. Toxics, 13(5), 408. https://doi.org/10.3390/toxics13050408