Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,284)

Search Parameters:
Keywords = Cardiovascular disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1329 KiB  
Article
The Multi-Branch Deep-Learning-Based Approach to Heart Dysfunction Classification
by Krzysztof Hryniów, Bartosz Puszkarski and Marcin Iwanowski
Appl. Sci. 2025, 15(15), 8765; https://doi.org/10.3390/app15158765 (registering DOI) - 7 Aug 2025
Abstract
Cardiovascular diseases (CVDs), which remain globally one of the most common causes of death, are usually diagnosed based on the electrocardiogram (ECG) signal. To support human experts, modern deep-learning models are used for CVD classification problems as an early warning. This article proposes [...] Read more.
Cardiovascular diseases (CVDs), which remain globally one of the most common causes of death, are usually diagnosed based on the electrocardiogram (ECG) signal. To support human experts, modern deep-learning models are used for CVD classification problems as an early warning. This article proposes a novel multi-branch architecture focused on processing various modalities of the ECG signal in parallel branches, replacing typical single-input architectures. Each branch is given separate input in the form of the raw signal, domain knowledge, the wavelet transform of the signal, or the signal with drift removed. The proposed method is based on deep-learning core models that can incorporate various modern neural networks. It was thoroughly tested on N-BEATS, LSTM, and GRU neural networks. The proposed architecture allows the retention of the speed of the neural network. At the same time, the combination of independently computed branches improves model performance, which finally exceeds the performance obtained by classical single-branch architectures. Full article
17 pages, 4768 KiB  
Article
New Functional Food for the Treatment of Gastric Ulcer Based on Bioadhesive Microparticles Containing Sage Extract: Anti-Ulcerogenic, Anti-Helicobacter pylori, and H+/K+-ATPase-Inhibiting Activity Enhancement
by Yacine Nait Bachir, Ryma Nait Bachir, Meriem Medjkane, Nouara Boudjema and Roberta Foligni
Foods 2025, 14(15), 2757; https://doi.org/10.3390/foods14152757 (registering DOI) - 7 Aug 2025
Abstract
Salvia officinalis is an aromatic plant of Mediterranean origin traditionally used to treat inflammatory, cardiovascular, endocrine, and digestive diseases. In this work, the ability of the Salvia officinalis extract in the treatment of gastric ulcers was evaluated, and an innovative administration system was [...] Read more.
Salvia officinalis is an aromatic plant of Mediterranean origin traditionally used to treat inflammatory, cardiovascular, endocrine, and digestive diseases. In this work, the ability of the Salvia officinalis extract in the treatment of gastric ulcers was evaluated, and an innovative administration system was proposed to increase the therapeutic effect of this plant. Salvia officinalis ethanolic extract was prepared and analyzed by HPLC/UV-DAD and encapsulated in a matrix based on gelatin and pectin using an emulsion–coacervation process. The prepared microcapsules were analyzed by laser particle size, optical microscopy, in vitro dissolution kinetics, and ex vivo bioadhesion. In order to determine the action mechanism of Salvia officinalis extract, in the treatment of gastric ulcer, the in vivo anti-ulcerogenic activity in rats, using the ulcer model induced by ethanol; the in vivo anti-Helicobacter pylori activity; and in vitro inhibitory activity of H+/K+-ATPase were carried out. These three biological activities were evaluated for ethanolic extract and microcapsules to determine the effect of formulation on biological activities. Ethanolic extract of Salvia officinalis was mainly composed of polyphenols (chlorogenic acid 7.43%, rutin 21.74%, rosmarinic acid 5.88%, and quercitrin 14.39%). Microencapsulation of this extract allowed us to obtain microcapsules of 104.2 ± 7.5 µm in diameter, an encapsulation rate of 96.57 ± 3.05%, and adequate bioadhesion. The kinetics of in vitro dissolution of the extract increase significantly after its microencapsulation. Percentages of ulcer inhibition for 100 mg/kg of extract increase from 71.71 ± 2.43% to 89.67 ± 2.54% after microencapsulation. In vitro H+/K+-ATPase-inhibiting activity resulted in an IC50 of 86.08 ± 8.69 µM/h/mg protein for free extract and 57.43 ± 5.78 µM/h/mg protein for encapsulated extract. Anti-Helicobacter pylori activity showed a similar Minimum Inhibitory Concentration (MIC) of 50 µg/mL for the extract and microcapsules. Salvia officinalis ethanolic extract has a significant efficacy for the treatment of gastric ulcer; its mechanism of action is based on its gastroprotective effect, anti-Helicobacter pylori, and H+/K+-ATPase inhibitor. Moreover, the microencapsulation of this extract increases its gastroprotective and H+/K+-ATPase-inhibiting activities significantly. Full article
Show Figures

Figure 1

20 pages, 2937 KiB  
Review
Review of Cardiovascular Mock Circulatory Loop Designs and Applications
by Victor K. Tsui and Daniel Ewert
Bioengineering 2025, 12(8), 851; https://doi.org/10.3390/bioengineering12080851 (registering DOI) - 7 Aug 2025
Abstract
Cardiovascular diseases remain a leading cause of mortality in the United States, driving the need for advanced cardiovascular devices and pharmaceuticals. Mock Circulatory Loops (MCLs) have emerged as essential tools for in vitro testing, replicating pulsatile pressure and flow to simulate various physiological [...] Read more.
Cardiovascular diseases remain a leading cause of mortality in the United States, driving the need for advanced cardiovascular devices and pharmaceuticals. Mock Circulatory Loops (MCLs) have emerged as essential tools for in vitro testing, replicating pulsatile pressure and flow to simulate various physiological and pathological conditions. While many studies focus on custom MCL designs tailored to specific applications, few have systematically reviewed their use in device testing, and none have assessed their broader utility across diverse biomedical domains. This comprehensive review categorizes MCL designs into three types: mechanical, computational, and hybrid. Applications are classified into four major areas: Cardiovascular Devices Testing, Clinical Training and Education, Hemodynamics and Blood Flow Studies, and Disease Modeling. Most existing MCLs are complex, highly specialized, and difficult to reproduce, highlighting the need for simplified, standardized, and programmable hybrid systems. Improved validation and waveform fidelity—particularly through incorporation of the dicrotic notch and other waveform parameters—are critical for advancing MCL reliability. Furthermore, integration of machine learning and artificial intelligence holds significant promise for enhancing waveform analysis, diagnostics, predictive modeling, and personalized care. In conclusion, the development of MCLs should prioritize standardization, simplification, and broader accessibility to expand their impact across biomedical research and clinical translation. Full article
(This article belongs to the Special Issue Cardiovascular Models and Biomechanics)
27 pages, 830 KiB  
Review
Influence of Exercise on Oxygen Consumption, Pulmonary Ventilation, and Blood Gas Analyses in Individuals with Chronic Diseases
by Mallikarjuna Korivi, Mohan Krishna Ghanta, Poojith Nuthalapati, Nagabhishek Sirpu Natesh, Jingwei Tang and LVKS Bhaskar
Life 2025, 15(8), 1255; https://doi.org/10.3390/life15081255 (registering DOI) - 7 Aug 2025
Abstract
The increasing prevalence of chronic metabolic diseases poses a significant challenge in the modern world, impacting healthcare systems and individual life expectancy. The World Health Organization (WHO) recommends that older adults (65+ years) engage in 150–300 min of moderate-intensity or 75–150 min of [...] Read more.
The increasing prevalence of chronic metabolic diseases poses a significant challenge in the modern world, impacting healthcare systems and individual life expectancy. The World Health Organization (WHO) recommends that older adults (65+ years) engage in 150–300 min of moderate-intensity or 75–150 min of vigorous-intensity physical activity, alongside muscle-strengthening and balance-training exercises at least twice a week. However, nearly one-third of the adult population (31%) is physically inactive, which increases the risk of developing obesity, type 2 diabetes, cardiovascular diseases, hypertension, and psychological issues. Physical activity in the form of aerobic exercise, resistance training, or a combination of both is effective in preventing and managing these metabolic diseases. In this review, we explored the effects of exercise training, especially on respiratory and pulmonary factors, including oxygen consumption, pulmonary ventilation, and blood gas analyses among adults. During exercise, oxygen consumption can increase up to 15-fold (from a resting rate of ~250 mL/min) to meet heightened metabolic demands, enhancing tidal volume and pulmonary efficiency. During exercise, the increased energy demand of skeletal muscle leads to increases in tidal volume and pulmonary function, while blood gases play a key role in maintaining the pH of the blood. In this review, we explored the influence of age, body composition (BMI and obesity), lifestyle factors (smoking and alcohol use), and comorbidities (diabetes, hypertension, neurodegenerative disorders) in the modulation of these physiological responses. We underscored exercise as a potent non-pharmacological intervention for improving cardiopulmonary health and mitigating the progression of metabolic diseases in aging populations. Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

36 pages, 928 KiB  
Review
Reprogramming Atherosclerosis: Precision Drug Delivery, Nanomedicine, and Immune-Targeted Therapies for Cardiovascular Risk Reduction
by Paschalis Karakasis, Panagiotis Theofilis, Panayotis K. Vlachakis, Konstantinos Grigoriou, Dimitrios Patoulias, Antonios P. Antoniadis and Nikolaos Fragakis
Pharmaceutics 2025, 17(8), 1028; https://doi.org/10.3390/pharmaceutics17081028 (registering DOI) - 7 Aug 2025
Abstract
Atherosclerosis is a progressive, multifactorial disease driven by the interplay of lipid dysregulation, chronic inflammation, oxidative stress, and maladaptive vascular remodeling. Despite advances in systemic lipid-lowering and anti-inflammatory therapies, residual cardiovascular risk persists, highlighting the need for more precise interventions. Targeted drug delivery [...] Read more.
Atherosclerosis is a progressive, multifactorial disease driven by the interplay of lipid dysregulation, chronic inflammation, oxidative stress, and maladaptive vascular remodeling. Despite advances in systemic lipid-lowering and anti-inflammatory therapies, residual cardiovascular risk persists, highlighting the need for more precise interventions. Targeted drug delivery represents a transformative strategy, offering the potential to modulate key pathogenic processes within atherosclerotic plaques while minimizing systemic exposure and off-target effects. Recent innovations span a diverse array of platforms, including nanoparticles, liposomes, exosomes, polymeric carriers, and metal–organic frameworks (MOFs), engineered to engage distinct pathological features such as inflamed endothelium, dysfunctional macrophages, oxidative microenvironments, and aberrant lipid metabolism. Ligand-based, biomimetic, and stimuli-responsive delivery systems further enhance spatial and temporal precision. In parallel, advances in in-silico modeling and imaging-guided approaches are accelerating the rational design of multifunctional nanotherapeutics with theranostic capabilities. Beyond targeting lipids and inflammation, emerging strategies seek to modulate immune checkpoints, restore endothelial homeostasis, and reprogram plaque-resident macrophages. This review provides an integrated overview of the mechanistic underpinnings of atherogenesis and highlights state-of-the-art targeted delivery systems under preclinical and clinical investigation. By synthesizing recent advances, we aim to elucidate how precision-guided drug delivery is reshaping the therapeutic landscape of atherosclerosis and to chart future directions toward clinical translation and personalized vascular medicine. Full article
Show Figures

Figure 1

12 pages, 847 KiB  
Article
Relationship Between Oxidative Stress and Cardiovascular Risk in Adolescents in Montenegro
by Aleksandra Klisic, Marija Bozovic, Barbara Ostanek, Janja Marc, Paschalis Karakasis, Filiz Mercantepe and Jelena Kotur-Stevuljevic
Int. J. Mol. Sci. 2025, 26(15), 7650; https://doi.org/10.3390/ijms26157650 (registering DOI) - 7 Aug 2025
Abstract
The pathophysiological mechanism linking oxidative stress and cardiovascular disease (CVD) is not completely elucidated, especially in young individuals. This study aimed to examine redox status in an adolescent Montenegrin population in relation to cardiovascular risk score (CVRS). A cohort of 182 adolescents (76% [...] Read more.
The pathophysiological mechanism linking oxidative stress and cardiovascular disease (CVD) is not completely elucidated, especially in young individuals. This study aimed to examine redox status in an adolescent Montenegrin population in relation to cardiovascular risk score (CVRS). A cohort of 182 adolescents (76% girls) aged between 16 and 19 was examined. Total antioxidant status (TAS), superoxide dismutase (SOD), advanced oxidation protein products (AOPPs), malondialdehyde (MDA), and total oxidant status (TOS) were determined. Pro-oxy score, anti-oxy score, and oxy score were calculated as comprehensive parameters of overall redox homeostasis status. CVRS was calculated by summarizing several risk factors (i.e., sex, age, obesity, hypertension, dyslipidemia, impaired fasting glucose, and smoking). A significant positive correlation between CVRS and TOS (rho = 0.246, p = 0.001) and AOPP (rho = 0.231, p = 0.002) and MDA (rho = 0.339, p < 0.001), respectively, and a negative correlation with the TAS/TOS ratio (rho= −0.208, p = 0.005) was observed. An increase in pro-oxy scores as well as oxy scores with CVRS risk increase were observed. Anti-oxy scores did not differ between CVRS subgroups. There is a significant relationship between cardiovascular risk score and oxidative stress in the adolescent Montenegrin population. These findings support the possibility for improvement of age-specific CVD risk algorithms by adding redox homeostasis parameters in addition to conventional ones. Full article
Show Figures

Figure 1

21 pages, 583 KiB  
Review
Diagnosis and Emerging Biomarkers of Cystic Fibrosis-Related Kidney Disease (CFKD)
by Hayrettin Yavuz, Manish Kumar, Himanshu Ballav Goswami, Uta Erdbrügger, William Thomas Harris, Sladjana Skopelja-Gardner, Martha Graber and Agnieszka Swiatecka-Urban
J. Clin. Med. 2025, 14(15), 5585; https://doi.org/10.3390/jcm14155585 - 7 Aug 2025
Abstract
As people with cystic fibrosis (PwCF) live longer, kidney disease is emerging as a significant comorbidity that is increasingly linked to cardiovascular complications and progression to end-stage kidney disease. In our recent review, we proposed the unifying term CF-related kidney disease (CFKD) to [...] Read more.
As people with cystic fibrosis (PwCF) live longer, kidney disease is emerging as a significant comorbidity that is increasingly linked to cardiovascular complications and progression to end-stage kidney disease. In our recent review, we proposed the unifying term CF-related kidney disease (CFKD) to encompass the spectrum of kidney dysfunction observed in this population. Early detection of kidney injury is critical for improving long-term outcomes, yet remains challenging due to the limited sensitivity of conventional laboratory tests, particularly in individuals with altered muscle mass and unique CF pathophysiology. Emerging approaches, including novel blood and urinary biomarkers, urinary extracellular vesicles, and genetic risk profiling, offer promising avenues for identifying subclinical kidney damage. When integrated with machine learning algorithms, these tools may enable the development of personalized risk stratification models and targeted therapeutic strategies. This precision medicine approach has the potential to transform kidney disease management in PwCF, shifting care from reactive treatment of late-stage disease to proactive monitoring and early intervention. Full article
(This article belongs to the Special Issue Cystic Fibrosis: Clinical Manifestations and Treatment)
Show Figures

Figure 1

12 pages, 924 KiB  
Article
Houttuynia cordata Exhibits Anti-Inflammatory Activity Against Interleukin-1β-Induced Inflammation in Human Gingival Epithelial Cells: An In Vitro Study
by Ryo Kunimatsu, Sawako Ikeoka, Yuma Koizumi, Ayaka Odo, Izumi Tanabe, Yoshihito Kawashima, Akinori Kiso, Yoko Hashii, Yuji Tsuka and Kotaro Tanimoto
Dent. J. 2025, 13(8), 360; https://doi.org/10.3390/dj13080360 - 7 Aug 2025
Abstract
Background/Objectives: Periodontitis is a chronic infectious inflammatory disorder that affects the supporting structures of the teeth. The gingival epithelium plays a crucial role as a physical and immunological barrier, producing pro-inflammatory cytokines in response to microbial pathogens. Modulation of gingival epithelial function [...] Read more.
Background/Objectives: Periodontitis is a chronic infectious inflammatory disorder that affects the supporting structures of the teeth. The gingival epithelium plays a crucial role as a physical and immunological barrier, producing pro-inflammatory cytokines in response to microbial pathogens. Modulation of gingival epithelial function has been proposed as a therapeutic strategy to prevent the progression of periodontal disease. Houttuynia cordata, a perennial herb traditionally used in Asian medicine, is recognized for its anti-inflammatory properties, with documented benefits in the cardiovascular, respiratory, and gastrointestinal systems. However, its potential therapeutic role in oral pathologies, such as periodontitis, remains underexplored. This study aimed to investigate the anti-inflammatory effects of H. cordata extract on interleukin (IL)-1β-stimulated primary gingival keratinocytes (PGKs) subjected to IL-1β-induced inflammatory stress, simulating the conditions encountered during orthodontic treatment. Methods: Inflammation was induced in PGKs using IL-1β, and the impact of H. cordata extract pretreatment was assessed using quantitative real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and immunoblotting. Results: H. cordata extract significantly downregulated the mRNA and protein expression levels of tumor necrosis factor-alpha, IL-8, and intercellular adhesion molecule-1 in IL-1β-stimulated PGKs without inducing cytotoxicity. Conclusions: These findings suggest that H. cordata holds promise as a preventive agent against periodontitis by attenuating inflammatory responses in gingival epithelial tissues. We believe that our findings will inform the development of prophylactic interventions to reduce periodontitis risk in patients undergoing orthodontic therapy. Full article
(This article belongs to the Special Issue Dentistry in the 21st Century: Challenges and Opportunities)
Show Figures

Figure 1

29 pages, 443 KiB  
Review
Cardiac Rehabilitation in the Modern Era: Evidence, Equity, and Evolving Delivery Models Across the Cardiovascular Spectrum
by Anna S. Mueller and Samuel M. Kim
J. Clin. Med. 2025, 14(15), 5573; https://doi.org/10.3390/jcm14155573 - 7 Aug 2025
Abstract
CR is a cornerstone of secondary prevention for cardiovascular disease, offering well-established benefits across mortality, hospital readmission, functional capacity, and quality of life. Despite Class I guideline endorsements and decades of supporting evidence, CR remains vastly underutilized, particularly among women, racial and ethnic [...] Read more.
CR is a cornerstone of secondary prevention for cardiovascular disease, offering well-established benefits across mortality, hospital readmission, functional capacity, and quality of life. Despite Class I guideline endorsements and decades of supporting evidence, CR remains vastly underutilized, particularly among women, racial and ethnic minorities, older adults, and individuals in low-resource settings. This review synthesizes the current evidence base for CR, with emphasis on disease-specific benefits across different cardiovascular diseases, and highlights recent data on its role in expanding populations, including patients with HFpEF, older adults, patients with advanced heart failure, and those undergoing transcatheter interventions. We also examine persistent barriers to CR access and participation, including system-level and referral limitations, as well as patient-level disparities by age, sex, race and ethnicity, and socioeconomic status. Building on this, we explore innovative delivery models and recent policy initiatives such as hybrid programs and reimbursement reform, all designed to expand access, promote equity, and modernize CR delivery. The findings underscore the need for continued investment, advocacy, and innovation to ensure equitable access to CR and its life-saving benefits across the full cardiovascular care continuum. Full article
(This article belongs to the Special Issue Cardiac Rehabilitation: Clinical Challenges and New Insights)
15 pages, 2691 KiB  
Review
SGLT2 Inhibitors: Multifaceted Therapeutic Agents in Cardiometabolic and Renal Diseases
by Ana Checa-Ros, Owahabanun-Joshua Okojie and Luis D’Marco
Metabolites 2025, 15(8), 536; https://doi.org/10.3390/metabo15080536 - 7 Aug 2025
Abstract
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce [...] Read more.
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce glycosuria, reduce hyperglycemia, and promote weight loss through increased caloric excretion. Beyond glycemic control, they modulate tubuloglomerular feedback, attenuate glomerular hyperfiltration, and exert systemic effects via natriuresis, ketone utilization, and anti-inflammatory pathways. Landmark trials (DAPA-HF, EMPEROR-Reduced, CREDENCE, DAPA-CKD) demonstrate robust reductions in heart failure (HF) hospitalizations, cardiovascular mortality, and chronic kidney disease (CKD) progression, irrespective of diabetes status. Adipose Tissue and Metabolic Effects: SGLT2is mitigate obesity-associated adiposopathy by shifting macrophage polarization (M1 to M2), reducing proinflammatory cytokines (TNF-α, IL-6), and enhancing adipose tissue browning (UCP1 upregulation) and mitochondrial biogenesis (via PGC-1α/PPARα). Modest weight loss (~2–4 kg) occurs, though compensatory hyperphagia may limit long-term effects. Emerging Applications: Potential roles in non-alcoholic fatty liver disease (NAFLD), polycystic ovary syndrome (PCOS), and neurodegenerative disorders are under investigation, driven by pleiotropic effects on metabolism and inflammation. Conclusions: SGLT2is represent a paradigm shift in managing T2DM, HF, and CKD, with expanding implications for metabolic syndrome. Future research should address interindividual variability, combination therapies, and non-glycemic indications to optimize their therapeutic potential. Full article
(This article belongs to the Special Issue Metabolic Modulators in Cardiovascular Disease Management)
Show Figures

Figure 1

13 pages, 1971 KiB  
Article
Clinical Outcomes of Iron Supplement Therapy in Non-Anemic Female CKD Stage 3 Patients with Low Serum Ferritin Level: A Multi-Institutional TriNetX Analysis
by Hsi-Chih Chen, Min-Tser Liao, Joshua Wang, Kuo-Wang Tsai, Chia-Chao Wu and Kuo-Cheng Lu
J. Clin. Med. 2025, 14(15), 5575; https://doi.org/10.3390/jcm14155575 - 7 Aug 2025
Abstract
Background/Objectives: Iron deficiency without anemia (IDWA) is common among female patients with chronic kidney disease (CKD), yet the clinical implications of iron therapy in this population remain uncertain. While iron supplementation is frequently used in anemic CKD patients, evidence regarding its outcomes [...] Read more.
Background/Objectives: Iron deficiency without anemia (IDWA) is common among female patients with chronic kidney disease (CKD), yet the clinical implications of iron therapy in this population remain uncertain. While iron supplementation is frequently used in anemic CKD patients, evidence regarding its outcomes in non-anemic, iron-deficient individuals is limited and conflicting. Methods: This retrospective cohort study utilized the multi-institutional TriNetX database to examine the 5-year outcomes of iron therapy in adult women with stage 3 CKD, normal hemoglobin (≥12 g/dL), normal mean corpuscular volume (MCV), and low serum ferritin (<100 ng/mL). Primary outcomes included all-cause mortality, major adverse cardiovascular events (MACE), acute kidney injury (AKI), pneumonia, progression to advanced CKD (estimated glomerular filtration rate ≤30 mL/min/1.73 m2), and gastrointestinal (GI) bleeding. Results: We identified 53,769 eligible non-anemic patients with stage 3 CKD, low serum ferritin levels, and normal MCV. Propensity score matching (1:1) was conducted on demographic variables to compare iron-treated (n = 6638) and untreated (n = 6638) cohorts. Over the 5-year follow-up, iron therapy in non-anemic females with stage 3 CKD, low ferritin levels, and iron supplementation was significantly associated with increased risks of MACE, AKI, pneumonia, CKD progression, and GI bleeding (log-rank p < 0.0001). No significant difference in all-cause mortality was observed. Data on transferrin saturation and the dosage of iron supplementation were unavailable. Conclusions: In non-anemic women with stage 3 CKD and low ferritin levels, iron supplementation was linked to increased MACE, renal, and pneumonia risks without evident survival benefits. These findings suggest that iron therapy in this group of patients may not confer cardiovascular benefit and may pose risks. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

15 pages, 676 KiB  
Review
Obstructive Sleep Apnea and Type 2 Diabetes: An Update
by Sandro Gentile, Vincenzo Maria Monda, Giuseppina Guarino, Ersilia Satta, Maria Chiarello, Giuseppe Caccavale, Edi Mattera, Raffaele Marfella and Felice Strollo
J. Clin. Med. 2025, 14(15), 5574; https://doi.org/10.3390/jcm14155574 - 7 Aug 2025
Abstract
Obstructive sleep apnea (OSA) syndrome is a severe, debilitating, and pervasive sleep disorder. OSA mainly affects people with obesity, type 2 diabetes mellitus (T2DM), hypertension, and dyslipidemia and is strongly associated with cardiovascular complications. Based on the bidirectional relationship between T2DM and OSA, [...] Read more.
Obstructive sleep apnea (OSA) syndrome is a severe, debilitating, and pervasive sleep disorder. OSA mainly affects people with obesity, type 2 diabetes mellitus (T2DM), hypertension, and dyslipidemia and is strongly associated with cardiovascular complications. Based on the bidirectional relationship between T2DM and OSA, the latter represents a risk factor for the former, and, vice versa, people with T2DM have a high risk of OSA. Mechanical and hormonal factors, inflammatory mediators, and a dysregulated autonomic nervous system contribute to the mechanisms underlying the disease. Treatment of OSA is necessary even if the available remedies are not always effective. In addition to traditional treatments, including lifestyle adaptations and bariatric surgery, CPAP equipment, i.e., a breathing device ensuring continuous positive pressure to keep the airways open during sleep, represents the most common treatment tool. More recently, pharmacological research has paved the way to newer seemingly effective therapeutic strategies involving, in particular, two hypoglycemic agent classes, i.e., sodium–glucose co-transporter 2 inhibitors (SGLT2-is) and glucagon-like peptide-1 (GLP-1) receptor agonists (GLP1-ras). This narrative review provides an update on all of the above. Full article
(This article belongs to the Special Issue Association Between Sleep Disorders and Diabetes)
Show Figures

Figure 1

25 pages, 1534 KiB  
Review
Recent Advances in Micro- and Nano-Enhanced Intravascular Biosensors for Real-Time Monitoring, Early Disease Diagnosis, and Drug Therapy Monitoring
by Sonia Kudłacik-Kramarczyk, Weronika Kieres, Alicja Przybyłowicz, Celina Ziejewska, Joanna Marczyk and Marcel Krzan
Sensors 2025, 25(15), 4855; https://doi.org/10.3390/s25154855 - 7 Aug 2025
Abstract
Intravascular biosensors have become a crucial and novel class of devices in healthcare, enabling the constant real-time monitoring of essential physiological parameters directly within the circulatory system. Recent developments in micro- and nanotechnology have relevantly improved the sensitivity, miniaturization, and biocompatibility of these [...] Read more.
Intravascular biosensors have become a crucial and novel class of devices in healthcare, enabling the constant real-time monitoring of essential physiological parameters directly within the circulatory system. Recent developments in micro- and nanotechnology have relevantly improved the sensitivity, miniaturization, and biocompatibility of these devices, thereby enabling their application in precision medicine. This review summarizes the latest advances in intravascular biosensor technologies, with a special focus on glucose and oxygen level monitoring, blood pressure and heart rate assessment, and early disease diagnostics, as well as modern approaches to drug therapy monitoring and delivery systems. Key challenges such as long-term biostability, signal accuracy, and regulatory approval processes are critical considerations. Innovative strategies, including biodegradable implants, nanomaterial-functionalized surfaces, and integration with artificial intelligence, are regarded as promising avenues to overcome current limitations. This review provides a comprehensive roadmap for upcoming research and the clinical translation of advanced intravascular biosensors with a strong emphasis on their transformative impact on personalized healthcare. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

15 pages, 980 KiB  
Article
Insights on Alcohol-Associated Liver Disease, a Decade of Data from National Survey
by Silpa Choday, Tamer Zahdeh, Paul Kang, Justin Reynolds and Robert Wong
Gastrointest. Disord. 2025, 7(3), 52; https://doi.org/10.3390/gidisord7030052 - 7 Aug 2025
Abstract
Background: Alcohol-associated liver disease (AALD) represents significant health burdens worldwide. This study aims to provide a comprehensive overview of the AALD outcomes that were incompletely understood. Methods: The current study utilizes data from the National Health and Nutrition and Examination Survey [...] Read more.
Background: Alcohol-associated liver disease (AALD) represents significant health burdens worldwide. This study aims to provide a comprehensive overview of the AALD outcomes that were incompletely understood. Methods: The current study utilizes data from the National Health and Nutrition and Examination Survey (NHANES) from 2011–2020, using a stratified, multistage probability cluster design. AALD in the NHANES was defined using clinical laboratory data and self-reported alcohol use, among which fibrosis-4 score of >2.67. Analysis is conducted using weighted, logistic, and Cox linear regression. Results: The initial sample included 23,206 participants aged 20 and older, with recorded cardiovascular status and AST/ALT levels. Participants reporting AALD had a higher percentage of college degrees (p < 0.001) and were more likely to be daily smokers. Asians exhibited the highest rates of AALD compared to other demographics (p < 0.001). The prevalence in private insurance is significantly greater than Medicaid, but the usage trends have been increasing in Medicaid. The trends of advanced fibrosis have been increasing in blacks and Asians, while they have been decreasing among whites and Mexicans. Those with AALD also had higher mean systolic and diastolic blood pressure, as well as elevated fasting glucose levels (p < 0.001). The mortality rate among AALD participants with heart diseases was 25%, compared to 3% among those without (p < 0.001). After adjusting for potential confounding variables, no statistically significant associations were found between AALD status and HF or CAD. However, a clinically significant increase in the odds of stroke was observed within the AALD group (p < 0.001). Conclusions: Our findings indicate Asians have the highest rates of AALD. The trends of advanced fibrosis have been increasing in blacks and Asians. There is an increased prevalence of AALD with heart diseases and a significant increase in mortality with stroke. Full article
Show Figures

Figure 1

16 pages, 946 KiB  
Article
Vascular Access for Hemodialysis and Right Ventricular Remodeling: A Prospective Echocardiographic Study
by Denis Fornazarič, Jakob Gubenšek, Manja Antonič, Marta Cvijić and Jernej Pajek
J. Clin. Med. 2025, 14(15), 5565; https://doi.org/10.3390/jcm14155565 - 7 Aug 2025
Abstract
Background: Arteriovenous fistulas (AVFs) may contribute to cardiac remodeling and consequently to an increased risk of heart failure and cardiovascular mortality in patients with end-stage kidney disease (ESKD). We aimed to assess cardiac changes following AVF creation and identify potential parameters associated [...] Read more.
Background: Arteriovenous fistulas (AVFs) may contribute to cardiac remodeling and consequently to an increased risk of heart failure and cardiovascular mortality in patients with end-stage kidney disease (ESKD). We aimed to assess cardiac changes following AVF creation and identify potential parameters associated with cardiac remodeling. Methods: In our prospective, single-center study, ESKD patients without significant pre-existing cardiac disease underwent 2D and 3D echocardiographic evaluation before and after AVF creation, along with AVF flow measurement. Cardiac remodeling was assessed using 3D indexed left and right ventricular end-diastolic volumes (LVEDVi, RVEDVi), while systolic function was assessed using longitudinal strain and 3D ejection fraction. Results: We included 20 patients (18 men; median age 73.5 years [IQR: 67–77]) with a mean AVF flow of 1140 ± 345 mL/min. At a median of 8.2 months (IQR: 7.3–9.3) following AVF creation, significant biventricular dilatation was observed: LVEDVi increased from 89 ± 14 to 97 ± 21 mL/m2 (p < 0.05) and RVEDVi from 80 ± 15 to 91 ± 18 mL/m2 (p < 0.05), while the systolic function of both ventricles did not change significantly. The right ventricle showed the most pronounced remodeling and it was independently associated with volume overload (p = 0.003) and elevated left ventricular filling pressure (p = 0.030), but not with AVF flow. Conclusions: Moderate AVF flow was associated with cardiac remodeling, primarily affecting the right ventricle. Fluid overload and left ventricular filling pressure were key factors associated with right ventricular remodeling, underscoring the need for careful fluid management and vascular access planning in ESKD patients. Full article
(This article belongs to the Special Issue Hemodialysis: Clinical Updates and Advances)
Show Figures

Figure 1

Back to TopTop